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Abstract. In this paper, we find a method to construct

dipolarizations in complex complete solvable Lie algebras. This

sheds some light on the theory of representations of complete Lie

algebras and those Lie groups with complete Lie algebras. In

general, the dipolarizations we find are nonsymmetric.

Introduction. Let g be a Lie algebra over field F, [1] defines a dipo-

larization of g as a triple {g+, g−, f}, where g± are subalgebras of g, f is a

linear function on g, and the following conditions are satisfied:

(D1) g = g+ + g−,

(D2) f([X, g]) = 0 if and only if X ∈ g+ ∩ g−,

(D3) f([g+, g+]) = f([g−, g−]) = 0.

A dipolarization is called symmetric if the two subalgebras g+ and g−

are Lie-isomorphic to each other. Otherwise it is called nonsymmetric.

The notion of dipolarizations in Lie algebras is closely related to that

of polarizations, which plays an important role in the theory of unitary

representations of Lie groups(cf. [3]). In fact, let g± be two subalegbras of
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the Lie algebra g, and f ∈ g∗, then the triple {g+, g−, f} is a dipolarization

in g, if and only if g± are two polarizations in g at f and g = g+ + g− (cf.

[7]). Thus dipolarizations offer a method to construct polarizations in Lie

algebras. For fundamental properties of polarizations, one can refer to [3].

The background of the definition of dipolarizations is the geometry

of homogeneous parakähler manifolds, i.e., homogeneous symplectic man-

ifolds with two invariant transversal Lagrangian foliations (cf. ([1]). In [4]

Kaneyuki obtained a remarkable class of symmetric dipolarizations in real

semisimple Lie algebras by using gradations. In [5] the authors constructed

an example of nonsymmetric dipolarization in the Lie algebra of upper trian-

gular matrices, which is the first known nonsymmetric dipolarization. In [6],

the authors constructed a large number of nonsymmetric dipolarizations in

subalgebras of some real forms of complex semisimple Lie algebras, which can

be viewed as a generalization of the example of [5]. Recently we proved that

any dipolarization in a real or complex semisimple Lie algebra is symmetric

([7]). The most important applications of dipolarizations are to prove the

fact that a connected compact homogeneous parakähler manifold is a torus

([2]) and that a homogeneous parakähler manifold of a semisimple Lie group

is a covering space of a hyperbolic semisimple adjoint orbit ([7]).

In this paper we find a method to construct dipolarizations in complex

complete solvable Lie algebras. In general, it is very difficult to construct

polarizations in a Lie algebra. But we can find many new example of polar-

izations using our method. This sheds some light on the research of repre-

sentations of complete Lie algebras and those Lie groups with complete Lie

algebras, which should be the main subject of the research on complete Lie

algebras after D. Meng, S. P. Wang’s deep research on the construction of

this kind of Lie agebras. On the other hand, this also gives some geometric

meaning to those coset spaces of Lie groups with solvable complete Lie alge-

bras, since using Kaneyuki’s result, we can contruct a great deal of invariant

parakähler structures on them. (cf. [1])
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In general, the dipolarizations we find are nonsymmetric. Therefore, our

method can be viewed as a promotion of the results of [5] and [6]. As an

interesting problem, the necessary and sufficient conditions for a Lie algebra

to have nonsymmetric dipolarizations is still unknown.

In the following, if g is a Lie algebra, we use C(g) and Derg to denote

the center and the set of derivations of g, respectively. The set of inner

derivations of g will be denoted by adg.

1. Root systems of complete solvable Lie alegbras. Let F be

an algebraically closed field of charateristic 0 and g be a Lie algebra over

F. According to [8], g is called complete if C(g) = 0 and Derg= adg. For

fundamental properties of complete Lie algebras, one should refer to [9].

Now suppose that g is complete and solvable. Let t be a maximal torus

in g. Then g = t + n, where n is the nil radical of g (cf. [10]. Theorem 1).

Therefore n can be decomposed into the direct sum of the root spaces with

respect to adt:

n = n0 +
∑

α∈∆

gα,

where n0 = {X ∈ n|[X, t] = 0}, gα = {X ∈ n|[T,X] = α(T )X,∀T ∈ t} and

∆ = {α ∈ t∗ − {0}|gα 6= 0}. We call ∆ the root system of g with respect to

t. Denote

n1 =
∑

α∈∆

gα,

define

∏
= {α ∈ ∆|α − β 6∈ ∆, ∀β ∈ ∆},

i.e.,
∏

is the subset of ∆ consisting of the elements in ∆ which can not be

decomposed into the sum of two elements of ∆.
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Lemma 1.1. ∆ ∩ −∆ = ∅,
∏

6= ∅. Furthermore, every root in ∆ can

be written as the sum of some roots in
∏

.

Proof. (cf. [10]) For the first assertion we use the Lie’s Theorem. Since

the adjoint representation of g is faithful, we can select a basis X1,X2, . . .,

Xm of g such that ∀X ∈ g, the matrix of adX under this basis is upper

triangular. Suppose ad X = (ad X)s + (ad X)n is the Jordan decomposition

of adX. Then it is well known (ad X)s ∈ Derg and (ad X)n ∈ Derg. By

completeness of g there exist unique Xs,Xn ∈ g such that

ad Xg = (ad X)g; ad Xn = (ad X)n; X = Xg + Xn,

and

g = {Xg|X ∈ g} + {Xn|X ∈ g}.

Set t1 = {Xs|X ∈ g}. Then t1 is a maximal toral subalgebra in g and ∀X ∈ t1,

ad X is diagonal under the basis X1,X2, . . . ,Xm, ∀Y ∈ {Xn|X ∈ g}, adY

is strictly upper triangular. Now the first assertion follows, because the

maximal toral subalgebras in g are isomorphic to each other under the group

of inner automorphisms of g. Other assertions are the direct corollaries of

the first assertion.

Since C(g) = 0, we easily see that ∆ generates t∗. By Lemma 1.1,

we can select a subset
∏

0 of
∏

such that the elements of
∏

0 are linearly

independent and that
∏

0 generates t∗. Then the number of the elements of
∏

0 equals N = dim t.

Now we suppose further that g is simply complete and dimg ≥ 3. Since

n0 is nilpotent, we have [n0, gα] 6= gα, ∀α ∈ ∆. Thus for β ∈
∏

0, we

can select a basis of gβ, Y 1
β , Y 2

β , . . . , Y
Nβ

β such that [n0, gβ] is generated by

Y
mβ

β , Y
mβ+1

β , . . . , Y
Nβ

β , where mβ ≥ 2 and Nβ = dim gβ.

Lemma 1.2. n1 6=
∑

β∈Π0
FY 1

β .
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Proof. Suppose that n1 =
∑

β∈Π0
FY 1

β . Then we have gβ = FY 1
β , ∀β ∈

∏
0. Thus [n0, gβ] = 0, ∀β ∈

∏
0, i.e.,[n0, n1] = 0. There are only two cases:

Case 1: n0 6= 0. In this case by [t, n0] = 0 and [n0, n1] = 0, we have

C(n0) ⊂ C(g). Since n0 is nilpotent, C(n0) 6= 0. This contradicts the fact

C(g) = 0.

Case 2: n0 = 0. Then g = t +
∑

β∈
∏

0

FY 1
β , and [Y 1

γ , Y 1
η ] = 0, for γ 6= η.

It is easily seen that g can be decomposed into the sum of N = dim t ideals

such that each of them is isomorphic to the Borel subalgebra of sl (2, F).

This is also a contradiction.

2. Nonsymmetric dipolarizations in complete solvable Lie aleg-

bra. In this section we suppose that g is a complex simply complete solvable

Lie algebra. As in §1, we select a maximal torus t of g. Let ∆,
∏

,
∏

0, and

{Y 1
β , Y 2

β , . . . , Y
Nβ

β }, β ∈
∏

0 be as in §1. Let

n2 =
∑

β∈Π0

(

Nβ∑

i=2

CY i
β) +

∑

α∈∆−Π0

gα.

We define

g
+ = n = n0 + n1,

g
− = t + n0 + n2.

Lemma 2.1. g± are subalgebras of g.

Proof. It is obvious that g+ is a subalgebra of g. By the definitions of
∏

0 and Y
j
β , β ∈

∏
0, 1 ≤ j ≤ Nβ, we have

[n0, n2] ⊂ n2, [n2, n2] ⊂ n2.

Thus g− is a subalgebra of g.
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Now choose a Hermitian inner product <,> in g such that the sum

g = t + n0 +
∑

α∈∆

gα

is orthogonal and for β ∈
∏

0, Y 1
β , y2

β, . . . , Y
Nβ

β form an orthogonal basis of

gβ. Choose a basis of t, {Tβ |β ∈
∏

0} such that γ(Tβ) = δβγ , ∀β, γ ∈
∏

0.

Define a linear function f in g by

f(Y ) =
∑

β∈Π0

(< Y, Tβ > + < Y, Y 1
β >), Y ∈ g.

Lemma 2.2. f([g+, g+]) = f([g−, g−]) = 0.

Proof. Since

[n0, n1] ⊂ n2,

[n0, n2] ⊂ n2.

we have

[g+, g+] ⊂ n0 + n2,

[g−, g−] ⊂ n0 + n2.

Since f(n0 + n2) = 0, the lemma follows.

Lemma 2.3. For X ∈ g, f([X, g]) = 0 if and only if X ∈ g+ ∩ g−.

Proof. Suppoe first that X ∈ g+ ∩ g−. Then X ∈ n0 + n2, thus [X, g] ⊂

n0 + n2. Therefore f([X, g]) = 0. On the other hand, let f([X, g]) = 0.

Suppose

X = Xt + X0 +
∑

β∈Π0

cβY 1
β + X2,
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where Xt ∈ t,X0 ∈ n0,X2 ∈ n2 and cβ ∈ C. We first assert that Xt = 0.

Suppose this is not true. Then we can choose η ∈
∏

0 such that η(Xt) 6= 0.

Then

[X,Yη ] = η(Xt)Yη + Z

where Z ∈ n0 + n2. Thus

f([X,Yη]) = η(Xt) < Yη, Yη > 6= 0.

This is a contradiction. Now for β ∈
∏

0, we have

[Tβ,X] = cβY 1
β + [Tβ ,X2].

Since [Tβ,X2] ∈ n2, we have f([Tβ ,X2]) = 0. Thus 0 = f([Tβ,X]) = cβ.

Thus X ∈ n0 + n2. Now the lemma follows.

Now we can prove the main result of the paper.

Theorem 1. Let g+, g− and f be as above, then {g+, g−, f} is a dipo-

lariation in g. Futhermore, if dimg ≥ 3, then the dipolarization is nonsym-

metric.

Proof. By Lemma 2.1, 2.2, 2.3 and the obvious fact g = g+ + g− we

see that {g+, g−, f} is a dipolarization in g. Now suppose dimg ≥ 3. Then

Lemma 1.2 shows that n2 6= 0. Thus g− is not nilpotent. Thereforce it is

not isomorphic to g+, which is a nilpotent Lie algebra.

Corollary 1. Let g+, g−, and f be as above, then g+ and g− are two

polarizations in g at f .

Theorem 2. Let u be a complex complete solvable Lie algebra. Sup-

pose u contains a simply complete ideal which is not isomophic to the Borel

subalgebra of sl(2, C). Then there exists nonsymmetric dipolarization in u.
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Proof. Suppose u = u1 ⊕ u2 ⊕ . . . ⊕ us is the decomposition of u into

the sum of its simply complete ideals ([9]). For convienence we suppose

u1 is not isomorphic to the Borel subalgebra of sl(2, C). Then Theorem 1

shows that there exists nonsymmetric dipolarization {u+
1 , u−1 , g} in u1. Let

u± = u
±

1 ⊕ u2 ⊕ . . . ⊕ us and extend g to u by g(Y1 + Y2 + . . . + Ys) = g(Y1),

where Yj ∈ uj(j = 1, 2, . . . , s). Then it is obvious that {u+, u−, g} is a

nonsymmetric dipolarization in u.
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