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GENERALIZED HENSTOCK STIELTJES INTEGRAL

BY

A. G. DAS, MAHADEV CHANDRA NATH and GOKUL SAHU

Abstract. The work concerns with the introduction of
a generalized Henstock Stieltjes integral, the H5.-integral, that
generalizes the concept of the RS} -integral of Ray and Das [9].
The new integral includes the generalized Lebesgue Stieltjes, the
LSy-integral of Bhattacharyya and Das [1].

1. Introduction. In [9] Ray and Das introduce a new definition of
the RS}-integral of Russell [12] which they call the RS} -integral. It is shown
that if f is bounded and g is k-convex on [a, b] with gff—l)(a) and g(_k_l)(b)

existing, then
1 (RSE) C (RS) C (LSk)

where (I) stands for the class of I-integrable functions on [a, b].

We introduce here a definition of a generalized. Henstock Stieltjes in-
tegral, which we call the HSj-integral. The proposed integral includes the
LS -integral of Bhattacharyya and Das [1] and generalizes the integrals of
Pfeffer [8] in some sense or other.

For notations and definitions not produced here we refer to Russell [11,
12], Bhattacharyya and Das [1,2], and Ray and Das [9]. However, we recall
certain characteristics of BV, and k-convex functions and also the definition
of the RS;-integral of Ray and Das [9].

Let a, b be fixed real numbers such that a < b. Let k be a positive
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integer greater 1. Let g be of bounded k-th variation on [a,b]. Following
Theorems 15 and 19 of Russell [11], g = g1 — g2, where g; and g are k-
convex on [a,b] and D57 *g;(a), D*"'g;(b) exist for each ¢ = 1,2. In view of
Corollary to Theorem 17 of Russell [11] and Theorem 2 of Russell [12] we
can, without loss of generality, assume the function g to be k-convex on [a, b]
with D¥71g(a) and DY) g(b) existing. Utilising Corollary to Theorem 17
of Russell [11] and Lemma 3.2 of Das and Das [3], it follows that D"g(z)
are continuous in [a,b], 1 < r < k — 2, for k > 3 and D*"!g(z) exists in
[a,b] except for a countable set of points. Also it is shown in the proof of

Lemma 3.2 of Das and Das [3] that if e < z < y < b, then

(2) D%~1g(a) < DFg(z) < DEg(a)
< D¥g(y) < D5~lg(y) < DE1g(b).

This shows that D*71g(z), Di"l g(x) are monotonic non-decreasing respec-
tively in (a,b], [a,b) and so are continuous in [a,d] except possibly for a
countable set of points. The existence of D*~!g(z) follows at each point of
continuity of either sided derivatives. In view of Theorem 12 of Russell [11]
and Theorem 1(ii) of Verblunsky [15] the (k — 1)th Riemann* derivatives
(unilateral and bilateral) can be replaced by the corresponding (k — 1)th or-
dinary derivatives. We shall denote by C the subset of [a,b] where g(*~1)(z)
exists and by D the set [a,b] \ C.

Definition 1.1. (cf. Definition 2.2 of [9]). Let f and g be defined
on [a,b] and let g be k-convex on [a,b] and g(k 1)(a), ggf_l)(b) exist. For

any partition P = {a = 29 < 21 < -+ < z, = b}, we write gk-mesh

(P)= maX1<]<q[g<_)( i) = gf 1)(%—1)] and

Si(P, f,9) :Z Fag¥ () = o V(@) (k - 1)
+2 A

0% (@) = g8 (@j-0)]/ (k — 1)t

where &; € (zj-1,25), J =1,2,...,q.
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The RS}-integral fab f (w)‘fl,;i(ﬁ), written as (RS}) f flx d i(fl) is the
real number 7, if it exists uniquely, and if for each ¢ > 0, there corresponds a
real number §(¢) such that for any partition P of [a, b] with gk-mesh (P) < 6,
the inequality

|Sl(Pvfyg) _I[ <€

is satisfied. If the integral exists, then f is said to be RSj-integrable with
respect to g, written as (f,g) € RS;[a, b].
Bhattacharyya and Das [1] obtain the following result.

Theorem 1.2. Let f be bounded on [a,b] and g be k-convez on [a,b]
with g 1)(a) (k= 1)(b) existing.
(1)  If(f,9) € RS;la,b], then (f,g) € LSk|a,b] and the two integrals agree.
(2) (f,g9) € RBSila,b] if and only if f is continuous in [a,b] except a set

of gk-measure zero.

It is further shown by an example in [1] that (f,g) ¢ RSy[a,?b] if the
interval [a, b] contains any point zg in its interior such that f is discontinuous
at zo and g(_ 1)( o) does not exist.

Ray and Das ([9], Theorem 2.3) obtain the following:

Theorem 1.3. Let f be bounded, g be k-convez on [a,b] and g(lc 1)( )
g® V() ezist. If (f,9) € RS:[a,b], then (f,g) € LSi[a,b] and

b k T b k T
®sp) [ 10T = s [ 158,

2

Further (f,g) € RS;|a,b] if and only if f is continuous on C except on a

set of gk-measure zero.

Immediately they remark that if f € BV{a,b] and g € BVi]a,b], then
(f,9) € RS}[a, b

Finally the authors ascertain by various examples that (RS}) is a proper
subclass of (RS}) and that (RS}) is a proper subclass of (LSy) so as to obtain
the chain (1).
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Henceforth we shall assume g to be k-convex on [a,b] and ggf_l)(a),
(k—1) .
9% (b) exist.

2. The HS; integral.

Definition 2.1. Let f be defined on [a,b]. A partition of [a,b] is a set
P = {zg,21,...,24;&1,&2,.. ., &g} such that a = 29 < 21 < --- <2, =0
and z,_1 <¢; <zj,j=1,2,...,¢. For a given positive function § on [a, b],
we say P is §(gk)-fine whenever g(_kvl)(:cj) - gf—l)(xj_l) < 6(¢;) for all

7 =1,2,...,9. Write

S(Pf,9) = Fa)lel (@) — g% (@s)]/(k — 1!
7=1
+5° 1ENg® (5) — oD (o)) (k = 1)!
=1
= ZT]I(P"’EJ) + Z,I;{I(P7$J—1:$])
= ZTj(P,xj—l,mj;ﬁj)
where
TH(P,z;) = fz;) g8V (z;) = g%V ()]/(k — 1)t
= f(z;){zi g,
T/ (P,xj—1,25) = F(E1)9% P (z;) — g8 D@0/ (e — 1)1
= f(é])l(x]—laxjﬂgka
and

T;(P,xj-1,25;&5) = Tj(P,x;) + T (P, z;-1,z;).

The HSy-integral of f with respect to g, written as (HSy) ff f(x)dkg(w)

dxk—1

is the real number I if for every e > 0 there is a positive function § on [a, b]

such that for every §(gk)-fine partition P of [a,d], the inequality
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IS(P’fag) —II <e
is satisfied. If the HSj-integral exists we write (f,g) € HS, [a,b] and
b k
d*g(z)
=) [ 1055

The above definition of the HSy-integral differs from that of the RSE-

integral in the same way as Henstock integral does from Riemann integral.
The gk-mesh of a partition is nolonger constant but varies from point to

point and for getting partitions we choose first the points &;,&,, . .. ,&q then

%o, Z1,--.,2Lq Whereas in case of the RS;-integral we are to choose first
To,Z1,-..,%q then &1,&s,...,&;. The point &; is called the associated point
of [z;_1,2;], and z;, j = 1,2,...,¢, the partition points. For brevity we

write P = {[u,v]; £} where [u,v] denotes a typical interval in P and ¢ is the
associated point of [u,v]. Further
S(P,f,9) =Y T'(Pv) + Y T"(P,u,v)
= T(P,u,v;£).

Lemma 2.2. To each positive function § on [a,b] there exists a parti-
tion P = {zo,21,...,24;€1,82,...,&} of [a,b] such that for all§=1,2,...,q
(i) -1 <& <=,

() g%V (@5) = oV wsm0) < 6(6y),
(ii)) g V() - gi’“ V(@) < 8(&) for @ € (zj-1,35).

The proof is omitted (cf. Theorem 2.14 below).

%

Theorem 2.3. If (f,9) € RS;[a,b], then (f,g) € HS[a,b] and

dk
(HSk)/f dkl_R,S'k/f xi(xl

Proof. To each € > 0 there corresponds a real number §(¢) > 0 such

that for any partition P of [a,b] with gk-mesh (P) < §, the inequality
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d*g(x)
dxk—l

Si(P,f,9) — (RSY) / f(@) <e

is satisfied, where S;(P, f,g) is as in Definition 1.1.

Define a positive function §(¢) on [a,b] such that §(§) = 6 for all £ €
[a,b]. Clearly every §(gk)-fine partition P of [a,b] is also a partition P of
gk-mesh (P) < 6. Consequently every HSj sum, S(P, f,g), is a RS} sum,
Si(P, f,g), and the theorem is proved.

The converse of the above theorem is not true is shown by the following

example.

Example 2.4. Let f and g be defined on [0,1] by

flz)=1 if z is rational
=0 if z is irrational,

1

glz) =zF/2k for 0 <z < 3
3 1

=z /k for§<3:§1.

It is shown in Example 2.2 of Ray and Das [9] that (f,g) ¢ RS;|«, 5],
0<a< B <1 Given € > 0 we label all the rational numbers in [0,1] as
71,72,... and define §(r;) = €/27 forj =1,2,... and §(¢) = 1 otherwise.
Then clearly £ = % is always a partition point of any §(gk)-fine partition P
of [a,b] and (f,g) € HSk|e, B] for every [a, B] C [0,1). Infact,

B dk
. g9(z) . 1
(H%xlfu%mhlzo ﬁ0§a<ﬂ<§
S im§a<ﬂ:%
i . 1
= 3 1f0§0£<‘2“<,8<1

1
=0 ifz<a<p<l

(Ray and Das [9], however, consider g(z) = z*/k for z in [0,1]. In
that case the HSj-integral equals 0 for each [o, 5] C [0,1)). Indeed (f,g) €

HSila, (], 0 € a < B < 1 for any k-convex functions with gff_l)(O),
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g1 (1) existing. If D is the set of points of non-existence of g*—V(z)

in [0, 1], then in view of Lemma 2.1 of Bhattacharyya and Das [2] the series

> 6TV @ -V @)/ k-1
z€Dn(0,1)

converges to A, 0 < A < [g(_k_l)(l) - gf_l)(())]/(k — 1), Clearly for the
function f in Example 2.4, the HSi-integral is 0, A or u (0 < p < A)
according as D contains no rational point (or D is empty), D contains an
infinite number of rational points or D contains only a finite number of
rational points in [0, 1}.

Following Henstock [5], Lee [7] standard properties of the HSi-integral

are immediate. We simply state them below for completeness.

Theorem 2.5. (a)If (fi,9) € HSla,b], 1 =1,2...,n and A1, Ag,..., \n

are real numbers, then

(Zn: )\ifiyg) € HSila, b]
=1

and

(HS@/ foz Zuﬂsk / fi(

(b) If (f,9:) € HSk[a,b], i =1,2,...,n and uy, po, ..., iy are real numbers,
then (f, 3 i1 1ig:) € HSk[a,b] and

b k x
CANICLORE DL Zuz(HSk) [ st

Theorem 2.6. If (f,g9) € HS¢[a,c| and (f,9) € HSilc,b] where a <
c < b, then (f,g) € HSk[a,b] and

050 [ 158 = ) [ @ S8 g [T

Theorem 2.7. (Cauchy test). (f,g) € HSkla,b] if and only if for every
€ > 0, there is a 6(§) > 0 such that for any two 6(gk)-fine partitions P and
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P', the inequality

|S(P7fag) —S(Plafag” <e€

holds.

Theorem 2.8. If (f,g9) € HSkla,b], then (f,g) € HSk[c,d] for each
le,d] C [a,b].

Theorem 2.9. If f(z) = 0 gk-almost everywhere in [a,b], then (f,g) €
HSy[a,b] and (ES) [} f(2) 555 = o.

dmk 1

Theorem 2.10. If (f,g) € HSkla,b], (¥,g) € HSk[a,b] and f(z) <
U(x) gk-almost everywhere in [a,b], then

b k z b k T
w0 [ 1035 <us [ew T

dxk- dzk-1

In view of Theorem 2.8, we see that if (f,g) € HSk[a,b], then (f,g) €
HSila,z] for every = € (a,b]. We define the HS) primitive F of f on [a,}]
by ‘

F(z) = / f(t)dt‘z(tl) fa<z<b
if x = a.

Hence if (f,g) € (HSk)[a, b], then there exists a function F on [a, b] such that
for every € > 0 there is a 6(¢) > 0 such that for every §(gk)-fine partition
P = {[u,v]; £} of [a, ] the inequality

(3) (P)Y_IF(v) - T(P,u,0;6)]| <

holds.

Theorem 2.11. (Saks-Henstock Lemma). If (f,g) € HSila,b], then
there is a function F on [a,b] such that for every e > 0 there is a positive
function 6 on [a,b] such that for every 6(gk)-fine partition P = {[u,v];£} of
[a, 0]
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) D IF() - — T(P,u,v;£)| < 4e.

The following Cauchy extension formula can be proved similarly as in
Ray [10].

Theorem 2.12 Let (f,g) € HSi[a,d] for each d € (a,b). If

hm(HS'k / flz )d . 1)
exists and equals h, then (f,g) € HS;[a,b] and
N / 1@ 55 =t fOE 0 0) - oI )]

We conclude the section providing certain observations.

Observation 2.13. Given an arbitrary function § > 0 (independent of
the notion of integration) in [a, b], there always exists, in view of Lemma 2.2,
a 6(gk)-fine partition P = {a =20 < z1--- < g = b;£1,&s,...,&,} of [a,b].
Ifz; 1 <& < z; for some j, we can replace [z;_1,z;] by two intervals
[zj-1,&;] and [¢;, z,], so that &; would be a partition point and this will not
change the sum S(P, f,¢) in Definition 2.1. In fact,

T;(P,wj-1,%;555)
= FENE ™ @) = o8 T (im0l (k = 1))
+ F(@)lof ™ (25) = 947V (@) (k - 1)
= {FEE ) - 0¥V (-l (k- 1!
+ 1LV (&) = oD €N/ (e — 1)t}
+ {1 Vs - o8V (N ( — 1!
+f<xj>[gﬁf“‘”( 5) = g% V()] (6 - 11

and so

(4) T;(P,zj-1,75&5) = T3(Pyxi-1,85;&5) + T3 (P, 5,755 €5)
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Ray [10] obtains a definition of HS}-integral with the approximating sum

S*(P,f,g9) =

MQ

T{I(P, :cj_l,xj)
1

<.
[

f(i;)[ =D (e5) — g8V (@o))/(k - 1)L,

I
i [V]=

.
I

and shows that if (f,g) € RSf|a,b], then (f,g) € HS5}[a,b]. Further

rsp) [ @5 = ) [ 10T 4

where
A= Zf(a:]) ED(z5) — g&~ ”(scm/(k—l), zj € D.

The accomodation of the additive term > %_, T7(P,z;) in the approxi-

mating sum of this article

q q q
S(P, f,9) Z Px] laxjafj ZT‘]{"‘ZT]",
=1 7=1 =1

gives the Theorem 2.3 providing the equality of the two integrals. (See also
- Theorem 3.2).

The consideration of §(gk)-fine partition arises as an influence of such
partition in the definition of the RS} -integral. The RS} -integral is not an or-
dinary Riemann-Stieltjes intégral because of the gk-mesh replacing the mere
length of each subinterval. In view of additive nature of T;(P,z;_1,%;;¢;)
(See relatioh (4)) we can always assume an associated point to be a par-
tition point. So one could develop the theory with left-hand or right-hand
interval-point function, basically giving the same integral. That a 6(gk)-
fine partition induces some §*-fine partition and vise-versa; and that the
HS).-integral become exactly the gauge integral, originated independently in
Henstock [4] and Kurzweil [6], are shown by the following theorem.

The authors are thankful to the referee for the suggestion of the follow-

ing theorem along with the proof.
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Theorem 2.14. The HSi-integral is the gauge integral (Henstock-

Kurzweil integral) induced by the k-convez function g.

Proof. In view of relation (2) and subsequent discussion thereat, it
follows that for u fixed and v — u+, and for v fixed and 4 — v—, g(_k_l)(v) -
ggfc_l)( ) — 0. Since g is k-convex we have g(lC 1)(1)) Srk_l)(u) > 0. So
given 6(x) > () there is a 6*(z) > 0 such that if v —u < §*(z), £ = u or
z = v, then g 1)(1)) gf_l)(u) < 6(x). Thus a §*-fine partition is a &
(¢9k)-fine partition.

Conversely, given §*(x) > 0, we look for a suitable 6(z) > 0. When
z = u thereis a greatest s > u for which hmv_,H_{g(’C 1)(v) g(k 1)(u)} =0
Ifs>utheng )('v) (k 1)( ) =0for v <v < sandin [v,s] we can
use any partition, the contribution to the sum being 0. If s = u we take
6(x) > 0 arbitrarily small so that ggc-l)(v) - ggﬂ_l)(u) is small enough to
give v —u < 6*(x). Similarly for £ = v and thus a suitable §(z) > 0 follows.

This proves the theorem.

Remark 2.15. Following Theorem 2.14 we can define the HSy-integral
equivalently as follows:

Let f be defined on [a,b] and g be k-convex on [a,b] with g(k 1)((1),
ggf 1)(b) existing. The HSi-integral of f with respect to g is the real num-
ber I if for every arbitrary € > 0 there is a positive number §, called a
gauge, on [a, b] such that for every 6-fine partition P = {a = zo,z1,...,24 =
b:€1,82,- -, 8q} & € [z-1,35] C (§5—6(¢5),&5+6(&5)), of [a, b], the inequal-
ity

g .
{2 r@lod @) — g% (@)l (ke - 1t
i=1
+Zf<fa 0%V (@) - oD )/ (k- 11} 1] < e
holds. If the integral exists we write (f,g) € HSk[a,b] and

1= [ 10559,
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We define S, T;, T;, T}’ as in Definition 2.1 so that the above inequality
can equivalently be written as

q
IS(P, f,g) —I| <e or, IZE(P,xj_l,xj;fj)——I]«
3=1

or equivalently

q q
| ZTJ/(P,.’E]) + ZTJ{I(P,SCj_l,IEj) e Il < e.
j=1 j=1
Saks-Henstock Lemma (Theorem 2.11) and Cauchy’s extension theorem

(Theorem 2.12) are then immediate.

3. The HSi-integral includes the LSi-integral. We show that the
LSj-integral is included in the HSi-integral and the two integrals agree. To
this end, we state a lemma on LSy-integrability whose proof follows from that
of Theorem 7.2 of Saks ([14], p.73) utilising gk-measurability and linearity
of the LSi-integrals. (For gk-measurability and LSi-integrability we refer
Bhattacharyya and Das [1])

Lemma 3.1. If (f,g) € LSkla,b], then there exists for each € > 0, a
lower semi-continuous function h and an upper semi-continuous function ¢
in [a,b] such that

h(z) > f(z), ¢(z) < f(z) at each z € [a,b]
and

d*g(x)

dxk—l

b
(LS)) / {h(z) - £()) <3,

b k T
@5 [ (5@ - o) GEL < g3

In fact, Theorem 7.2 of Saks [14] proves the result for non-negative

function f. It is sufficient to consider f = f* + f~ where

ff=max(f,0) and f~ =max(—f,0)
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in case of function of arbitrary sign.

Theorem 3.2. If (f,g) € LSk[a,b], then (f,g) € HSk[a,b] and the two

wntegrals agree.

Proof. To each € > 0 arbitrary there exist, in view of Lemma 3.1, a

lower semi-continuous function h an upper semi-continuous function ¢ in
[a, b] such that

—00<¢d< f<h< +oo

and

b k
#5) [ ho) - 9 TEL <

We can find a positive function é on [a,b] so that for each £ € [a,b] there
exists a closed interval [u,v] containing &, g(_k_l)(v) - ggf“_l)(u) < §(¢) and

also that for all = € [u, ],

h(z) > h(§) —€ = f(§) — ¢,
P(z) < p(§) +e< f(E) +e

Indeed, if ggf_l)(f) - g(_k_l)(f) < 6(€) we have u < £ < v and if ggfc_l)@) -
gE7I() = 6(¢) we take [¢,v] or [u,¢]

Let P = {zg,2%1,-.-,2¢4;61,€2,...,&;} be any 8(gk)-fine partition of
[a,b]. We retain 6(gk)-fine partition owing to the gk-measurability concept
in the definition of the LSi-integral. Then for each j =1,2,...,¢q

LS < (LS < (LS h
® sy [ esusy [ gsasy [
and

© 050 [ bl < SE)E

<w&>[ el
Tj—1,Tj5
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Now

e, .0) - 150 [ ]

FENGE V() = g8 (@s-0))/ (k -

MQ

.
Il
—

+ £l ) - oD el - 1)t - (z5) [

[z —1,25]

f

(65D () = gD (5 )]/ (6 — 1)t - (LSy) /

(zj-1,2;)

4

<iei<xj_1,xj>|gk+<rsk> [ -0, wsing () snd 0

j=1 (zj-1,25)

< g™ V) - V@) (k — 1) + e

Hence (f, g) € HSk|a,b] and

b k z b k T
@0 [ 10555 = s [T

This proves the theorem.

That (LSy) is a proper subclass of (HS;) follows from the following

example.

Example 3.3. Let

F(z) = 2% cos 1/x2, ifz#0
=0, ifz=0,
and
g(z) = " /k\.

The gk-derivative of F' (see [1]) is the ordinary derivative which exists ev-
erywhere in [0,1]. In view of Henstock ([5], p38), (F”, ¢¢*~V)) ¢ LS[0,1]
but (Fy;,9) € HS,[0,1]. On the otherhand, since (F”,g®*~1) ¢ LS[0,1], it
follows, utilising Theorem 2.4 of Bhattacharyya and Das [1], that (F’ ok 9) &
LS¢[0,1].
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