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ANDRE ADLER

Abstract. We consider independent and identically dis-
tributed random variables {X, X,.,n > 1} from a particular class
and we explore which type of random weights {a,,n > 1} that
will allow us to establish strong laws of large numbers of the form
Z:_:l ar X /bn — 1 almost surely even though either Ea, X, =
0or Fan,X, = oo.

1. Introduction. We have seen in [3] that we can obtain strong laws
of the form

> k1 91Xk

5 — 1 almost surely

for independent and identically distributed random variables {X, X,,,n > 1}
and constants {a,,n .2 1} and {b,,n > 1} even though either EX = 0 or
E|X| = co. Generalizing [6], in [2] we showed that these random variables
are such that zP{X > z} is slowly varying at infinity. The most common
example of a slowly varying function is (log z)* for all real A. So we will
let {X,X,,n > 1} beiid. random variables with zP{X > z} ~ c(log z)*.
In order to obtain these types of strong laws we also need to assume that

our random variables are asymmetrical, hence we also assume that P{X <
—z} = o(P{X > z}).
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94 ANDRE ADLER [June

In [3] it was shown that na, is also slowly varying. So we allow our
weights {a,,n > 1} to be of the form a, = (log n)*/n for all real . What
we are about to show is that we can now let the power of log n be a random
variable and we can still obtain strong laws that completely generalizes the
degenerate (constant) case, see Section Two. So in this paper {a,,n > 1}
are random variables independent of {X,,n > 1}. It is important to note
that > 7_; axXk/b, — 1 almost surely even though either Fa,X, = 0 or
Fa, X, = oco. '

We will look at a couple of different cases. Our first is the finite discrete
case, which extends [1]. Then we look at the uniform continuous situation.
Finally, in the discussion we explore the infinite case via the geometric dis-
tribution, in honor of the St. Petersburg Game. The St. Petersburg Game
is origin of the “fair” games problem which gave rise to our Exact Strong
Laws. The last case proves to be quite interesting for the fact that we need
to assume that the distribution placed on our weights is not identical for

each term.

As usual we let 1g z = log(max{1,z}) and lg,z = lg;,_;(lgz) for & > 2.
Also, the constant C will denote a generic real number that is not necessarily
the same in each appearance. We freely use results pertaining to slowly
varying functions throughout our proofs, this theorem, both parts (a) and

(b), can be found on page 281 of [5].

2. Finite discrete case. Here we assume that a, = (lgn)//n
where {U,U,,n > 1} are ii.d. random variables with common distribution
p; = P{U = u;}, i = 1,...,m where without loss of generality u; < us <
-+ < u,, are the ordered realizations of our random variables U,,. Note that
if we let p,, = 1, then we get the same results as in [1]. What is absolutely
- fascinating is that {uj,---,um—1} are completely unimportant. The only
thing that matters is the value of u,, and its probablity. We will explore
all three cases of A. In each case we need to consider different norming

sequences.
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Theorem 1. If A < -1 and EX =0, then
E::l(lgk)vkk_le — Cpm
(lg n)Atum+2 A+1D)A+up +2)
where A + wm,m + 2 > 0.

almost surely

Proof. Let b, = (Ign)***=+2 and ¢, = b, /a, = n(lgn)>+em+2=Un

Noting that Far X, = 0 we partition our sum into the three terms:

bt Y ek Xe =07 > arXpI(|Xe| < c) — BarXpI(|Xi| < cx)
k=1 k=1

+ b;l Z akaI(lel > Ck)
k=1

— ;1) " Ear X I(|Xy| > cx).
k=1

In order to show that the first two term converge almost surely to zero

we need to show that > - ; P{|X,| > ¢,} < co. This follows from

P{|Xa]| > cn} ~ Zpi/
=1 €

m ) A
<cC Z pi(lgcn)
=1

* ¢(lg ) dx
2

n

Cn

& pi(lgn)*
<

C i
— E ;i (1 ui

~ () - GmlEn)™)
C
= nlign)?
which, via the Borel-Cantelli lemma kills the second term. The first term
vanishes almost surely via the Khintchine-Kolmogorov Convergence Theo-
rem and Kronecker’s lemma (see [4]). In order to use those theorems we
need to prove that Y oo Ecy2X2I(|X,| < ¢a) < 00. Hence
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B XA Xal S )~ Yomic? [ ez
i=1
“ Di (lg Cn))\

<C —_
< Z -
<_¢
~ n(lgn)?

via the same calculations as before.

As for the third term
c(lg ) dx

xX

_ —c(lg )M

- iZ(plak) (Tl_—_

T szakag oy
A+ 1

—C(lgk A u;
TSR Z i(lgk)

—CPm (lg k)A+1+um
A+ 1)k

EakaI(IXkl > Ck Zp, /

Recalling that b, = (Ign)**+*“~+2 it follows that

Zn cpm(lgk) Titem
k=1

;'S Ear XiI(|Xa| > ) ~ QDR
;;1 <Xl > ) (Ign)A+um+2
CPm

T O+ D0 +umt2)
completing the proof.

[June

Note that even thought the conclusions of Theorems One and Two

seem to be the same, they aren’t, since in one case \ + 1 is posmve whlle

it’s negative in the other.

Theorem 2. If A > —1, then
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Zz—l(lgk)Ukkv—l‘-ck CPm
(1gn)A+um+2 ? ()\ l 1)()\ C 2) almost surely

where A + Uy + 2 > 0.

Proof. Again let b, = (Ign)***»+? and ¢, = b, /a, =

n(lgn) tum+2-Un  The appropriate partition in this case is:

b;l Zaka = b;l ZakaI(lel < Ck) - Ea,kaI(lel < Ck)
k=1 k=1

-I-b 12(1,ka[(le| >Ck
k=1

+ b,;:l ZEakaI(IXkI < Ck).
k=1

The series Y oo P{|X.| > cn} is convergent since
m fo'e) A
c(lgz)Mdx
PUX|> e}~ Sop [ LA
=1 Cn

<Czp(gcn)

=1 Cn

pi(lgn) n
<
C ; n(lg n)A+um+2 Us

C S pgm)

~ n(lgn)umt?
C
~ _— . ™ 1 Um
(stmgem ) - (omlg ™)
< ¢
~ n(lgn)®’
Fc;2X2I(|X,] < cn) < co. This happens since

Next we show that Y -,

Ec?X2I(|Xn| € cn) ~ ZpiC;Z/ c(lg z) dz

=1
m ) by
<C z pz(li Cn)

< C
~ n(lgn)?
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as in the last calculation.

As for the third term

= * c(lg ) dx
Ear Xipd (| Xi| < cx) ~ Zpiak/ _(_g_;)_

Z piarc(lg cp )1
A+1

=3+ © 3 piasllga)

=1

pi(lg k)»+i+1
)\ +1 Z k

_c(lgk ""’1 i
((Ag+)1 k Zl’z(lg’“)“’

CPm (lg k))‘+1.+“’"
A+ 1)k

Recalling that b, = (Ign)***~+2 it follows that

n s cpm (lg k)1 Hum
-1 k=1 Dk
b, ;EakaI(leI < ck) ~ (lgn)A+um+2
CPm

T O+ DOt um +2)

completing the proof.

[June

Our last case actually become two different cases. It is important to

note that when A = —1, then w,, must be at least negative one.

Theorem 3. If A = —1 and u,, > —1, then

SroGEHU X cpm
(lgn)um+ligy n Uy + 1

almost surely.

Proof. Let b, = (Ign)*~*'lgyn and ¢, = by /a, = n(lgn)*mt1-Uslg, .

We partition our sum into the three terms:
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b aeXe =01 apXiI(1Xk| < k) — BarpXpI(1Xe] < c)
k=1 S k=1

+ b;;l Z akaI(lel > Ck)
k=1

+0.0 ) Bar X I(1Xe| < ck).
k=1

As we have seen in the last two proof we need to show that -,

P{|X,.| > ¢} < co. This follows from

dz
z2lgzx

P{IX, |>cn}<czp1/°°

=1
<C bi

- —~ culge,

<
CZ 'I’L(lg n)“m+2 ullg n

C
= ;(lgn)%
n(lgn)vm+2g, n ;p (lgm)

C Um
” (n(lgn)um+21g2n> ' (p’"(lg g )
<« ¢
~ n(lgn)?lg,n

which kills the second term.

As for the first term

-2 2 cdz
Ec, XI(|X|<cn)~Z / ez

<) ()

pi ¢
— calgen T n(lgn)?lgn

as in the last step.
As for the third term
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¢ cdzx

zlgx

Eap XpI(| Xk| < ) ~ Zpiak/

=1
m
=c Zpiaklgz Ck
1=1
m
pi(lgk)*“lgs k

_ Pm (Igk)“mlgy k
k

Since b, = (lgn)*~*ig, n we have

) n ZZ . cpm(lgklz""‘lg k
b, EakaI( Xkl < Ck) ~ =
2 | (gn)y=+lig;m
CPm
Um + 1

completing the proof.
We conclude this section with our final discrete case.
Theorem 4. If A = -1 and u,, = —1, then

ZZ=1(lg k)Vrk—1X, _, Pm
(Igan)?

almost surely.

Proof. Let b, = (Igyn)? and ¢, = by /a, = n(lga n)?/(gn)V=.

We partition our sum into the three terms:
b;l Z ap Xy = b;;l Z akaI(IXkI < Ck) - EakaI(leI S Ck)
k=1 k=1

+ b;l Z akaI(lel > Ck)
k=1

+ b;l Z EakaI(|Xk| S Ck).

k=1

Next we show that } - ; P{|X,| > ¢,} < co. This follows from
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i *® dx
P{IXn|>cn}§CZpi/ —

e, ZHgz

i=1
<cS P

= culge,

pi(lgn)™
— nlgn(lgan)?

Cpm(lgn)¥m
~ nlgn(lgan)?
< o
~ n(lgn)?(lgz n)?

which eliminates -the second term.

As for the first term

m

: [ cd
B X2I(|X,0| gcn)NZp_/ cdz

2 I
m

<C i
- cnlgen

- c
~ n(lgn)?(Iga n)?

=1

hence Y oo | Ec;2X2I(|X,| < ¢n) < o0.
As for the third term '

= “* cdx
Eap XpI(| Xk| < cx) ~ Zpiak/ g
i=1
=c) pialgsck
i=1
- pi(lgk)“ilgs k
c; -
 Cpmlg2 k
klgk

Since b, = (lgan)? we have

101
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En comlege k
k=1 klgk
(lgz2n)?
CPm

2

0.1 Ear XpI(|Xk| < o) ~

k=1

completing the proof.

3. Continuous case. In this section we assume that a, = (Ign)U~/n
where {U,U,,n > 1} are i.i.d. random variables uniformly distributed over
the interval (a,b), i.e., fu(u) = I{(a < u < b)/(b — a). Once again, we see
that the largest value of U, is the most important, but a does play a small

role in the answer in this case.

Theorem 5. If A < ~1 and EX =0, then

Sore (g k)Vek—1 X, c

(Ign) +5+2/Igy n — G0+ Tb12) almost surely

where A +b+ 2> 0.

- Proof. Let b, = (Ilgn)****2/lgyn and ¢, = by, /a, =

n(lgn)*+0+2-Un /lgy n.
Since Fap X = 0 we partAition our sum into the three terms:

n n
b;l Zaka - b;l ZakaI(lel < Ck) - EakaI(|Xk| S Ck)

+o;1 > arXeI(|Xe| > cx)

k=1

~ 0.1 Bar X I(|Xx| > cx).
k=1

As usual we need to show that 3 oo, P{|X,| > cn} < co. This follows

from
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P{|Xa| > ca} ~ /(/ lg;vz)’\dx>bdu
(/ (Igx) Adac)

gc/Q&Cn__d

A

’I'L(lg n))\+b+2 u

Clg2 n w
- "ag—>_/ en)de

(i) - (B2)

103

which, via the Borel-Cantelli lemma kills the second term. The first term

vanishes almost surely since
b Cn
Ec;2X2I(|Xn] < cp) ~ / c;? (/ c(lgm)*dm) du
a

b
<c [ a?(catsen )
b A
<c / (Igecn)rdu
a Cn
C
~ n(ign)?
isa convergerit'series.

As for the third term

b oo A
. . (1 dx\ du
EakaI(le| >ck)~/ k(/ (gw) >b .

( / (lg:c)’\dx)
= b—"_f;/a,ak((—lg;—’f-?-)du

~ G=a0TD / (%% ) os e
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_ —C(lg k)A+1 u
T —a) (,\+1)k/ (g k)" du

—c(lgk)*' \ ((gk)®
- ((b—— a><A+1)k) | ( lg2k )
_ -—c(lg k)A+b+1
T (b-a)(A+1)klgk

Recalling that b, = (Ign)**®*2 it follows that

(lg k))\+b+1

. c Xk ;
—b' Y Bar Xl (1Xe| > k) ~ ((b — )0+ 1)) ' ( e — )

k=1 lgan

[}
T -+ 1A +b+2)

completing the proof.

Note that our norming sequence in the discrete case was larger. This is
probably due to the fact that there was positive probability that our random
variables {U,,n > 1} could take on the largest value, which doesn’t happen

in the continuous setting.

Theorem 6. If A > —1, then

ZZ:l(lg k)Ukk_le - c
(Ign)*+5+2 /lgan (b-a)A+1)(A+b+2)

where A+ b+ 2 > 0.

almost surely

Proof. Let b, = (Ign)****2/lgyn and ¢, = bn/a, = n(lgn)te+2=Un
/lg2n.

The appropriate partition in this case is:

b;l Zaka = b;l ZakaI(le| <ck) = Eap X I(| Xk| < ck)

k=1 k=1

+ b,:l Z akaI(IXkI > Ck)
k=1

+0;1 Y BapXipI(1Xe| < ci)-
k=1
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As in the last proof

b =] by
clex)dz\ du
P{an|>cn}N/ (/ (ng )b——a
c b ® (lgz) dz
“b—a/</c,, 22 )d'“
A
< / (lgcn du

<cC lg n Algg ndu
. n(lgn) A+b+2 —u

Clg? n u
= ——n(lgn)b+2 /a (Ign)*du

~ () ()

which is a convergent series.

Asfor 307  Ec;2X2I(|1Xn| < cn) < 00
b o du
Ec2X2I(|1Xn| < cp) ~ / c,jz(/ c(lgm)*dm) =

b
< C/ cf(cn(lgcn))‘)du

c /" (1g ea)du
Cn

a

o
~ n(lgn)?

which works as in the previous calculation.

As for the third term

b ck A
c(lgx)*dz\ du
EakaI(leI S Ck) ~ / ak</ (g ) ) b

T —a

- [ e
¢ b

(/Ck (lgxzz)‘d:c)du

105
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(g k)™ (g cp )M+t ;
)k; o E 1g)‘k-)l_>il ))duu
c(lgk e A+ 1
T b-a) + 1)k / (lgk)*du

gk \ ((gh)
((b—a)(AH)k) ( lg2 k ) .
_ c(lg k))\+b+1
C(b—a)(A+DElg k

Recalling that b, = (Ign)****2/lg, n it follows that

n . Zn (g P
-1 N ) k=1 kig k
LBl 500 ~ (o) (Hmi®
c
—_
b-—a)A+1)(A+b+2)
completing the proof.
Once again, the case of A = —1 becomes two separate cases.
Theorem 7. If A= —1 and b > —1, then
> (g k)RR X, c
(g n)Ptl — DI almost surely.

Proof. Let b, = (Ign)**! and ¢, = b, /a, = n(lgn)>+1=Un,

We partition our sum into the three terms:

b;l Zaka = b;l ZakaI(le[ < ck) —EakaI(lel < Ck)
k=1 k=1

+070 Y e X I (1 Xe| > i)
k=1

+ b;l ZEakaI(IXk| < Ck). )
k=1

As for 37, P{|Xn| > cn} < o0
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b o)
P{|Xa| > ca} 50/ (/ Qd_x)du
o e, Tilgzx
b
< c/ du
- o Cnlgcn
C b
< - u
~ n(lgn)b+? /a (gn)*du

~ (o) (%)

showing that the second term vanishes almost surely.
As for the first term

b o dx
Ec?X2I(| X, < cn) < c/ c;2(/ —)du
@ lgz

b
< C’/ du
o Cnlgcn
¢
~ n(lgn)?lgsn

as above.

As for the third term

b ‘ ¢
c le k) ko dx
EakaI(IXk|SCk)Nb_a/ (gk) (/ xlg:c)du

b
c u
= m/ (Ig k)*“lg2 ek du

clgak (%
~ % _gza)k / (Ig k)*du

~(o25) (F)
_ c(lgk)®
T (b—-a)k’

Since b, = (Ign)**! we have

107
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n c(lgk)®
Zk:l—(l()—g—a))k.

bﬁl ZEakaI([XkI <)~ (Ign)b+1

k=1
C

T h-ab+D

completing the proof.

Theorem 8. If A = —1 and b = -1, then

Z:=1(lg k)Ukk_lxk -
lgamn b—a

almost surely.

Proof. Let b, =lgan and ¢, = b, /a, = nlgan/(lgn)V=.

We partition our sum into the three terms:
b;l Zaka =b;1 ZakaI(|Xk| <cg)— EakaI(IXkI < ck)
k=1 E=1

+01 ) " XiI(1Xe] > ci)
k=1

+b;1 Z EakaI(|Xk| S Ck).
k=1

As for the second term

' ' b o)
d
P{|Xn|>cn}_§C’/ (/ x2lzx)du
b
<C/ du
- e Crlgen

b
© / (lgn)*du

T nlgnlgyn
C 1
- (nlgnlgzn) ' <1gn1gzn>
_ o
~ n(lgn)?(lg2n)®’

As for the first term

[June
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b Cn
B X2I(|Xn| < cn) < C’/ c;2</ de )du
lgz
< C/
cnlgcn

~ n(lgn)? (182 n)?’

As for the third term

b ¢ '
lgk)* ( [ d
EakaI(leISCk)Nbfa/ (gk) (/ xlgxx)du

b
= (—_— | gk,
Clg?k / (g k)*du
N ( clgzk > . ((lgk)
(b—a)k lgo k )
. [+
T (b—a)klgk’

Since b, = lga n we have

; an —%—
b’ ZEakaIﬂXkl <cp)~ k=1 (b=a)klgk
k=1 lgan

b—a

where b= —1.

4. Discussion. We can extend the distribution of the sequence {U,,
n > 1} so that they are no longer bounded nor identically distributed.
Realizing that the largest value that these random variables assumes takes
on great importance, we therefore must place most of our weight on the
smaller values.

Again, we let a, = (Ign)U~/n where {U,,n > 1} are independent
random variables. However, we now set P{U, = i} = p,q‘°, where i =
b,b+1,..., with ¢, = a/lgn =1 — p,, where 0 < a < 1. We are using the
geometric distribution in honor of the St. Petersburg Game. For simplicity

we will only consider A = 0.
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Theorem 9. If f(z) = z72I(x > 1), then

EZ:l(lg k)Ukk‘le 1
Ign)*2 (1-a)(b+2)

almost surely

where b+ 2 > 0.

Proof. Let b, = (Ign)**? and ¢, = b, /an = n(lgn)b+2=Un,

We partition our sum into the three terms:

b1 anX =071 ar Xk I(1Xk| < cx) — BarXiI(1Xel < i)

k=1 k=1

+ b;l Z akaI(leI > Ck)
k=1

+b.1 > Bar XiI(|Xe| < cx).
k=1

[June

In order to show that the first two term converge almost surely to zero

we need to show that > 77 ; P{|X,| > c,} < co. This follows from

P{Xal > ca} = 3 pugit / s~

i=b Cn
co
_ i—b —1
- anqn cn
1=b
=]

As for 300 Ec; 2 X2I(|X,] < ¢p) < 00
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Ec?2X2I(|Xn| < cn) = anq’ -t _2/ dz

<anqz ~b —1

i=b
C
~ n(lgn)?

showing that the first term converges to zero almost surely.

As for the third term
EakaI(IXk| < Ck)
= Zpqu ak/ rtdx

(o]
=Z Prgy Carlg ck

z<—><—><—-><>

i=b

(o) (82) (B Fovrned
_ (1 — lgik> , <(1gkk)b> (1lgika N (2(‘1?:61311;822 k)

(g k)*+
T -ak

Recalling that b, = (Ign)**+? it follows that

lgk)®*!
Yi e
(Ig n)b+2
. 1
(1-a)b+2)

b1 > Bar XeI(|Xk| < cx) ~
k=1
completing our final proof.

This last result compares quite favorably with Theorem Two where

c=1,pm=1,2=0,u, =band a=0.
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