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Abstract

In this paper, we introduce new classes, MBy(a, A, q, s, p)
and MTx(a, A, q, s, p) of meromorphic functions defined by using a
meromorphic analougue of the Choi-Saigo-Srivastava operator for
the generalized hypergeometric function and investigate a number
of inclusion relationships of these classes. We also derive some
interesting properties of these classes, which also includes radius

problem for the class MBy(«, A, q, s, p).

1. Introduction

Let M denote the class of functions of the form
1 o0
_ 1 k
f(z) = ~ —I—Zakz ,
k=0
which are analytic in the punctured unit disk
E*={z:2€C and 0< |z| <1} = E\ {0}.
Let Py (p) be the class of functions p(z) analytic in E satisfying the properties

p(0) =1 and
2
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where z = rew, k> 2 and 0 < p < 1. This class has been introduced in
[16]. We note that Py(0) = Py, see [13], Px(p) = P(p), the class of analytic
functions with positive real part greater than p and P5(0) = P, the class of
functions with positive real part. From (CII) we can write p € Py(p) as

b0 = (5+3)me - (5 - 3o (12

where p;(z) € P(p),i=1,2 and z € E.

For complex parameters

ai,...,aq and Bi,...,0s (B € C\Z, :={0,-1,-2,...}; j=1,...,s),

we now define the generalized hypergeometric function Fg(aq,...,aq; 5,
.., Bq; 2) 113, 118] as follows:

(e et
gFs(an, o aq; Brs oo, Bys 2) = kZ:O Bk - (Byrk!’

(g <s+1;q,s e Ng:=NU{0};N:={1,2,...};z € F),

where (v)g is the Pochhammer symbol (or the shifted factorial) defined in
(terms of the Gamma function) by

(V) =

Fv+k) )1 if k=0 and v e C)\ {0},
L(v)  Jow+1)(v+tr—1) if k€N and v € C.

Corresponding to a function .% (a1,...,aq; 01, ..., Bs; 2) defined by
F (a1,...,0q;01,...,0s:2) = 271 ¢Fs(oa,...,aq01,...,0s;2)  (1.3)

Liu and Srivastava [8] considered a linear operator H (a1, ..., aq; 01, ..,0s)
M — M defined by the following Hadamard product (or convolution):

H(ay,...,o001,...,0:)f(2) =F (aa,...,aq P1,...,0s2) * f(2). (1.4)

We note that the linear operator H(ay,...,oq;01,-..,3s) was motivated
essentially by Dziok and Srivastava [2]. Some interesting developments with
the generalized hypergeometric function were considered recently by Dzoik
and Srivastava [3, 4] and Liu and Srivastava [@, [7].
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Corresponding to the function # (ou,...,aq;061,...,0s;2) defined by
([3)), we introduce a function .Zy (a1, ...,aq; 01, ..., Bs; z) given by

y (alv"'7aq;/817"'7ﬁ8;z)*ﬂ\/\(alw"7aq;61---7ﬂ8;z)
1

Analogous to H(a1,...,0q;01,...,0s) defined by (L), we now define the

linear operator Hy(a1,...,0q;01,...,0s) on M as follows:
H/\(alv"' 7aq;/817"' 7ﬁ8)f(z) = Lga)\(alw" ,Oéq;ﬁl,... 7/65;2:) * f(Z) (1 6)
(a;, 3 € C\Zy; t=1,...,¢; j=1,...,8 A>0;z € E; fe M).
For convenience, we write

Hy g s(ar) = Hy(a1,...,aq01,...,0).

It is easily verified from the definition ((CH) and (6 that

2(Hyg,s(n + 1) f(2)) =1 Hy g,5(c1) f(2) = (@1 +1) H) g,s(e1+1) f(2), (1.7)
and
2(Hyq,5(01)f(2)) = AHxp1,,s(a1) f(2) — (A + 1) H) g s(e1) f(2). (1.8)

We note that the operator H)y (1) is closely related to the Choi-Saigo-
Srivastava operator [l] for analytic functions, which includes the integral
operator studied by Liu [5] and Noor et al. [10, [11].

Next by using the operator Hy 4 s(a1), we introduce some new classes

of meromorphic functions.

Definition 1.1. Let f € M. Then f € MBg(a, A, q, s, p), if and only if
—(1 = )2*(Hy g,s(01) f(2)) — az®(Hxq1,4,5(1) f(2)) € Pu(p), z € E,
where a > 0,k >2and 0 < p < 1.

Definition 1.2. Let f € M. Then f € MTy(a, A, q, s, p), if and only if

(1 - a)Z(H)\,q,s(al)f(z)) + aZ(H)\Jrl,q,s(al)f(z)) S Pk(p)v z € F,
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where « > 0,k >2and 0 < p < 1.

2. Preliminary Results

Lemma 2.1.([17]). If p(2) is analytic in E with p(0) = 1, and if A1 is
a complex number satisfying Re(A1) > 0 (A # 0), then

Re{p(z) + Mzp'(2)} > B (0< B <1).
Implies
Re p(z) > B+ (1= 5)(2y - 1),

where 7y is given by
1
v =v(Re\) = / (1 +tRed)y=Lae,
0

1
which is an increasing function of Re(\1) and 3 < v < 1. The estimate is

sharp in the sense that the bound cannot be improved.

1
Lemma 2.2. ([19]). If p(z) is analytic in E, p(0) =1 and Re p(z) > =,
z € E, then for any function F analytic in E, the function px F takes values
in the convex hull of the image of E under F.

Lemma 2.3. (cf., e.g., Pashkouleva [14]). Let p(z) = 1+ byz + by2? +
<+ € P(p). Then

2(1—-p)

Re p(z) >20—1+ .
p(z) > 2p T

3. Main Results
Theorem 3.1. Let f € MBy(a, A, q,s,p). Then

—2*(Hyq,s(a1 f(2)) € Pe(p1),

where p1 1s given by

pr=p+(1-p)(2y-1), (3.1)
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and
v = /1 (1 + tR‘f(‘i))ldt.
0
Proof. Let
A gs@)fE) =) = (5 + D)) - (5 - 3 )me) (32

Then p(z) is analytic in F with p(0) = 1. Applying the identity (LJ)) in

(B2) and differentiating the resulting equation with respect to z, we have
Q@
—(1— )2 (Hy gs(a1)f(2)) — az®(Hxp1,4.6(01) f(2)) = {P(Z) + sz’(z)}.

Since f € MBy(a, A, g, s,p), so {p(z) + %zp’(z)} € Py(p) for z € E. This
implies that

(%

Re{pi(z) + )\Zpg(z)} >p, 1=1,2.

Using Lemma 2.1, we see that Re{p;(z)} > p1, where p; is given by (BI).
Consequently p € Py(p1) for z € E, and the proof is complete. O

Theorem 3.2. Let f € MBy(0,\,q,s,p) for z € E. Then f €
MBy(a, A, q,8,p) for |z| < R(a, X), where

A

RN = e

(3.3)

Proof. Set
—2%(Hygs(01)f(2)) = (L = p)h(2) + p, h€ Py
Now proceeding as in Theorem 3.1, we have

—(1—a)z*(Hygs(a1)f(2)) — az®(Hxt1,q5(01) f(2)) — p

= (a-pfnte) + a1
- <1—p>[(§+§){h1<z> + %zh&(z)}—(§—§){hz<z>+§zha<z>}},<3.4>
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where we have used (C2) and hy,he € P, z € E. Using the following well

known estimate [9]

2r

h! <
2h(2)] < —

Re{hi(2)}, (lz|=r<1), i=1,2,
we have
Re{hi(z) + %zh;(z)} > Re{hi(z) - %|zh;(z)|}

> Rehi(z){l - %}

The right hand side of this inequality is positive if r < R(a, A), where
R(a, \) is given by (B3)). Consequently it follows from Bl that f €
MBy(a, A\, q, s, p) for |z| < R(a, A). Sharpness of this result follows by taking

1
hi(z)zli_jin(llﬂﬂ),i:l,z 0

Theorem 3.3. Let f € MB;(0,)\,q,s,p) and let

Fo(f)(2) = % /0 PFH)dt (5>0, =€ B). (3.5)

Then

—22(Hy g,5(01)F(f)(2))" € Pr(p2),
where py is given by

p2=p+(1-p)(2n-1), (3.6)

1 ) —1
o0 :/ (1+tRe<a>> dt.
0

and

Proof. Setting

ko1 ko1

2 (Hago(a)F(NE) =p() = (7+3)m1(2) = (7 = 5)p2(2)- (3.7)

Then p(z) is analytic in E with p(0) = 1. Using the following operator
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identity:

2(Hyq,s(01) F(£)(2))" = 6(Hnq,s(01) f(2)) = (8 + 1) (Hg,s(a1) F(f)(2))
(3.8)
in (B1), and differentiating the resulting equation with respect to z, we find
that

—22(Hy 45(a1) f(2)) = {p(z) + %zp’(z)} € Pi(p) for z€ E.

Using Lemma 2.1, we see that —22(H) , s(c1)F(f)(2))" € Pi(p2), for z € E,
where py is given by (B, and the proof is complete. O

Theorem 3.4. Let p(z) € M satisfy the inequality:

Re(zp(z)) > (z € E). (3.9)

1
2
Let f € MTy(a, N\, q,8,p). Then o f € MTi(a, A\, q,8,p).

Proof. Let G = p* f. Then

(1 - a)Z(H)\,q,s(al)G(Z)) + aZ(H)\-i—l,q,s(al)G(Z))
= (1 — a)z(Hy g,s(1)(p x f)(2)) + az(Hri1,q,5(a1) (@ * f)(2))
— p()kh(z),  he Pyp)

= (g + %){(1 — p)(2p(2) * h1(2)) + p}
_G _ %){(1 = )(=p(2) ¥ ha(2) + p}, hashy € P,

1
Since Re(z¢(z)) > 2 (z € E), and so using Lemma 2.2, we can conclude
that G = px f € MTy(a, N\, q, 8, p). O

Theorem 3.5. Let ¢(z) € M satisfy the inequality BY), and f €
MBk(Ov)‘qusvp)' Then (p*f € MBk(Ov)‘qusvp)'

Proof. We have

—2*(Hygs(0n(p* f)(2)) = =2*(Hrg,s(n) f(2)) * 20(2) (2 € B).
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Now the remaining part of Theorem 3.5 follows by employing the tech-
niques that we used in proving Theorem 3.4 above. U

Theorem 3.6. For 0<ag<ay, MTi(a1, A, q,s,p) C MTi (a2, A q,8,p).

Proof. For ag = 0, the proof is immediate. Let ap > 0 and let f €
MTk(alv)‘7q787p)' Then

(1 = ag)z(Hxgs(a1)f(2)) + a2z(Hyi1,9,s(1) f(2))

= 22 (% 1)s(H g @) ) + (1= an)(H () (2)
(65} (%)
o (g1 2)|

«@ «@

= (1——2>H1(Z)+—2H2(Z), H,, Hy EPk(p).
a1 a1

Since Py(p) is a convex set, see [12], we conclude that f € M Ty (a9, A, q, s, p)

for z € E. Now by using Theorem 3.1 and the lines of proof of Theorem 3.6

we have the following Theorem. O

Theorem 3.7. For 0<ag <oy, MBg(a1, )\ q, s, p) CMBy(az, A, q,s,p).

Theorem 3.8. Let f € MTi(a, N, q,s,p3) and g € MTi(a, N, q, s, p4)
and let F = fxg. Then F € MTy(a, A, q, s, ps), where

A 1 u(ﬁ)_l
— 0 au

ps =1 =41 —ps)(1 — pa) [1 - a/o (3.10)

1+ u

This result is sharp.
Proof. Since f € MTy(a, A, q,s,ps), it follows that
S(z) = (1 — a)z(Hyg,s(1) f(2)) + az(Hrt1,q,5(1) f(2)) € Pi(p3),

and so using identity (L) in the above equation, we have

A A [Fa g
Hyqs(a1)f(z) = Ok <a>/0 7 1S (t)dt. (3.11)
A oA [Py
Hygs(a1)g(z) = —~z @ /O @ S(t)dt. (3.12)
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where S*(z) € Py(pa).

Using BI1) and BI2), we have

Maeo)Po) = @ [0 quar, (3.13)
where
1= (5 Do ¢+
= %z‘@_) /ztﬁ‘l(s* S*)(t)dt. (3.14)
o 0
Now
0= (Dot - ot
S () = (% + %)s’{(z) - (% - %)sg(z), (3.15)

where s; € P(p3) and s € P(ps), i = 1,2.

Since
*

si(z)—ps 1 1 ,
Pr(z) = S\E) =P 2 p(_> = 1,2
K3 (Z) 2(1 _ p4) + 2 € 2 ? v <

we obtain that (s; * p})(z) € P(p3), by using the Herglots formula. Thus
(si* s7) € P(ps)
with
ps =1—=2(1—p3)(1 — pa). (3.16)
Using (B13), B14), BI0), BI0) and Lemma 2.3, we have

1 A
Rea(s) = 75 [ u® Re (s ) )

Q

A 1 A 2(1 — p5)
> 2 @ H2ps— 14+ 22—y
> oy, o e R
A 1 A 2(1 — p5)
> — () 2p5 — 14+ ———=|d
- (a)/o ¢ < T T )™
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A
A Lylay !
=1-—4(1- 1— 1—— ——dul.

From this we conclude that F' € MTg(a, A, q, s, ps), where ps is given by
BTI). We discuss the sharpness as follows:

We take
ok INT4+(1—2p3)2 ko 1\1—(1—2p3)z
5(2) = <4+2) 1—2z (4 2) 1+ 2 ’
sin (kNI + (A =2pg)z  k IN1—(1—2py)2
S(Z)_<4+2) 1—2z (4 2) 1+ 2 ’
Since
1+(1—2p3)z 1+(1=2py)z\ . = B 4(1—p3)(1—p4)
(2 ) (P22 ) = 11 ) S22,

it follows from (3.14) that

gi(z) = A /01 u%_l{l —4(1 = p3)(1 = pg) + 4(1 — p3)(1 — pa) }du

(@) 1—2
1, -1
1—4(1 = p3)(1 — pa) l—i/ L
7 ps pa (@) Jo 1+u ’
This completes the proof. O
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