A CLASS OF ANALYTIC FUNCTIONS DEFINED
BY THE CARLSON-SHAFFER OPERATOR

BY

NENG XU AND DINGGONG YANG

Abstract
The Carlson-Shaffer operator $L(a, c)f = \phi(a, c) * f$, where $f(z) = z + a_2 z^2 + \cdots$ is analytic in the unit disk $E = \{z : |z| < 1\}$ and $\phi(a, c; z)$ is an incomplete beta function, is used to define the class $T(a, c)$. An analytic function f belongs to $T(a, c)$ if $L(a, c)f$ is starlike in E. The object of the present paper is to derive some properties of functions f in the class $T(a, c)$.

1. Introduction

Let A be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

(1.1)

which are analytic in the unit disk $E = \{z : |z| < 1\}$. A function $f \in A$ is said to be starlike of order α in E if

$$\text{Re}\frac{zf'(z)}{f(z)} > \alpha \quad (z \in E)$$

for some $\alpha (0 \leq \alpha < 1)$. We denote this class as $S^*(\alpha)$. Also we denote by
A function \(f \in A \) is said to be convex (univalent) in \(E \) if
\[
\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in E).
\]
We denote this class as \(K \). Clearly \(f \in K \) if and only if \(zf' \in S^* \).

The class \(A \) is closed under the Hadamard product or convolution
\[
(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n,
\]
where
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n.
\]

Let \(\phi(a,c) \) be defined by
\[
\phi(a,c; z) = z + \sum_{n=1}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1} \quad (z \in E; \ c \neq 0, -1, -2, \ldots),
\]
where \((\lambda)_n = \lambda(\lambda + 1) \cdots (\lambda + n - 1)(n \in \mathbb{N} = \{1, 2, 3, \ldots\}) \). The function \(\phi(a,c) \) is an incomplete beta function. Carlson and Shaffer [1] defined a linear operator on \(A \) by the convolution as follows:
\[
L(a,c)f = \phi(a,c) * f \quad (f \in A; \ c \neq 0, -1, -2, \ldots).
\]

\(L(a,c) \) maps \(A \) into itself. \(L(c,c) \) is the identity and if \(a \neq 0, -1, -2, \ldots \),
then \(L(a,c) \) has a continuous inverse \(L(c,a) \) and is an one-to-one mapping of \(A \) onto itself. \(L(a,c) \) provides a convenient representation of differentiation and integration. If \(g(z) = zf'(z) \), then \(g = L(2,1)f \) and \(f = L(1,2)g \).

By using \(L(a,c) \) we now introduce the subclass of \(A \) as follows.

Definition. A function \(f \in A \) is said to be in the class \(T(a,c) \) if
\[
L(a,c)f \in S^* \quad (c \neq 0, -1, -2, \ldots).
\]

Miller and Mocanu [4, Theorem 2] have proved that if \(c(c \neq 0) \) and \(a \)
are real and satisfy
\[
a > N(c) = \begin{cases}
|c| + \frac{1}{2} & (|c| \geq \frac{1}{3}) \\
\frac{3}{2}c^2 + \frac{2}{3} & (|c| \leq \frac{1}{3}),
\end{cases}
\]
then the function
\[
\Phi(c, a; z) = 1 + \sum_{n=1}^{\infty} \frac{(c)_n}{(a)_n} \frac{z^n}{n!}
\]
is convex in \(E \).

In [5] Noor gave the following.

Lemma A. ([5, Lemma 2.1]) If \(c(c \neq 0) \) and \(a \) are real and satisfy (1.5), then \(\phi(c, a; z) \) is convex in \(E \).

Theorem A. ([5, Theorem 3.2]) Let \(f \in T(a, c) \), where \(a \) and \(c \) satisfy the conditions of Lemma A. Then \(f \in S^* \) and hence \(f \) is univalent in \(E \).

Theorem B. ([5, Theorem 3.3]) Let \(f \in T(a, c) \) with \(a \) and \(c \) satisfying (1.5). Then the disk \(E \) is mapped onto a domain that contains the disk
\[
D = \left\{ w : |w| < \frac{2(c + a)}{a} \right\}.
\]

Theorem C. ([5, Theorem 3.4]) Let \(a(a \neq 0), c \) and \(d \) be real and \(c > N(d) \), where \(N(d) \) is defined as in (1.5). Then
\[
T(a, d) \subset T(a, c).
\]

Theorem D. ([5, Theorem 3.5]) Let \(a(a \neq 0) \) and \(c \) be real and satisfy \(c > N(a) \), where \(N(a) \) is defined in the similar way of (1.5). Let \(\psi \) be a convex function in \(E \). If \(f \in T(a, c) \) then \(\psi \ast f \in T(a, c) \).

Theorem E. ([5, Theorem 3.7]) Let \(f \in T(a, c) \) and let \(F \) be defined by
\[
F(z) = \frac{\beta + 1}{z^\beta} \int_0^z t^{\beta-1} f(t) dt \quad (\beta \in N).
\]
Then
\[\text{Re} \left\{ \frac{z(L(a, c)F(z))'}{L(a, c)F(z)} \right\} > \alpha \quad (z \in E), \] (1.10)
where
\[\alpha = \frac{- (2\beta + 1) + \sqrt{4\beta^2 + 4\beta + 9}}{4}. \] (1.11)

However, we find that Lemma A is not always true for \(c(c \neq 0 \text{ real}) \) and \(a \) satisfying (1.5).

Counterexample. Let \(a = 1 \) and \(\frac{1}{3} \leq c < \frac{1}{2} \). Then \(a > N(c) = c + \frac{1}{2} \) and
\[\phi(c, 1; z) = z + \sum_{n=1}^{\infty} \frac{(c)_n}{n!} z^{n+1} = \frac{z}{(1-z)^c}. \] (1.12)

For \(z = \rho e^{i\theta} (0 < \rho < 1) \) and \(1 - \frac{c}{2} < \cos \theta < 1 (0 < \theta < \frac{\pi}{2}) \), we have
\[1 + \frac{z\phi''(c, 1; z)}{\phi'(c, 1; z)} = 1 + \frac{(c+1)\rho e^{i\theta}}{1 - \rho e^{i\theta}} + \frac{(c-1)\rho e^{i\theta}}{1 + (c-1)\rho e^{i\theta}}. \]

Hence
\[
\lim_{\rho \to 1} \text{Re} \left\{ 1 + \frac{\rho e^{i\theta} \phi''(c, 1; \rho e^{i\theta})}{\phi'(c, 1; \rho e^{i\theta})} \right\} = \frac{1-c}{2} + (c-1) \text{Re} \left\{ \frac{e^{i\theta}}{1 + (c-1)e^{i\theta}} \right\} \\
= \frac{1-c}{2} + (c-1) \frac{c-1 + \cos \theta}{|1 + (c-1)e^{i\theta}|^2} \\
< 0,
\] (1.13)
which implies that the function \(\phi(c, 1; z)(\frac{1}{3} \leq c < \frac{1}{2}) \) is not convex in \(E \).

In view of \(\frac{z}{(1-z)^2} \in S^\star \), we see that
\[f_c(z) = \phi(c, 1; z) * \frac{z}{(1-z)^2} \in T(1, c). \]

But \(f_c(z) = z\phi'(c, 1; z)(\frac{1}{3} \leq c < \frac{1}{2}) \) is not starlike in \(E \). Thus the counterexample shows that Theorem A is not true when \(a = 1 \) and \(\frac{1}{3} \leq c < \frac{1}{2} \). In [5], the proof of Theorem B used Lemma A, and so its validity is not justified.
Similarly the proof of Theorem C in [5] is not valid. Also the result from Theorem E is not sharp.

In this paper we discuss similar problems and obtain useful results for the class $T(a, c)$.

2. Preliminary Results

To prove our results, we need the following lemmas.

Lemma 2.1. ([4, Corollary 4.1]) If a, b and c are real and satisfy $-1 \leq a \leq 1$, $b \geq 0$ and $c > 1 + \max\{2 + |a + b - 2|, 1 - (a - 1)(b - 1)\}$, then

$$zF(a, b; c; z) \in S^*,$$

where

$$F(a, b; c; z) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n(b)_n z^n}{(c)_n n!} \quad (2.2)$$

is the Gaussian hypergeometric function.

Applying Lemma 2.1, we derive the following result.

Lemma 2.2. If a and c are real and satisfy $-1 \leq a \leq 1$ and $c > 3 + |a|$, then $\phi(a, c; z)$ defined by (1.2) is convex in E.

Proof. From (1.2) we have

$$z\phi'(a, c; z) = z + \sum_{n=1}^{\infty} \frac{(n + 1)(a)_n z^{n+1}}{(c)_n}$$

$$= z + \sum_{n=1}^{\infty} \frac{(a)_n(2)_n z^{n+1}}{(c)_n n!}$$

$$= zF(a, 2; c; z). \quad (2.3)$$

Since $-1 \leq a \leq 1$ and $c > 3 + |a|$, it follows from (2.3) and Lemma 2.1 (with $b = 2$) that $z\phi'(a, c; z)$ is starlike in E, which leads to $\phi(a, c) \in K$. \hfill \Box
Lemma 2.3. ([6]) If \(f \in K \) and \(g \in S^* \), then \(f \ast g \in S^* \).

Let \(f \) and \(g \) be analytic in \(E \). The function \(f \) is subordinate to \(g \), written \(f < g \) or \(f(z) < g(z) \), if \(g \) is univalent in \(E \), \(f(0) = g(0) \) and \(f(E) \subset g(E) \).

Lemma 2.4. ([2]) Let \(\alpha (\alpha \neq 0) \) and \(\beta \) be complex numbers and let \(p \) and \(h \) be analytic in \(E \) with \(p(0) = h(0) \). If \(Q(z) = \alpha h(z) + \beta \) is convex and \(\text{Re} \ Q(z) > 0 \) in \(E \), then

\[
p(z) + \frac{zp'(z)}{\alpha p(z) + \beta} < h(z)
\]

implies that \(p(z) < h(z) \).

Lemma 2.5. ([3]) Let \(\alpha (\alpha \neq 0) \) and \(\beta \) be complex numbers and let \(h \) be analytic and univalent in \(E \) and \(Q(z) = \alpha h(z) + \beta \). Let \(p \) be analytic in \(E \) and satisfy

\[
p(z) + \frac{zp'(z)}{\alpha p(z) + \beta} < h(z) \quad (p(0) = h(0)). \tag{2.4}
\]

If

(i) \(\text{Re} \ Q(z) > 0 \) for \(z \in E \), and
(ii) \(Q \) and \(\frac{1}{Q} \) are convex in \(E \),

then the solution of the differential equation

\[
q(z) + \frac{zq'(z)}{\alpha q(z) + \beta} = h(z) \quad (q(0) = h(0)) \tag{2.5}
\]
is univalent in \(E \) and is the best dominant of (2.4).

Lemma 2.6. ([7]) Let \(\mu \) be a positive measure on the unit interval \([0,1]\). Let \(g(t,z) \) be a function analytic in \(E \) for each \(t \in [0,1] \) and integrable in \(t \) for each \(z \in E \) and for almost all \(t \in [0,1] \), and suppose that \(\text{Re} \ g(t,z) > 0 \) in \(E \), \(g(t,-\rho) \) is real and

\[
\text{Re} \ \frac{1}{g(t,z)} \geq \frac{1}{g(t,-\rho)} \quad (|z| \leq \rho < 1; \ t \in [0,1]).
\]
If \(g(z) = \int_{0}^{1} g(t, z) d\mu(t) \), then
\[
\text{Re} \frac{1}{g(z)} \geq \frac{1}{g(-\rho)} \quad (|z| \leq \rho).
\] (2.6)

3. The Class \(T(a, c) \)

Theorem 3.1. Let \(a \) and \(c \) be real and satisfy
\[
c \neq 0, -1 < c \leq 1 \quad \text{and} \quad a > 3 + |c|.
\] (3.1)
Then \(T(a, c) \subset S^* \).

Proof. If \(f \in T(a, c) \), then \(L(a, c)f = \phi(a, c) * f \in S^* \). Since \(a \) and \(c \) satisfy (3.1), we have from Lemma 2.2 that \(\phi(c, a) \in K \). Therefore an application of Lemma 2.3 leads to
\[f = \phi(c, a) * (\phi(a, c) * f) \in S^*. \]
This completes the proof of the theorem. \(\square \)

Theorem 3.2. Let \(a \) and \(c \) satisfy (3.1). If \(f \in T(a, c) \), then \(f(E) \) contains the disk
\[
D = \left\{ w : |w| < \frac{a}{2(|c| + a)} \right\}.
\] (3.2)

Proof. Let
\[f(z) = z + \sum_{n=1}^{\infty} a_{n+1} z^{n+1} \in T(a, c), \]
where \(a \) and \(c \) satisfy (3.1), and \(w_0 (w_0 \neq 0) \) be any complex number such that \(f(z) \neq w_0 \) for \(z \in E \). Then the function
\[g(z) = \frac{w_0 f(z)}{w_0 - f(z)} = z + \left(a_2 + \frac{1}{w_0} \right) z^2 + \cdots \]
is analytic and univalent in \(E \) by Theorem 3.1, and hence
\[
\frac{1}{|w_0|} - |a_2| \leq \left| a_2 + \frac{1}{w_0} \right| \leq 2.
\] (3.3)
Since

\[L(a, c)f(z) = z + \sum_{n=1}^{\infty} (a)_n (c)_n a_{n+1} z^{n+1} \in S^*, \]

we have \(\frac{a_2}{\alpha} \leq 2 \), and it follows from (3.3) that

\[|w_0| \geq \frac{1}{2 + |a_2|} \geq \frac{a}{2(|c| + a)}. \quad (3.4) \]

This gives the desired result. \(\square \)

Theorem 3.3. Let \(a, c \) and \(d \) be real. If

\[d \neq 0, \ -1 < d \leq 1 \quad \text{and} \quad c > 3 + |d|, \quad (3.5) \]

then \(T(a, d) \subset T(a, c) \).

Proof. If \(f \in T(a, d) \), then \(L(a, d)f = \phi(a, d) \ast f \in S^* \). Since \(c \) and \(d \) satisfy (3.5), \(\phi(d, c) \in K \) by Lemma 2.2. Hence it follows from Lemma 2.3 that

\[
L(a, c)f = \phi(a, c) \ast f = (\phi(a, d) \ast \phi(d, c)) \ast f
\]

\[= \phi(d, c) \ast (\phi(a, d) \ast f) \in S^*, \]

that is, \(f \in T(a, c) \). The proof is complete. \(\square \)

Theorem 3.4. Let \(f \in T(a, c) \) and \(\psi \in K \). Then \(\psi \ast f \in T(a, c) \).

Proof. Since \(L(a, c)f \in S^* \) and \(\psi \in K \), it follows from Lemma 2.3 that

\[L(a, c)(\psi \ast f) = \psi \ast L(a, c)f \in S^*. \]

Hence \(\psi \ast f \in T(a, c) \). \(\square \)

In view of Theorem 3.4, we see that the assumption “\(a(a \neq 0) \) and \(c \) are real and satisfy \(c > N(a) \), where \(N(a) \) is defined in the similar way of (1.5)” in Theorem D is redundant.

Theorem 3.5. If \(a \geq 1 \), then

\[T(a + 1, c) \subset T(a, c). \quad (3.6) \]
Proof. It is known that for \(f \in A \),
\[
z(L(a, c)f(z))' = aL(a + 1, c)f(z) - (a - 1)L(a, c)f(z). \tag{3.7}
\]

Let us put
\[
g(z) = \frac{z(L(a, c)f(z))'}{L(a, c)f(z)}. \tag{3.8}
\]
Then \(g(0) = 1 \) and from (3.7) and (3.8) we get
\[
\frac{aL(a + 1, c)f(z)}{L(a, c)f(z)} = g(z) + a - 1. \tag{3.9}
\]
Differentiating both sides of (3.9) logarithmically and using (3.8) we have
\[
\frac{z(L(a + 1, c)f(z))'}{L(a + 1, c)f(z)} = g(z) + \frac{zg'(z)}{g(z) + a - 1}. \tag{3.10}
\]
If \(f \in T(a + 1, c) \), then (3.10) leads to
\[
g(z) + \frac{zg'(z)}{g(z) + a - 1} < \frac{1 + z}{1 - z}. \tag{3.11}
\]
Since \(Q(z) = \frac{1 + z}{1 - z} + a - 1 \) is convex in \(E \) and \(\text{Re} \ Q(z) > a - 1 \geq 0(z \in E) \), it follows from (3.11) and Lemma 2.4 that \(g(z) < \frac{1 + z}{1 - z} \), which is equivalent to \(f \in T(a, c) \). This proves (3.6). \(\square \)

Theorem 3.6. Let \(f \in T(a, c) \) and
\[
F(z) = \frac{\beta + 1}{z^\beta} \int_0^z t^{\beta-1} f(t)dt \quad (\beta > 0). \tag{3.12}
\]
Then \(L(a, c)F \in S^*(\sigma(\beta)) \), where
\[
\sigma(\beta) = \left(4 \int_0^1 \frac{t^\beta}{(1 + t)^2}dt \right)^{-1} - \beta. \tag{3.13}
\]
The result is sharp, that is, the order \(\sigma(\beta) \) cannot be increased.

Proof. From (3.12) we have \(F \in A \) and
\[
\beta L(a, c)F(z) + z(L(a, c)F(z))' = (\beta + 1)L(a, c)f(z)
\]
or

\[
\frac{z(L(a,c)F(z))'}{L(a,c)F(z)} + \beta = (\beta + 1)\frac{L(a,c)f(z)}{L(a,c)F(z)}. \tag{3.14}
\]

Differentiating both sides of (3.14) logarithmically we deduce that

\[
p(z) + \frac{zp'(z)}{p(z) + \beta} = \frac{z(L(a,c)f(z))'}{L(a,c)f(z)}, \tag{3.15}
\]

where

\[
p(z) = \frac{z(L(a,c)F(z))'}{L(a,c)F(z)}. \tag{3.16}
\]

Since \(f \in T(a,c) \), it follows from (3.15) that

\[
p(z) + \frac{zp'(z)}{p(z) + \beta} < \frac{1 + z}{1 - z} \quad (p(0) = 1). \tag{3.17}
\]

Taking \(\alpha = 1, \beta > 0, h(z) = \frac{1 + z}{1 - z} \) and \(Q(z) = \frac{1 + z}{1 - z} + \beta \), it is clear that the conditions (i) and (ii) in Lemma 2.5 are satisfied. Thus, by Lemma 2.5, the differential equation

\[
q(z) + \frac{zq'(z)}{q(z) + \beta} = \frac{1 + z}{1 - z} \quad (q(0) = 1) \tag{3.18}
\]

has a univalent solution \(q(z) \),

\[
p(z) < q(z) < \frac{1 + z}{1 - z}, \tag{3.19}
\]

and \(q(z) \) is the best dominant of (3.17). It is easy to verify that the solution \(q(z) \) of (3.18) is

\[
q(z) = \frac{z^{\beta + 1}}{(1 - z)^2 \int_0^z \frac{u^\beta}{(1 - u)^2} du} - \beta
\]

\[
= \left((1 - z)^2 \int_0^1 \frac{t^\beta}{(1 - tz)^2} dt \right)^{-1} - \beta. \tag{3.20}
\]

It is well known that for \(c_1 > b_1 > 0 \) and \(z \in E \), the Gaussian hyperge-
ometric function defined by (2.2) satisfies

\[F(a_1, b_1; c_1; z) = \frac{\Gamma(c_1)}{\Gamma(b_1)\Gamma(c_1 - b_1)} \int_0^1 t^{b_1-1}(1 - t)^{c_1-b_1-1} \frac{(1 - tz)^{a_1}}{(1 - t)^{a_1}} dt \] \hspace{1cm} (3.21)

and

\[F(a_1, b_1; c_1; z) = F(b_1, a_1; c_1; z) = (1 - z)^{c_1-a_1-b_1} F(c_1 - b_1, c_1 - a_1; c_1; z). \] \hspace{1cm} (3.22)

By using (3.21) and (3.22), \(q(z) \) given by (3.20) can be expressed as

\[q(z) = \frac{\beta + 1}{(1 - z)^2 F(2, \beta + 1; \beta + 2; z)} - \beta \]

\[= \frac{\beta + 1}{(1 - z) F(1, \beta; \beta + 2; z)} - \beta. \] \hspace{1cm} (3.23)

From (3.21) and (3.23) we have

\[q(z) = \frac{1}{g(z)} - \beta, \] \hspace{1cm} (3.24)

where

\[g(z) = \int_0^1 g(t, z) d\mu(t), \]

\[g(t, z) = \frac{1}{\beta + 1} \left(\frac{1 - z}{1 - tz} \right), \quad d\mu(t) = \beta(\beta + 1)t^{\beta-1}(1 - t) dt \quad (\beta > 0). \] \hspace{1cm} (3.25)

Note that for \(|z| \leq \rho < 1 \) and \(0 \leq t \leq 1 \),

\[\text{Re} \frac{1}{g(t, z)} \geq (\beta + 1) \left(\frac{1 + t\rho}{1 + \rho} \right) = \frac{1}{g(t, -\rho)} > 0. \]

Now applying Lemma 2.6, it follows from (3.24) and (3.25) that

\[\text{Re} q(z) \geq \frac{1}{g(-\rho)} - \beta = \frac{\beta + 1}{\int_0^1 \frac{1 + t\rho}{1 + t\rho} d\mu(t)} - \beta \quad (|z| \leq \rho), \]

which leads to

\[\inf_{z \in E} \text{Re} q(z) = \frac{1}{g(-1)} - \beta = q(-1). \] \hspace{1cm} (3.26)
Since $q(z)$ is the best dominant of (3.17), from (3.16)-(3.20) and (3.26) we conclude that

$$\text{Re} \frac{z(L(a, c)F(z))'}{L(a, c)F(z)} > q(-1) = \left(4 \int_0^1 \frac{t^\beta}{(1+t)^2} dt \right)^{-1} - \beta = \sigma(\beta)$$

and the bound $\sigma(\beta)$ cannot be increased. The proof is now complete. \qed

We note that Theorem 3.6 is better than Theorem E by Noor.

References

Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.

E-mail: xuneng11@pub.sz.jsinfo.net

Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China.