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DISJUNCTIVE ELEMENTS OF INVERSE MONOIDS

BY

HSING Y. WU

Abstract

An element of a semigroup is called disjunctive if it does

not form a class modulo some non-identity congruence. We first

study identity elements of inverse monoids that are disjunctive. It

turns out that a disjunctive identity element can be determined

by a basis. We continue to analyze other disjunctive elements,

and find out that disjunctive elements in some D-classes can be

determined by a special element.

1. Introduction

Throughout this paper we shall use the terminology and notation of [1]

and refer to [8] for basic properties of groups. Disjunctive elements play

a role in automata theory, and in the congruence theory of (inverse) semi-

groups. The term disjunctive was introduced by Schein [9]. An element of a

semigroup is called disjunctive if it does not form a class modulo some non-

identity congruence. For a homomorphism φ of a group G onto φ(G), the

inverse images of elements of φ(G) partition G into classes of a congruence ρ.

As a consequence, ρ is uniquely determined not only by the ρ-class contain-

ing the identity of G, which is a normal subgroup of G, but also by each of

its congruence classes that are the cosets of this normal subgroup. It is ob-

vious that the order of each non-identity congruence class is more than one.

And it turns out that every element of the group G is disjunctive. However,

the situation is more complicated and interesting for inverse semigroups, the
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semigroups that are “closet” to groups. For example, the identity element

of an infinite lower semillatice with identity is not disjunctive. The purpose

of this paper is to investigate disjunctiveness in inverse monoids.

There are already some discussions on disjunctive elements of semi-

groups in [9]. Now we focus on disjunctive elements of inverse monoids.

We recall the following definitions. A semigroup S is called an inverse semi-

group if every element a of S has a unique inverse a−1 such that aa−1a = a

and a−1aa−1 = a−1. An inverse monoid is an inverse semigroup with an

identity element. Two elements a and b of an inverse semigroup S are called

R-equivalent if there exists x ∈ S such that aa−1 = xx−1, and L-equivalent

if b−1b = x−1x. Also, a and b are called D-equivalent if there exists x ∈ S

such that a and x are R-equivalent and x and b are L-equivalent.

The syntactic congruence τK of a subset K of a semigroup S is defined

by

(a, b) ∈ τK if and only if (xay ∈ K ⇔ xby ∈ K)

for all x, y ∈ S1.

If K is the union of some ρ-classes, then ρ ⊆ τK (see [6]). For a subset

K of an inverse semigroup S, it is easy to show that the definition of τK is

equivalent to

(a, b) ∈ τK if and only if (xay ∈ K ⇔ xby ∈ K)

for all x, y ∈ S.

When K = {a} for a ∈ S, it is clear that a is disjunctive if and only

if τ{a} = 1S . There is an in-depth study in [10] of the relationship between

disjunctiveness and syntactic congruences in inverse monoids.

The main aim of the second section of this paper is to investigate disjunc-

tive identity elements of inverse monoids. We recall the following definitions.

Let I be a proper ideal of a semigroup S. Then ρI is called a Rees congruence

on S if

ρI = (I × I) ∪ 1S .

We note that the set of ρI -classes consists entirely of the ideal I and

singletons which are not contained in I. A semigroup S is called simple if

it has no proper ideals. Then S is simple if and only if for every a, b ∈ S
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there exist x, y ∈ S such that xay = b. Also, it can be seen in ([2]) that the

principal filter ↑a of an ordered set S is

↑a = {s ∈ S : s ≥ a}.

The syntactic congruence τ↑a of the subset ↑a of a simple inverse semi-

group S is the identity congruence if and only if Da is a basis (Theorem 2.1).

This result leads immediately to a necessary and sufficient condition for the

identity element of an inverse monoid (Corollary 2.2).

The third and final section concerns the other disjunctive elements. A

maximal idempotent f of an E-unitary inverse semigroup is disjunctive if and

only if every element in Df is disjunctive (Theorem 3.1). To obtain more

results, we study further completely 0-simple semigroups. A completely 0-

simple semigroup S is a 0-simple semigroup such that every idempotent z of

S has the property that zf = fz = f 6= 0 implies z = f . As explained in

[3] and [5], every completely 0-simple inverse semigroup is isomorphic to a

Brandt semigroup. A Brandt semigroup S = M0[G; I, I;△] is a semigroup

S = (I × G × I) ∪ {0} whose mutiplication is given by

(i, a, λ)(j, b, µ) =

{

(i, aδλjb, µ) if δλj = e

0 if δλj = 0

(i, a, λ)0 = 0(i, a, λ) = 00 = 0,

where G is a group with an identity element e, I is a non-empty set, and

△ = (δij) is the I × I matrix given by,

δij =

{

e if i = j

0 if i 6= j.

Finally, we investigate disjunctive elements of finite inverse semigroups. Ev-

ery non-zero element of a finite inverse semigroup is disjunctive if and only

if it is isomorphic to a Brandt semigroup (Theorem 3.2). This leads to an

identification of finite inverse monoids with disjunctive identity elements.
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2. Disjunctive Identity Elements of Inverse Monoids

For an element a of a semigroup S, clearly, a is disjunctive if and only if

τ{a} is the identity congruence on S. We begin to investigate the syntactic

congruence τ↑a of the principal filter ↑a of a simple inverse semigroup S,

especially when τ↑a is the identity congruence on S. By virtue of the defi-

nition of τ↑a, we now produce two non-empty identical subsets of a simple

inverse semigroup S.

Xb,a = {x−1ay−1 : xby ≥ a for x, y ∈ S}.

Ab,a = {t ∈ Da : t ≤ b}.

Before we state our main theorem, it is important to prove the following

lemma.

Lemma 2.1. Let S be a simple inverse semigroup, and let a, b ∈ S.

Then Xb,a and Ab,a are two non-empty identical subsets of S.

Proof. Since S is simple, it is clear that Xb,a and Ab,a are non-empty. We

now show that Xb,a ⊆ Ab,a. Suppose that x−1ay−1 ∈ Xb,a. Then xby ≥ a

for x, y ∈ S. It follows that b ≥ x−1xbyy−1 ≥ x−1ay−1. Next, we verify

that x−1ay−1 ∈ Da. First, it is necessary to show that xx−1 ≥ aa−1 and

y−1y ≥ a−1a. Indeed,

xx−1≥xx−1(xbyy−1b−1x−1)=xbyy−1b−1x−1 =(xby)(xby)−1 ≥ aa−1.(2.1)

Similary, we obtain

y−1y ≥ a−1a. (2.2)

According to (2.1) and (2.2), (x−1ay−1)−1(x−1ay−1) = ya−1xx−1ay−1 =

ya−1(aa−1)(xx−1)ay−1 = (ay−1)−1(ay−1), and aa−1 = a(y−1y)(a−1a)a−1 =

ay−1ya−1 = (ay−1)(ay−1)−1. Hence Xb,a ⊆ Ab,a. Conversely, suppose

that t ∈ Da, and t ≤ b. Then t−1t = u−1u, and aa−1 = uu−1 for

some u ∈ S. Now, t = bt−1t = bu−1uu−1u = (ub−1)−1a(u−1a)−1. Also,

(ub−1)b(u−1a) = u(b−1bu−1u)u−1a = u(t−1t)u−1a = u(u−1u)u−1a ≥ a. We

are done. �
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Before we show Theorem 2.1, we recall the following definitions. A non-

empty subset Y of an ordered set S is called a basis if every element of S is

the least upper bound of some subset of Y . For a non-empty subset K of a

semigroup S, the relation δK on S is defined by

(a, b) ∈ δK if and only if (xay ∈ K ⇒ xby ∈ K)

for all x, y ∈ S1.

Theorem 2.1. Let S be a simple inverse semigroup with a ∈ S. Then

the following statements are equivalent:

(1) τ↑a = 1S .

(2) Da is a basis.

(3) b = ∨Xb,a for any b ∈ S.

(4) δ↑a is the natural relation ≤ on S.

Proof. (1) ⇒ (2). Suppose that τ↑a = 1S . Let b ∈ S. First, we claim

that b = ∨Xb,a. Indeed, if b is not the least upper bound of Xb,a, then there

exists c ∈ S such that c < b and x−1ay−1 ≤ c. It follows that (c, b) ∈ τ↑a.

Indeed, if xcy ≥ a, then b > c implies that xby ≥ xcy and hence xby ≥ a.

Conversely, if xby ≥ a, then x−1ay−1 ∈ Xb,a. Since x−1ay−1 ≤ c, we have

xcy ≥ xx−1ay−1y. By (2.1) and (2.2) just proved above we have

xx−1ay−1y ≥ (xx−1aa−1)a(a−1ay−1y) = a.

Hence xcy ≥ a. But (c, b) ∈ τ↑a contradicts the assumption. So b =

∨Xb,a. By Lemma 2.1, b = ∨Ab,a. Therefore Da is a basis.

(2) ⇒ (3). If Da is a basis and b ∈ S, then b is the least upper bound of

some subset Kb of Da. We claim that b is the least upper bound of the subset

Ab,a of Da. First, b is an upper bound of Ab,a. Next, let h be an upper bound

of Ab,a. Since Kb ⊆ Ab,a, it is clear that h is also an upper bound of Kb.

Thus by the hypothesis we obtain b ≤ h. It follows that b = ∨Ab,a = ∨Xb,a.

(3) ⇒ (4). Suppose that (c, d) ∈ δ↑a with c, d ∈ S. Then Xc,a ⊆ Xd,a. It

follows easily that d is an upper bound of Xc,a. By the hypothesis we obtain

c = ∨Xc,a ≤ d.
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(4) ⇒ (1). Suppose that δ↑a is the natural relation ≤ on S. Let (b, c) ∈

τ↑a. Then

xby ≥ a if and only if xcy ≥ a (2.3)

for all x, y ∈ S.

Now we claim that (b, c) ∈ δ↑a and (c, b) ∈ δ↑a. First, we verify that

xby ≥ a implies xcy ≥ a for all x, y ∈ S1. Let by ≥ a. Then (bb−1)by ≥ a.

According to (2.3), bb−1cy ≥ a. So cc−1bb−1cy = bb−1cc−1cy = bb−1cy ≥ a.

It follows again from (2.3) that cc−1bb−1by ≥ a. Clearly, cc−1by ≥ a implies

that cc−1cy ≥ a. So cy ≥ a. Similarly, if xb ≥ a, then xc ≥ a. Also, if

b ≥ a, then b(b−1b) ≥ a and hence c ≥ cb−1b ≥ a. Thus, xby ≥ a implies

that xcy ≥ a for all x, y ∈ S1. Similarly,we can verify that xcy ≥ a implies

xby ≥ a for all x, y ∈ S1. Now, (b, c) ∈ δ↑a and (c, b) ∈ δ↑a. By the

hypothesis, b ≤ c and c ≤ b. So b = cand therefore τ↑a = 1S . �

Suppose that e is an identity element of an inverse monoid S. Then it is

obvious that e =↑e. If τ↑e = 1S , then an inverse monoid S is simple. Indeed,

if I is a proper ideal of S, then e 6∈ I. So there exists a non-identity Rees

congruence ρI such that eρI = {e}. It follows that the identity element e is

not disjunctive, and τ↑e 6= 1S . A useful further specialization of Theorem

2.1 is provided by the following corollary. We omit the proof.

Corollary 2.2. Let S be an inverse monoid with an identity element e.

Then the following statements are equivalent:

(1) e is disjunctive.

(2) τ{e} = 1S .

(3) De is a basis.

(4) b = ∨{x−1y−1 : xby = e for x, y ∈ S} for any b ∈ S.

(5) δ↑e is the natural relation ≤ on S.

Remark. We make a further observation about inverse monoids whose

semilattices of idempotents form a chain. Let Cω = {e0, e1, e2, . . .}, with

e0 ≥ e1 ≥ · · · . Bisimple semigroups whose semilattices of idempotents

are isomorphic to Cω are so-called bisimple ω-semigroups (see [7]). If we

apply Corollary 2.2 to bisimple inverse ω-monoids, we find out the following
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interesting result. An inverse ω-monoid S is bisimple if and only if its

identity element is disjunctive.

There are several different forms of the identity xby = e in Corollary 2.2

(4). We discuss them in the following propositions.

Proposition 2.1. Let S be an inverse monoid with an identity element

e, and let x, y ∈ S. Then the following statements are equivalent:

(1) xby = e.

(2) x ∈ Re, x−1x ≤ bb−1, and x−1 ≤ by.

(3) xbb−1x−1 = e, and x−1 ≤ by.

(4) y ∈ Le, yy−1 ≤ b−1b, and y−1 ≤ xb.

(5) y−1b−1by = e, and y−1 ≤ xb.

Proof. First we show that (1) ⇔ (2) ⇔ (3).

(1) ⇒ (2). If xby = e, then x−1 = x−1e = x−1(xby) = (x−1x)by ≤ by.

Next, xx−1 = (xx−1)e = (xx−1)xby = xby = e. Before we show that x−1x ≤

bb−1, we first verify that y ∈ Le. Indeed, y−1y = e(y−1y) = xbyy−1y =

xby = e. Now, x−1y−1 = x−1(xby)y−1 = (x−1x)b(yy−1) ≤ b. It follows that

x−1x = x−1(y−1y)x = (x−1y−1)(x−1y−1)−1 ≤ bb−1.

(2) ⇒ (3). It suffices to show that xbb−1x−1 = x(x−1xbb−1x−1x)x−1 =

x(x−1xx−1x)x−1 = xx−1 = e.

(3) ⇒ (1). Since x−1 ≤ by, we have x−1 = zby for some idempotent z.

Now, xx−1 = (y−1b−1z)zby = (y−1b−1z)by = xby. Also, e = xbb−1x−1 =

x(x−1xbb−1)x−1 = xx−1(xbb−1x−1) = xx−1. Thus, xby = xx−1 = e.

Similarly, (1) ⇔ (4) ⇔ (5). We are done. �

Let ρ be a congruence on an inverse semigroup S with semilattice ES

of idempotents. We note that trρ denotes the restriction of ρ to ES . The

following proposition is a special case of Corollary 2.2.

Proposition 2.2. Let S be an inverse monoid with an identity element

e. Then trτ{e} = 1ES
if and only if f = ∨{x−1x : xfy = e for x, y ∈ S} for

any f ∈ ES.

Proof. Let trτ{e} = 1ES
, and let f ∈ ES . If f 6= ∨{x−1x : xfy =

e for x, y ∈ S}, then there exists w ∈ S such that w < f , and x−1x ≤ w
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with xfy = e for x, y ∈ S. We claim that (f,w) ∈ τ{e}. Indeed, if xfy = e

for some x, y ∈ S, then e = xfy = xf(yy−1)y = xy(y−1fy) ≤ xy. This

implies that xy = e. By the assumption, xwy = x(x−1x)wy = xy = e. Next,

suppose that xwy = e. Since w < f , we have e = xwy ≤ xfy. So xfy = e,

and hence (f,w) ∈ τ{e}. This is a contradiction of trτ{e} = 1ES
. Conversely,

let (f,w) ∈ τ{e} for some f , w in ES . Then {x−1x : xfy = e for x, y ∈ S}

= {x−1x : xwy = e for x, y ∈ S}. So f = ∨{x−1x : xfy = e for x, y ∈

S} = ∨{x−1x : xwy = e for x, y ∈ S} = w. �

Since every element of an inverse semigroup has a unique inverse, xfy =

e implies that y = x−1 in Proposition 2.2. An inverse semigroup S is called

E-unitary if, for any x ∈ S and f ∈ ES , x ≤ f implies that x ∈ ES (see [4]).

The next proposition is of some interest.

Proposition 2.3. Let S be a simple E-unitary inverse monoid with an

identity element e. Then τ{e} is an idempotent-pure congruence.

Proof. Let (b, f) ∈ τ{e} for some b ∈ S and f ∈ ES . Since S is simple,

there exist x, y ∈ S such that xby = e. We note that (b, bb−1) ∈ τ e. It follows

that xbb−1y = e. According to Proposition 2.1, e = xbb−1y = xx−1xbb−1y =

xbb−1x−1xy = xy. Since x has a unique inverse element of S, we obtain

y = x−1. Now x−1x = x−1ex = x−1(xbx−1)x ≤ b. Since S is E-unitary, we

have b ∈ ES . So τ{e} is an idempotent-pure congruence. �

Example 2.1. We recall an inverse ω-semigroup B2 = {(m,n) ∈

N
0 × N

0 : m ≡ n(mod 2)}. It is shown in [3] that B2 is a simple inverse

monoid with an identity element (0,0), and the idempotents of B2 are of

the form (m, m). Clearly, B2 is E-unitary. Indeed, if (m,m) ≤ (p, q) for

some p, q ∈ N
0, then (m,m) = (m,m)(p, q)−1(m,m) = (q − p + max(p− q +

max(m, q)),max(p − q + max(m, q))). It follows that p = q. We note that

τ{(0,0)} 6= 1B2
, and τ{(0,0)} is an idempotent-pure congruence on B2.

3. Further Properties of Disjunctive Elements of Inverse Semigroups

In this section we first examine certain elements which can affect other

disjunctive elements in the same D-class. We will study maximal idempo-

tents of E-unitary inverse semigroups.
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Theorem 3.1. Let S be an E-unitary inverse semigroup with semi-

lattice ES of idempotents, and let f be a maximal idempotent. Then f is

disjunctive if and only if every element in Df is disjunctive.

Proof. Case 1. Suppose that S is a monoid with an identity element

e. We claim that e is disjunctive if and only if every element in De is

disjunctive. Indeed, let a ∈ De. Then a−1a = u−1u and e = uu−1 for

some u ∈ S. We show that τ{a} ⊆ τ{e}. If τ{a} = 1S , we are done. Now,

let us assume that (b, e) ∈ τ{a} with b ∈ S. Then au−1eu = a implies

that au−1bu = a. It follows that u−1bu = u−1u. Therefore, b = ebe =

uu−1buu−1 = u(u−1bu)u−1 = e. We note that τ{e} is the greatest congruence

on S having a congruence class {e}. Thus, τ{a} ⊆ τ{e}. If e is disjunctive,

then τ{a} = 1S , and hence a is disjunctive. This completes the direct part

of the proof.

Case 2. Suppose that S is an E-unitary inverse semigroup without an

identity element. Let a ∈ Df . Then a−1a = u−1u and f = uu−1 for some

u ∈ S. We show that τ{a} ⊆ τ{f}. If τ{a} = 1S , we are done. Now, let

us assume that (b, f) ∈ τ{a} with b ∈ S. Then au−1fu = a implies that

au−1bu = a. It follows that f = ua−1au−1 = ua−1(au−1bua−1a)u−1 =

fbf ≤ b. Since S is E-unitary, we obtain b ∈ ES . Also, we note that f is

a maximal idempotent. Thus f = b. Since τ{f} is the greatest congruence

on S having a congruence class {f}, it follows that τ{a} ⊆ τ{f}. If f is

disjunctive, then τ{f} = 1S , and hence a is disjunctive. �

Next, we recall 0-tight semigroups in Schein [9]. A semigroup S with

zero is 0-tight if each of the congruences is uniquely determined by each of

its congruence classes which do not contain zero. By the definition of 0-tight

semigroups we obtain the following result of disjunctive elements of finite

inverse semigroups with zero.

Theorem 3.2. Let S be a finite inverse semigroup with zero. Then the

following statements are equivalent:

(1) S is 0-tight.

(2) Every non-zero element of S is disjunctive.

(3) Every non-zero idempotent of S is disjunctive.

(4) S is isomorphic to a Brandt semigroup.
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Proof. We shall show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).

(1) ⇒ (2). Suppose that S is a 0-tight inverse semigroup. Then 1S is

uniquely determined by each of the congruence classes which do not contain

zero. So every non-zero element of S is disjunctive.

(2) ⇒ (3). By the hypothesis it is clear that every non-zero idempotent

of S is disjunctive.

(3) ⇒ (4). Suppose that every non-zero idempotent of S is disjunctive.

First, we claim that S is 0-simple. Indeed, if S is not 0-simple, then there

exists a proper ideal I of S. Obviously, there exists an idempotent aa−1 6∈ I

for some a 6∈ I. Otherwise, all idempotents belong to I, and this leads to

I = S, in contradiction to the already noted fact that I is a proper ideal.

It follows that there exists a non-identity Rees congruence ρI such that

aa−1ρI = {aa−1}. This contradicts the hypothesis. So S is 0-simple. Now, S

is a finite 0-simple inverse semigroup. As proved in ([3]), S is a completely 0-

simple inverse semigroup, and hence S is isomorphic to a Brandt semigroup.

(4) ⇒ (1). Suppose that S is isomorphic to a Brandt semigroup T =

M0[G; I, I;△]. We claim that T has exactly two D-classes, namely {0} and

D = T\{0}. First, we note that every non-zero idempotent of T is of the form

(i, e, i), where e is the identity element of G. For every (i, e, i), (j, e, j) ∈ ET ,

(i, e, i) = (i, eδjje, i) = (i, e, j)(j, e, i) = (i, e, j)(i, e, j)−1 ,

(j, e, j) = (j, eδiie, j) = (j, e, i)(i, e, j) = (i, e, j)−1(i, e, j).

It follows that (i, e, i) and (j, e, j) are in the same D-class for every pair

(i, e, i), (j, e, j) ∈ ET , and hence (since every non-zero element of T is D-

equivalent—indeed R- or L-equivalent—to an idempotent) S is 0-bisimple.

As proved in Schein [9], every 0-bisimple inverse semigroup is 0-tight. We

are done. �

A semigroup S is tight if each of the congruences is uniquely determined

by each of its congruence classes (see [9]). The following corollary can be

proved in some way analogous to Theorem 3.2. We omit the proof.

Corollary 3.3. Let S be a finite inverse semigroup. The following

statements are equivalent:



2010] DISJUNCTIVE ELEMENTS OF INVERSE MONOIDS 121

(1) S is tight.

(2) Every element of S is disjunctive.

(3) Every idempotent of S is disjunctive.

(4) S is a group.

Remark. If in Theorem 3.2 and Corollary 3.3, S is a finite inverse

monoid with an identity element e, then we obtain the following equivalent

statements.

(1) S is [0]-tight.

(2) e is disjunctive.

(3) S is a [0]-group.
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