BULLETIN OF THE
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA

. Volume 9, Number 2, June 1981

PARABOLIC EQUATIONS ON INFINITE
DIMENSIONAL SPACES®™

BY

YUH-JIA LEE

- Abstract. Let (H, B) be an abstract Wiener space. In this
paper, we -investigate the existence and regularity properties . of
solutions for the initial value problem associated with the inifinite
dimensional heat equation #:(x, ) = % traceg D% u(x, t), where >0,
x e B We extend a L. Gross’ theorem so that the above initial value
problem is solvable for a wider class of initial functions which contains
both the class of bounbed Lip-l1 functions and the class of real
analytic functions of exponential type. The heat equation with
constant coefficient is also considered in this paper.

1. Introductions. Let (B, | ||) be a real separable Banach space.
There always exists a real separable Hilbert space (H, ||) containning
in B such that H is dense in B and that the B-norm I is
measurable on H The pair (H, B) is called an abstract Wiener
space (see*[i]). It is well-known that the Gauss cylinder set
measure (with variance ¢ >0) on H extends to a (s-additive) Borel
measure p: on B. p; is called the Wiener measure (with variance
t) (see [1]). Integration over B is. then performed with respect
to Pt .

If f isa real valued functlon defined on B we may regard i

as a function ¢ defined in a nelghborhood of the origin of H by
restnctmg f to the coset = + H and defining g(h) = f(x + k).
9 is k-times Frechet-differentiable at 0, then we say that ‘ f is
k-times H-differentiable at x and denote the derivative by D&f(x).
After L. Gross [2], if f is a twice H-differentiable function on B
such that D? f(=) is a trace class operator, we define the Laplacian
of f (at #) Af(x) by Af(x)=tracegD*f(x). In [2], Gross
showed that if f is a bounded Lip-1 function on B, then
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w(t, @) = pi f(@) = [ [(z+ ) p(ay)

solves the Cau(;hy problem associated with the heat equation:

(1D ui(t, &) = % trace gD? u(t, =),

and .

(2) Iin‘r)l u(t, ) = f(x) uniformly in B.
. P

In [7; §71, we showed that for each member of &.(B)—the space
of expontial type real analytic functions on B (see [6] or [7]), the
function (¢, £) = p: f(x) also solves equation (1) and lim:
ut, z) = f(2) uniformly on every bounded set. Observe that
&o(B) is obviously different from the space (A of bounded Lip-1
functions. It is desirable to find a larger class of of functions
which contains both &.(B) and (A so that if f € of u(¢, x)=p: f(x)
will solve the eqtation (1) and #(¢, ) — f(x) (as £—0) in some
sense.

For this purpose, we introduce a “weight function” w(x) which
satisfies the following conditions:

(C-1) w(x) is measurable and w(x) = 1 for each 2 in B;
(C-2)  wlx+y) <wl@w(y);

(C-3) w(ax) < w(x)'*(a € R);

(C-4) w(x) is locally bounded in B.

(Examples of weight functions are w(x) =1; el*l; exp[|(g, )]
(g € B*), etc.) '

Let Lw"be the class of measurable functions such that for z, ¥y
in B, ‘ ,
(C-5)- v [f(2) = F(p] <cw(z)” wy) |z —yl,
for some constants ¢, ¢/ > 0 which depénd only on f.

It turns out that if f € L., u(f, ) = p: f(x) 'solves equation
(1) and that #(¢, ) — f(x) uniformly on every set on which w is

bounded. It follows that our results imply [2; Theorem 3] and
[7; Theorem 7.7] by taking w(x) =1 and w(x) = e'*!, respectively.

2. Solution of #:;= % Au. Through out this section, (-, >
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will denote the inner product in H; (+,-) will denote the (B*, B)
pairing; and B* is embeded in H* =~ H in the sense that if ¥y € B *,
x € H, then (y, #) =<y, ). (It is also worth to know that if
ke H, <k, > is define almost everywhere in B with respect to D9,
If w(x) is a weight function deﬁned as in §1, a set on which w(=z)
is bounded will be called a w-bounded set. By a C4 function we
mean a real-valued H-differentiable function f defined on B such
that Df(x) is continuous from B into H*(with norm topology).

Our goal in this section is to show that the following Theorem
holds. : : '

THEOREM 1. Let w be a weight function and f be a member of
L,. Then we have .

(a) D*p:f ) (=) is a trace class operator for each x in B and
each t > 0. ’

(b) For each pair of positive numbers a, o' and every w-bounded
set U, the map (8, z) > D*(p: f)(z) is uniformly continuous on
[a, a’'] x U into the Banach space of trace class operators on H.

() The function o(t, )= (p: f)(x) is jointly wuniformly
continuous on [0, @] x U, where U is a w-bounded set and « is a
Jinite real numbey.

(d) For each t >0, ov/dt exists uniformly in x on any w-bounded
set and

(09/08) (2, ) = -;- tracegD®w(t, z) .

Moreover, lim:.o v(t, £) = f(x) uniformly for = in every w-bounded
set.

REMARK 1. L. Gross’ proof of [2; Theorem 3] has been
simplified by Kuo [4] whose approach (after some suitable
- modifications) makes our proof of Theorem 1 possible. ///
REMARK 2. If w(®x) is a weight function, it is easy to see that

w(z) < goran

for some constant ¢ > 0. Therefore, by Fernique’s theorem (see,
for example, [4; p. 159]), that w(x) € L*(B) for all p=1 and
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Lo © Lewociziy  (this implies that L, c L#(B) for all p= 1. It
f € L,, it is easy to see that there are constants ¢, ¢’ such that

3 O f (@) L ceettien for all = B.

Therefore, p: f (x) exists for all f € Lo. ///

"~ Qur proof will be accomplished by the following Lemmas and
propositions. We start W1th the

- PROPOSITION 1. Let w be a weight function and f a wmeasurable
Function- on B having the property (3) (Remark 2). Let >0 be
fixed and g(x) = (p: f)(x). We have

(i) g(x) also has the property (3) for some constanis c, c.
(i) g(x) is infinitely H: differentiable on B wzth Jirst and second
derivative given by : :

@) <Dgla), B> = L[ i@+ poda) e H),

. PR . M . 1 . P
o D gk = [ F@+y)
(L <n vk > - <n 0| pday) ke D).

" (iii) For each #, there are constants ¢, ¢’ such that

|D? (@) by how | < (=) D% o c[aw(2) ]« sl - [l

 Proof. (i) is trivial.

(ii) The H-differentiability of ¢(x) and equation (4) follow
by Remark 2 and [3; Proposition 1]. Now we ‘consider the function
u(k) =<{Dg(x + k), k). Using the arguments in the proof of
[2; Prop. 9], we may write R

u(k) = f f@ +9) <k, v 2k @)

— <l By [+ ) ik, a)

(though <k, - is not Imear on B), where p:(x, dy) = p«(dy — x);
Anain, by [3; Prop. 1] and (4), we obtain that

w(@k =121 [ @ +y)n vXk y> udy)

=2 B [ S @+ ) piay),
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and (5) follows.

The existence of higher order H.differentiations of g follow in
the same way. (See [2; Prop. 9].) ‘

(iii) follows by [5; Proposition 1 and 2].

COROLLARY 1. In addition to the assumptions on f in Proposition
1, if we assume that f is continuous on B, then (Ppef)(x) is a C4
Junction.

DEFINITION 1. A bounded linear operator of B with finite
dimensional range contained in B* is called a test operator [2].

PROPOSITION 2. Let f a function as in Corollary 1. If a, b are
positive numbers such that a + b = 1, then we have

(2) <D(p:f)(@), b>
= [ XD )@ + ), B> puray) (ke H);

(B) <D p: /) (), B> |
= [ Do )@ +9), BXh 95 purldy) (b ke H);

(¢) If T is a test operator and 7'’ is the restriction of T on
H, then the following equality holds:
tracex[ T'D?*(p; f)(2)]

(6) =L [ BGuh@+ v, Tv) patan

Proof. First of all we write (p; f)(2) =‘_/; (Ps: F) (z+ 9)Pas

(ay).
(a) It is easy to estimate that

(P51 ) (@ + k) < const. w(2)® « exp (|k|2/bt)

and

D(buf(@+B)] < Lo w(a)e « exp (k10 (1+ 1R1)-c(b, 1),

where

1/4

c(b, t) = const. [fB w(y)*’ Pb:(dy)]
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Thus (a) is a consequence of [3; Proposition 2].
(b) follows by Proposition 1 and (a).
(c) follows from (b). ///

LevMa 1. If g is @ Cy function in Ly, then for each x in B,
Dg(z) € B* and |Dg(z)|p < clw(x)]e for some constant c, ¢
Moreover, for each paiv of x, y € B, ‘

lim i (0 + cy) — g()) = (Dg(@), ).

Proof. Suppose that ¢ satisfies (C-5) and x € B be fixed and

% be an element in H. Then
Do), by = lim L (g + e )= g(2)),
and consequently.

KDg(@), Byl < lim S w(@)*"+ wlh) '+ lle bl = ¢+ w(@)® 4]

Thus Dg(x) € B*.
Now let z, ¥ € B be fixed and 7 be any positive. number. We
can choose an % € H such that |ly — 2 <7. Then

L (g + ew) = 0@ ~ Da@), )|
s%m<x+ ey) — gz + ¢ b))
4 %(g(x £ eh) —g(@) — Do), B|

+ [ (Dg(x), &) — (Dg(x), PI
<c- w(x) e w(y) « w(h) |y — ki

e[ wa o) = o) — (Do), ) |

+cow(x) -y —al.

Let ¢ —0. We get

1 gz + &) — 0(@)) — (Dg(@), 9)| < 26 - w(@)* + 7.

€

Iim

ad !}

Since 7 is arbitrary, we conclude that
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lim - 0z + e9) — () = Do), ). /1]

PROPOSITION 3. Let f be fzmctzon n Lw which satzsﬁes (C-5).
Then we have
(a) p:f € Ly for each t > 0;
(b) D(p:f)(x) € B* cmd there are consmm‘s c,c' such that

DD @ < 0 w(@) ([ w2 pulde)

© I g(s) = (p: S + sy>, then  (a/ds)y(s) = (D 1)
(z + sy), ). ;
(d)} D p:s f )(x) is a trace class opemtor for each xeB zmd 1>0.

Moreover, we. have
1D*(D: ()]l < comst. =12 w(z)e - ( fB w(y)* P(1/2)t(d’!/)) ,
" where || ||.. denotes the trace norm.

Proof. (a) is trivial.

(b). and (c) follows by Lemma 1;

To prove (d), let T be a test operator on  B. Applymg
Proposition 2(¢) with ¢ =b = 4, we obtam

I traceHT’Dz(;Df ()i
2. [ 1D Bame )@+ 9), Ty)ibam: (@y)

( )1/2 (/ w(y)* Pa/z):(dy))
([ 1zvlipa)” wia) ayay
< (%)1/20 (/; w(y) p(llg)t(dy))s/z

< (f, 1?51 @) NT N w2

A

(The last inequality follows by [2; Equation. (36)].)
Thus we have proved that

(8) |tracenT'D*(p: f)(=)i
< const. 1—/147 w(x) [/}; w(y)?e P(i'/z)t(d?l)]g/z”T'”H,H
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for every test operator 7 on B.

Since the restrictions of test operators to H are dense in the
Banach space of compact operators of H, it follows form (8) that
D2(p: f)(x) is a trace class operator with trace class norm

1D f) (@)l const. —L i) ( [, w (@) pamian))” . 11/

To prove (b) of Theorem 1, we need the Corollary 4.2 of
[4; Chapter 2] which states that in the abstract Wiener space
(H, B), there exists another abstract Wiener space (H, By)
such that the Bomorm [-]o> -] and there exist an increasing
sequence of finite rank projections {P,} on H such that (1) P,
converges to the identy operator on H strongly; (2) each P, extends
to a projection f’,,»of By, such that 15,, converges strongly to the
identy on By (w.r.t. [|+]ls). It follows that we have the

LEMMA 2. limpe / NPy —vlip@) =0 (=1

LEMMA 3. Let f be a function in L, and U be a w-bounded sei.
For each pair of a, a’ >0, the map (¢, x) = D*(p: ) () is uniformly
continuous from [a, a’] x U into the Banach space of Hilbert-Schmidt
operator on H (we will denote the Hilbert-Schmidt norm by |+|la-s).

Proof. By Proposition 1, we have, for any %z € H,
Do @), By =—Low [ 7o+ o/ Ty 9 1:(@)

It follows that if s, 2 € [a, @’] and @, ' U we obtain

KD(p: f)(x) — D(ps F)(2'), Bl
<ceow(x) - |k

At -vsi[f, w(y)/“'nynk S | putan)]

+le = I fLw@yFe e v

+ —]‘;l Vs—vt ic”w(x)""

P1(d’y)]}

' [f w(y)vee” l<m, y> f):(dy))](hj

| 2]
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so that

ID(p: F) (@) — D(ps £) ()]

(9) < C-w@C(vVt —vs|+z—2),

where C, C’ are constants. o .
Let T be a test operator. By the formula (6), we have

tracesT'D*(p1 1)) = V2. [ (DCpams 1)+ LLy), Ty) putan.
Consequently, '
!traceHT’Dz(P: F)(z) — tracegT'D*(ps f)(x')|

1 .
< —_— e [5
C: vy 'vw(w)

1/t

- { [y e pan} ] [ izor pian}”

‘1 " ’ e o “
+C’1/—SW("’>C'{A(“/S al

+V2le =2l + 1v's =T IlDI Tyl pilan))

(by (9)), where C; is a constant. Recall that( f IT?leﬁx(dy)>( "

= [T'llz-s and note that [[T'|lzn < T'lg-s. It follows by (10)
that
[1D*(p: f)(x) — D*( s S (& ) la-s

< const, w(x)¢ - ( 1

v's 1/t

where the constant “const.” depends only on a, @’ and f.
The Lemma now follows by (11). ///

(11

VEI+ e -2,

Proof of Theorem 1. (a) has been proved in Proposition 3.

For a proof of (b), let {P,} and B, be as in Lemma 2. We
have seen in Lemma 3 that D?*(p., f)(+) is uniformly continuous
from [a, 2] x U into the Banach space of Hilbert-Schmidt operators,
hence so is P, D*(pc; f)(+) for each #. Note that .

(12) [PeAlle: < [dim(Po(H)) 12| All -5

provided that A 1s a Hilbert-Schmidt operator on H. Therefore,
for each # the map (¢, x) — P, D¥(p; f)(x) is umformly continuous
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from [a, @’] x U into the Banach space of trace class operators on
H. Thus, to finish the proof of (b), we need only to show that

lim | PD*(p: £)(2) — D*( P @)e=0 onla a'] xU.

Let T be a test operator on B. Write

traceHT’i)Z(P: Iz .
- % " (D(p(m),f(x + % y) Ty)fn (ay)

and
tracegT P, D*(p: ()

v 2
1/—t By

(D(pa,g;,f(x + 1—‘;_—; > TE?/)E: (dy),

where (-, +) denotes the ‘(B*, B) pairing. Since [D(p: f)(x)]p*
< cw(x)® by Proposition 3, hence
|tracenT'(P,D*(p: f) () — D*(p: ) (2))]
< £ w@)” ([, 1By~ vli £1 @) “IT L
so that |
1P D*(p: f) (@) — D*( 1 ) (2)ee

< £ w(@) (f, WPy — vl 5 (@)

which converges uniformly to 0 on [, @’] x U. This proves (b).
(c) follows by the following inequality

lo(t, ) — o(s, P ‘
< cfw(z)w(y)1”

[ w@ 7 Az =yl + 1 =5 2l 1 (a2)

To prove (d), we use the approach given in [4; p. 180] by
writing

)@ = [ (Do Pz + VA= OEF ) - 9)p: (@)
and ' |

(e @)= [ (B )@+ VT =1 - 9)p1 (@)
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Let

0(e, ) = [ (Doceof = b )@+ T=)E+e) - 9) 1 (dy)

and

rle, @)= [ [(pei )@+ T=HTFe)y)

— (P )@+ VT = i) 1b: (@) .

We have (pir. f)(x) — (e f)(x) = 0(e, ) + 7(¢, 2.
For the sake of simplicity, we assume that ¢<1 We see
easily that

L 106, @)1 <ol THe =y Tlw@) - ( [ 0@y s, (ay))
so that

liml |0(e, 2)| = 0 uniformly in U.

€= g

By Proposition 3(c), we may write

r(e @) = [ [ 2t Db F) (@ +/T= i)
+ (s2(t, &)y, y) p:(@y) ds,

where

W )=/ (10— +e) — /(1 — ).
Let {P,} and B, be as in Lemma 2. Then
(13) tracey[ (I — P,)D?*(p; f)(x)]— 0 uniformly in T,

and ‘
(14) SN = Pzl Bula) —0 as n— oo
Then
L7, @) = LtraceaD*(p, H(@)| < (D + (D) + (),
where

® =|[ [, 2L @pan

<z + /A= Dty + s, )y, Poy) bi(dy) ds
~ % tracesPs D*(9: /) (@)
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a = ifo fso—';"_ (D(p.s f)
c(x+ /T =Dy + st )y,

« (I = P)y) p(@y) ds)

’

()  =| L traceul — P) D(p: ) (@)].

Observe that

W < Lo @ ([ 1T =B FEn”)

2v ¢t

June]

 Since w(.ﬁ) is bounded on 'U, given any 0 >0, we may choose

7 so large that

(15) | am <is
and
(16) () < % 5

for all  in U (by (13) and (14)).

write

1 : . () = 1
5 tracegP,D*(p: f) » () 27 A —e5% J5

c(z+vA =Dy, Poy) pi(dy).
We have

(D(per 1)

(22, &) ]2 At e) 1
D é( L 2/ (L—e) 1
: ;_twcv) 1Pz

— 0 uniformly in x on U as ¢e—0.
Thus we have that, for arbitrary small positive 9,

lim [e 7 (e, @) — 1 traceaD*(p: ) (2)] <3

in other words,

Now, let # be such an integer so that (15) and (16) hold and
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i} .

lim|e~ir (e, ) — L trace uD*(p1 £)(2)| = 0.
It follows that |
Hm e ((prre (@) = (91 ) () =+ tracenD*(py £) ()

uniformly for  in U.
Finally, ‘

(B D) (@) — F@) < e w(@? ( [w) Iyl puan) - VT

’ —>0 uniformly in x on U.
This concludes the proof of Theorem 1. : Y74

: REMARK‘S. The results of Theorem also shows that; in [2,

Theorem. 3], the assumption that f is bounded is superfluous. ///

3. Selutien of #; = 3 trace [AD?*u]. To conclude this paper,
we would like to consider the heat equation with constant
coefficients.

Let A be a fixed member of L(H, H) (the space of bounded
linear operators on H) such that (1) A is symmetric; (2) A > e
for some ¢ >0; (3) A=1TI + C, where C is of Hilbert-Schmidt class.
Let g:(x, dy) be a family of measures defined as follows

g:(z, dy) = [det(A4)]-~
cexp [—<[A' —TN@ — ), x — y>/2t] p«(, dy).
By the same arguments as in [8], it is not hard to verify the
following.

TuEOREM 2. If A is a bounded linear operator on H salisfying
(D), () and (3) above, and f = L, then

Vt, 2) = (¢ N@) = [ F@) a:(x, dy)
solves the equation

(8/0D)V (L, ) = _; traceal AD*V (¢, )1,

and
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lim V{, 2) = f(z) uniformly on every w-bounded set.

i—0

(The proof is almost identical to that of [8].) ///
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