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Abstract. In’'[7] the authors studied the orbits of the
isotropic representations of semi-simple Riemannian symmet-
ric spaces. These are called orbits of s-representations (or R-
spaces). They have shown that if the isometric immersion f :
M — R™*4 is an orbit of an s-representation then f has 2-planar
normal sections (P2 — PN S property ) if and only if the unitary
tangent vector X satisfies the equation h(D(X, X),X) =0. In
the present paper we generalize this result to pointwise 3-planar
normal sections (P3 — PNS property). We give necessary con-
ditions of the natural imbedding f : M — R™%¢ of an R-space
to have this property.

1. Introduction. Let f : M — R™"? be an isometric immersion
of an m-dimensional Riemannian manifold M into an (m + d) dimensional
Euclidean space R™%. Let V, ¥, and V denote the covariant derivatives
in T(M), N(M) and R™" respectively. Thus Vx is just the directional
derivative in the direction X in R™*%. Then for tangent vector fields X,Y

and Z and normal vector field v over M we have

VxY = VxY +h(X,Y),

Vxv=—A,X + V%,

where h is the secohd fundamental form of M and A, is the shape operator
of M [4]. We also define Vh as usual by
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(Vxh)(Y,2) = Vx(h(Y, 2)) - M(VxY,z) — (Y, VxZ)

for arbitrary tangent vectors X,Y and Z on M. _

For a point z € M and a unit vector X € T, M, the vector X and
the normal space N, M determine a (d + 1)-dimensional subspace E(z, X)
of R*™¢ by E(z, X) =z+ span{X,N,M} in a neighborhood of z. In a
neighborhood of x the intersection M N E(z,X) gives rise a curve y(s),
called the normal section of M at z in the direction of X [5].

The submanifold M (or the immersion f) is said to have pointwise k- -
planar normal sections (Pk — PN S property) if for each normal section -,
the first, second and higher order derivatives 4/(0),¥7(0),...,y*tD(0) (1 <
k < d+1) are linearly dependent as vectors in R™%4[3].

2. Orbits of s-Representations. In the present section we introduce
the basic notation on orbits of the isotropy representations of semi-simple
Riemannian symmetric spaces. These are called orbits of s- representations
see, for instance [15] or R-spaces (as in [14], [7], [10],[11]).

Let g be a semi-simple Lie algebra over R and k be a maximal compact

subalgebra of g,

1 g=k+p

be the Cartan decomposition of g relative to k. We denote by B the killing
form of g. We regard the subspace p as a Euclidean space with the inner
product induced by the restriction of B to p. Let h, be a maximal abelian
subspace of p and h be an abelian subalgebra of g containing h,. Then
h = hy + h,, where hy = h Nk (see [9]).

We denote by g, and h. the complexifications of g and h, respectively.
Then h is a Cartan subalgebra of g,. Let A be the set of nonzero roots of
g, with respect to h, then g, = h.+ ) g, is the root space decomposition
so that (h.)gr = v—1hy + hp. <8

Let Int(g) be the group of inner automorphism of g then the Lie algebra
of Int(g) is identified wifh g. We denote by K the connected Lie subgroup
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of Int(g) generated by k and let p = p, + m be canonical decomposition
for the Lie algebra of K. Then p is invariant under K. For each nonzero

element 0 # F € p, put
Ko = {k € K|Ad(k)E = E},
then
f M = K/Ko— p, {([k]) = Ad(k)E,

is an imbedding into the Euclidean space p with metric given by the Killing
form of g. The Riemannian metric induced on M turns M into a Riemannian
symmetric space, which is called R—spaée, and f its standard imbedding [7].

Let us denote by V the Riemmannian connection with respect to (,)
on R™, by V the Riemannian connection for the induced metric Q on M
and by V* the induced connection on the normal bundle. Associate to
decomposition (1) there is a canonical connection V on M such that for
a difference tensor D = V — V% and the canonical connection satisfies
V°Q =0 and V°D = 0. Asin [7] we can define the canonical covariant

derivative of the second fundamental form h of the imbedding f as
@) (V&Y. 2) = Vx(h(Y, 2)) - (VY, Z) - i(Y, V)
for arbitrary tangent vectors X,Y and Z on M.

Theorem 1 [7]. Let M be a compact connected Riemannian full sub-
manifold of R™ then M is an orbit of an s-representation if and only if M

admits a canonical connection VC and VCh = 0.

3. Symmetric R-spaces. Let M = K/K, be an R-space and f:
M = K/Kq — p, f([k]) = Ad(k)E its standard imbedding. Tf gd(E)? =
ad(E) then M is called a symmetric R-space (or 2-symmetric space) and f its
standard imbedding. So ad(E)* = ad(E) means there exists an element 0

E € p such that ad(E) has eigenvalues 0, -1,1 and g admits a decomposition
g=9o+9g;+9g_; (see [6]).
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The clas of symmetric R-spaces includes:

(i) all hermitian symmetric spaces of compact type;

(ii) Grassmann manifolds O(p + ¢)/O(p) x O(q), Sp(p + q)/Sp(p) x Sp(9);

(iii) the classical groups SO(m),U(m), Sp(m);

(iv) U(2m)/Sp(m),U(M)/O(m);

(v) (SO(p+1) x SO(g +1))/S(0(p) x SO(q)), where S(O(p) x SO(q)) is
the subgroup of SO(p + 1) x SO(q + 1) consisting of matrices of the
form

e 0
0 4 , e==x1, A€ O(p), B € O(g);

e 0
0 B

(This R-space is convered twice by SP x S9.)

(vi) The Cayley projective plain and three exceptional spaces.

Proposition 2 [1]. Ifad(F)® = ad(E) then for the any positive system
of generators for the roots ai,qs,...,q, with respect to E = f(0), there

ezists a unique j such that a;(E) =1 and other a;(E) =0,1 < s <r,s #j.

Theorem 3 [6]." Let M be a submanifold of R™. Then the following
statement are equivalent.
(i) M has parallel second fundamental form i.e., Vh=0

(ii) M is a symmetric R-space.

Theorem 4 [7]. Let f : M — R™*? be an orbit of an s-representation
(i.e. a natural tmbedding of an R-space) and x is a point in M, then for
the normal section v with ¥(0) = z and v'(0) = X, M has P2 — PNS
property if and oﬁly if the unitary tangent vector X satisfies the equation
h(D(X, X), X) = 0.

Corollary 5. Let M be a naturally imbedded of an R-space. If h(D(X,
X),X) =0, then M is symmetric R-space.

Proof. Let M be a submanifold in R™. If h(D(X, X), X) = 0 then by
Theorem 4 M must have P2 — PNS property. If M is not a hypersurface
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then by Theorem 3.3 in [2] M must have parallel second fundamental form

i.e., Vh = 0. Hence by Theorem 3 M must be symmetric R-space.

4. k-Symmetric Spaces. The orbits of the isotropy representations
of symmetric spaces (s-representations), which are called R-space, also occur
naturally in the study of generalized symmetric spaces (for details see [12]).

They are kfsymmetric in the following sense:

Definition 1. A Riemannian manifold M is called k-symmetric if for
each x € M there is an isometry s, such that
(iA) the order of s, is k,
(ii) z is an isolated fized point of Sg
(iii) sz 08y 0871 =s,, where z = s,(y).
" Note that 2-symmetric spaces are symmetric spaces. If a submanifold
M of R™ is k-symmetﬁc and the isometries s, are obtained from restriction

of ambient isometries, then M is called extrinsic k-symmetric [16].

Definition 2. An immersed submanifold M in R™ is called extrinsic
k-symmetric if for each x € M there is an isometry s, of R™ such that the
order of s, is k, d(s;). restricted to v(M), is identity, sz(M) C M, and
the collection {s.|M|x € M} makes M o k-symmetric space [16].

Sénchez proved in [16] that if M is a k-symmetric space then an isomet-
ric imbedding of M in R™ is extrinsic k-symmetric if and only if VCh = 0
for the canonical connection. So extrinsic k-symmetric submanifolds of R™

are R-spaces. But the converse is not true in general.

5. Main Results. In this section we consider R-spaces (i.e. orbits of
s-representations). We give some necessary and sufficient conditions to such

representations to have P3 — PN S property.

Lemma 6. If f : M — R™"? is an orbit of an s-representation (i.e.
a natural imbedding of an R-spaces) and x is a point in M, then for the

normal section v with ¥(0) = = and v'(0) = X, we have
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8 - o VR, = —2MD(X, X),X).
Proof. Let v be a normal section of M at point z, ie. y(s) = p and

v'(s) =T, 7(0) = z and 4'(0) = X, where X is the unit tangent vector at
z. Then by (2) we have

(4) VLG ,4)) = (VSR 7))+ 2h(VSA 7).

If f: M — R™*% is a natural imbedding of an R-space and z is a pomt in

M, then by Theorem 3 V Xh = 0. So the equation (4) becomes |
(5) V(7)) = 20(V 5 7).

By éeﬁpi}ion of the differenqe tensor D = v - Vc‘we get

6) D)=V = VY

Since Q(v',v') = 1,Vx~' is perpendicular to X and hence (v is a normal

section)
I 2 : _Vx7' =0.
So by the use of (5)-(7) we obtain (3) which gi\;e‘é:'the prodfﬁi

Lemma 7. Iff M — R™* s an orbit of an s-representation (i.e.
a natural zmbeddmg of an R spaces) and T is a pomt in M, then for the

normal section v with v(0) =z and ( ) = X, we have

®  VxVa((vs7)) = 2V (DX, X), X).

Proof. Let v be a normal section of M at point z then differentiating

v'(s) with respect to s we obtain

(9) o 7'(s) = Vo + h(v',7"),

(10)  7"(8) = Vor V' = Antyr )Y + (Vs 7') + V3 (Y1),
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Further, by covariant differentiation of -Vj,(h(ﬂy’ Y')) we get.

V(Vl (', 7)) = ~4g R '+ Vi (V3 (R, 7))

= —2Ah(v07 Y +2V (h(V Y, v')).

(1)

So, for the normal parts
(12) Vo (Vi (h(y, 7)) = 2Vl (R(VSY, 7).
Substituting (6) and (7) into (12) we obtain the result.
Lemma 8. If v is a normal section. of M at point Y(0) = =z, in the -

direction of 4'(0) = X then (VxVxy',v') — h(Anx,x)X,7') is a multiple
of h(X, X).

Proof. Let v be a normal section of M then by equation (10)
(13) Vay V' = Aney Y = )Y (s)

where A(s) is a real valued function. By covariant differentiation of (13) we

get
Ve VeV +h(Y, Vo)
(14) - vv’(Ah(v’,v’)'Y ) = h(Angy )Yy )
=X (s)7'(s) + A(s)7" (s)-
At s = 0 we have v/(0) = (X, X). So taking the normal parts of (14) we

obtain the result.

Theorem 9. Let f : M — R™" be an orbit of an s-representation
(i.e. a natural imbedding of an R-space) and z is a point in M. Ifvyisa
normal section of M at point x = y(0) in the direction of X = v '(0) then
M has proper P3 — PNS property (does not have P2 — PNS property) if

and only if each unitary tangent vector X satisfies the equation

(15) Vx(M(D(X,X),X)) = (X, X)X, X) + (X, X)h(D(X, X), X)
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where (X, X) and ¢(X,X) are 2-forms on M.

Proof. Suppose 7 is a normal section of M at point = (0) in the
direction of X = +'(0). Let f : M — R™*? be an orbit of an s-representation
(i.e. a natural imbedding of an R-space). Then, differentiating (10) with

respect to s we get
v"(s) = v"f’v'v'v'r")’l + h(V.y Vv”Y/, 7'y - V‘r'(Ah(’Y','yl)’Yl)
(16)  —h(Angy 475 Y) = Anr, V)Y + V(Y1)
: _AVj,(h('v’n'))'Y' + VAJ{' (va{'(h(’Y’,’)’l)))-

Thus, at point & = v(0) by the use of (7), (3), (8) and (14) the normal
parts of (10) and (16) become respectively,

A"(0)*+ = —2r(D(X, X), X),

7" (0" = A0)R(X, X) + 2V (M(D(X, X), X))

(=) : If M has P3 — PNS property then by definition +/(0), ¥"(0),
~¥""(0), v""'(0) are lineé,rly dependent. Therefore the normal parts y”(0)*,
A"(0)*, 4(0)1 must be linearly dependent. '

(<) : Conversely if (15) is satisfied then M has proper P3 — PNS
property. ’ V

This completes the proof of the theorem.

Proposition 10 [6]. Let M = K/Kj be an orbit of an s-representation

(or R-space) and f : M — p, f([k]) = Ad(k), (E = f(0)) its standard
imbedding; Then for X,Y,Z € m = Ty,M, where Hy := K,
(i) The differentiation of f at Hy € M is given by

(17)  f(X) = ad(X)E = [X, E] for X € Ty,(M) = [k, Ho|
(ii) The second fundamental form h of M = K /K is defined by

(18)  A(X.,Y) = [+{(X)f(Y)E = ad(Y)ad(X)E = [V, [X, B}
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(iii) The third fundamental form Vh of M = K/Ky is defined by

(VR)(X,Y) = {£(2)f. (V) fu(X)E}*

(19)
= {ad(Z)ad(Y)ad(X)E}* = {(2,[Y, [X, E]]}*.

Theorem 11. Let M = K/K, be a R-space and f: M — p, f([k]) =
Ad(k)E 1its standard imbedding.v Then M has pointwise geodesic 3-planar

normal sections if and only if

(20) 7' (0)" = [X(s), [X(s), B,

(21) 7O = {[X(s), [X(s), [X(s), BN},

Y0 ={[X(s), [X (), [X (s), [X (5), BN} +
(22) +{[X(5),[X(5), [X (s), B} +
+[X(s),[X (s), B,

are linearly dependent, where (L) denotes the normal component, E = § (0).

Proof. Let
() 7(5) = 9(8)Eg™(s) = Ad(g(s)E

be a geodesic normal section of M = K/Kj in the direction of g=1(s)g(s) =
X(s). Differentiating ~(s) with respect to s we get

7(9) =22 (Ad(g(s))B) = Ad(g(s))lg™ (5)9(s), ]
=g(s)lg™" (s)9(s), Elg ™" (s)-

So v/(s) = g(s)[X(s) E]g 1(s). Differentiating this with respect to s we

(24)

have

(25)  7"(s) = 9(s)[X(5), [X (s), Ellg™* () + g()[X (s), Elg ™ (s).

Therefore, comparing (25) with (9) we get
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| (26) VT = g(s)‘[X(‘s),E‘]g_l(s) = 0; (v is a geodesic),

(27) WT,T) = g(s)[X (5), [X (), Ellg™" (s).
Now, differentiating (27) with respect to s and using (26) we have

7"(s) = g(s)[X (), [X(5), [X(s), Elllg ™" (5) -
+9(s)[X (s), [X (), Ellg ™" (5).

Thus, comparing (28) with (10) we get

(28)

(29) VZ(MT,T) = {g(s)[X(s), [X(5), [X (s), Elg~  (5)} -
Further, differentiating (28) with respect to s we also get

7"(s) = 9(s)[X(s), [X (5), [X (5), [X (s), Ellllg™(s)
+g(s)[X (s), [X(s), [X(s), Elllg™(s)
(30) + 29(s)[X (5), [X (s), [X (), El]lg ™ (5)
+g(8)[X(S) [X(s), [X (), Elllg ™ (s)
T [X (), X (s), Bllg™ + g(s)[X (), [X (5), Ellg 1(3

Since

g(s)[X (5), [X (5), [X (s), E]]]g_l(S) ()X (5),[X (s), Ellg ™ (s) = 0.
Then the equa.tlon (30) becomes o o

7"(s) = 9K (s), [X(5), [X (5), [a(), o)

(31) : ;
+39(s)[X (), [X(5), [X (s), E)llg ™" (s )%[X(S),[X(SLE]]Q M)

(=): Suppose M has P3 — PNS property. Then by definition v/ (0),
7"(0), v"(0), v""(0) are linearly dependeht. Therefore the normal parts
Y'(0)L, 4" (0)*, ¥ (0)L must be linearly dependent.

(<) : Conversely it is easy to show that, if the equations (27), (29) and
(31) are linearly dependent then M has P3 — PNS property.

This completes the proof of the theorem.
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