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Abstract. We show that, for some suitably chosen con-
stant o, the one-parameter family g.(z) = a — (1 + 2?) with ¢
as the parameter has a ‘point bifurcation’ of periodic points of
some period > 3 and the bifurcation diagram of g. has ‘bubbles’
for ¢ € [0,a]. We also show that the topological entropy of g,

as a function of c, is symmetric with respect to the vertical line

¢ = % and hence is not monotonic although g. is a family of

unimodal maps with negative Schwarzian derivatives.

Let f be a continuous map from the real line R into itself. For every
positive integer n, define the n'® iterate ™ of f inductively by letting f1 = f
and f* = fof™ ! for n > 1. For z € R, we call z; a periodic point of f if
f™(zg) = zo for some positive integer m and call the smallest such positive
integer m the least period of zy with respect to f. If z¢ is a periodic
point of f, then we also call the set {f"(z¢)|n > 0} the periodic orbit
of zo with respect to f. Let f. be a one-parameter family of continuous
maps from the real line into itself. Assume that there exist two positive
numbers 6 and € such that f. has a periodic point p of some period n for
¢ = co, but no periodic point of same period in (p — &,p + ¢€) for every ¢

in (cg — 6,¢0) U (cg,co + 6). Then we say that f, has a point bifurcation of
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period n points at ¢ = ¢p. Although trivial examples of point bifurcations of
periodic points can be easily constructed, for nontrivial examples (see, for
example, [4]), the point bifurcations are usually very difficult to detect from
the practical point of view. We may not notice them even when we encounter
one such example. In this note, we show that point bifurcations of periodic
points can occur nontrivially in families of simple well-behaved maps, the
quadratic polynomials, for example, in the family ge(z) = a — (1 + z?),
where a is some suitably chosen constant and c is the parameter. This also
answers the question posed at the end of [4]. Since families of quadratic -
polynomials are often taken to model some situations in many disciplines,

the interpretation of such bifurcations can be very interesting.

Theorem 1. For every integer n > 3, let ¢, be a value in the interval
(1,2) such that the one-parameter family fc(z) = 1 — cx® has a tangent
bifurcation of periodic points of least period n at ¢ = Cn. Then the one-
parameter family g.(z) = 2/cn —c(1 +12) has a point bifurcation of periodic
points of least period n at ¢ = \/Cy-

Theorem 2. Let n > 2 be a fized integer. For V3<b<a<2V2, let

a=%- V“zz—bz and ca = § + ———"“22"’2. Assume that y is a periodic point

of the map 1 — bzz-xz with least period n. Then, for each i = 1,2, the point
z; = (a — ¢;)y is also a periodic point of the map a — ¢;(1 + x?%) with least

period n. Furthermore, if y is attracting, then so are z1 and zs.

Theorem 3. Let a be a fized number in (0,2v/2) and, for 0 < ¢ < a,
let go(z) = a—c(1+x2). Then the topological entropy of gc, as a function of
¢, is monotone increasing on [0, 2] and monotone decreasing on [5,a] and

is symmetric with respect to the vertical line c = 3.

For the proof of theorems, we shall use the notion of conjugacy. Let
h(z) be a map from the real line R into itself. We shall say that h(z)
is a homeomorphism on R if h(z) is one-to-one, onto, and both A(z) and
h=1(z) are continuous maps of R. Assume that both f(z) and g(z) are

continuous maps from R into itself. We shall say that g(x) is topologically
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conjugate to f(z) through h(z) if h(z) is a homeomorphism on R such that
(goh)(z) = (hof)(z) for all z € R. The following result is easy to prove [5]:

Lemma 1. Let f(z) and g(z) be continuous maps from R into itself
and let h(z) be a homeomorphism on R. Assume that g(z) is topologically
conjugate to f(x) through h(z). Then f(z) is topologically conjugate to g(x)
through h='(x) and the following also hold:

(1) g™oh = hof™ for all positive integers n.
(2) Ify is a periodic point of f with least period n, then h(y) is a periodic
point of g with least period n. Furthermore, if y is attracting, then
so s h(y).
Consequently, for every positive integer n, there is a one-to-one coTTESPON.-

dence between the periodic orbits of f with least period n and those of g.

The following result can be proved by direct computation or see, for

example, [5]:

Lemma 2. Let F,.(z) = 1 — ¢(a — ¢)z2, Gac(z) = a — (1 + 2?),
and let Hoo(z) = (a —c)z. Then (GocoH,)(x) = (a —c) — c[(a — ¢)222] =
(Ha,coFac)(x). In particular, ifa # c, then G, () is topologically conjugate
to Fy c(x) through the linear map H, ().

Proof of Theorem 1. By Lemma 2, G, (z) is topologically conjugate
to F, () through H, (z) = (a — ¢)z. By direct computation, F,.(z) =
1-— 943 — (c = £)*]z%. So, if, for some positive integer n, f.(z) = 1 — cz?
has a tangent bifurcation of periodic points of least period n at ¢ = Cn,
then it is clear that the one-parameter family (with ¢ as the parameter)
Fyyemel®@) =1~ [cn — (c - \/€)?|z? has a point bifurcation of periodic
points of least period n at ¢ = ,/c,. By Lemma 1, the one-parameter family
(with ¢ as the parameter) g.(z) = 2,/¢, — ¢(1 + z2) has a point bifurcation
of periodic points of least period n at ¢ = \/a . This completes the proof of

Theorem 1.

Proof of Theorem 2. By direct computation, we see that ci(a — ¢;) =
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—bg = co(a — cg). For each i = 1,2, it follows from Lemma 2 that the map

a—ci(1+2?) is topologically conjugate to the map 1—c;(a—c;)z? = 1— %;xz
through the linear map h;(z) = (a — ¢;)z. Let y be a periodic point of the
map 1 — %;ﬁ with least period n and, for each i = 1,2, let z; = (a — ¢;)y.
Then it follows from Lemma 1 that each x;, s = 1,2 is a periodic point of
the map a — ¢;(1 + z?) with least period n. Furthermore, if y is attracting,

so are z; and zo. This completes the proof of Theorem 2.

Proof of Theorem 3. By Lemfha 2, G c(z) is topologically conjugate
to Fyo(z) =1—c(a—c)z® =1— [% —(c—%)*]z®. Since topological entropy
is a topological invariant [1], it is easy to see that the topological entropy of
Ga,%_c(:r:) is equal to that of G4 g4, for all 0 < ¢ < §. This shows that the
topological entropy of g.(= G, ) is symmetric with respect to the vertical
line ¢ = §. Since the family‘ fe(z) = 1 — cx? is topologically conjugate to
the family h.(z) = cz(1 — z) and the topologically entropy of h. is known
[12] to be monotone increasing on [0,4], this, combined with the conjugacy
of G, with F, ., implies that the topological entropy of g.(= Ga.), as a
function of ¢, is monotone increasing on [0, 5]. This completes the proof of

Theorem 3.

Remarks.

(1) Since it is well-known [3] that the one-parameter family f.(z) = 1—cz?
has a tangent bifurcation of period 3 points at ¢ = %, we immediately
obtain that the one-parameter family g.(z) = v/7 — ¢(1 + 2?) has a
point bifurcation of period 3 points at ¢ = ‘/77

(2) It is well-known [2] that the one-parameter family f.(z) = 1 — cxz?
can have a tangent bifurcation of periodic points of least period n
for some integer n > 3 only when ¢ € (cw,2), where ¢, =~ 1.40115
is the accumulation point of the cascade of the-first period-doubling
bifurcations of f.(z). Actually [10], if, for every integer n > 3, k,, is the
number of distinct parameter values ¢, in (0,2) such that f.(z) has a
tangent bifurcation of periodic points of least period n at ¢ = ¢,,, then

k3=1,k4=1,k5=3,k6=4,k7:9,k8:14,k9=28,k10:4.8,
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k11 = 93, k12 = 165, and lim,_, o, k, = co. Especially, when n > 3 is
prime, we have k, = 2;;2. Consequently, for any fixed integer n > 3,
there exist k, values of a in (2\/Co0, 2v/2) = (2.36740, 2v/2) such that,

for each such a, the one-parameter family g.(z) = a — c(1 + z2) has a

point bifurcation of periodic points of least period n at ¢ = 5-
It is well-known that the period 2 points of the family f.(z) = 1 — cxz?
bifurcate.from one branch of the fixed points at ¢ = 3 and exist for all
c> %. Also, it is well-known that all periodic points of the family f.
with ¢ > 2 are unstable. So, let n > 2 be a fixed integer and let a €
(v3,2/2) be a fixed number. For b € (v/3,a), let ¢y (b) = g - @
and cz(b) = § + —‘ﬁ@. Then ¢;1(b) and c2(b) are symmetric with
respect to the point §. By Theorem 2, if y(b) is a branch of period
n points of the family 1 — %ix2, then, for each 7 = 1,2, the points
(a — ¢i(b))y(b) form a branch of period n points of the family a —
ci(b)(1+2?). Furthermore, if y(b) is attracting, then so is (a—c;(b))y(b)
for each 7 = i, 2. On the other hand, if b > 0 is increased to a, then
c1(b) is increased to § and vice versa. Also, if b > 0 is decreased from
a, then cy(b) is increased from § and vice versa. Consequently, if the
family 1— %:ﬁ (with b as the parameter) has a bifurcation of period n
points at b = by € (v/3,a) (note that, at the bifurcation point b = by,
two branches of period n points are created, one is usually called upper
branch and the other lower branch) and if these period n points exist
for all by < b < a, let y(b) denote any branch of these period n points,
then as the parameter c in the family a—c(1+2?) is varied increasingly
(by letting ¢ = c1(b) when ¢ < § and letting ¢ = c(b) when ¢ > £)

2 b2 2_p2
V2% through & to &+ Y2 %%

5—, we see that the parameter

from § —
b > 0 in the family 1— %xz is varied increasingly from by to a and then
decreasingly from a back to by and so the branch (a — ¢)y of period n
points of the family a — ¢(1 + z?) is varied from (a — c1(bg))y(bo) to
% -y(a) and then back to (a — c2(bo))y(bo). Therefore, the bifurcation

diagram of the one-parameter family g.(x) = a — ¢(1 + z?) will have
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‘bubbles’ ([13, p.231 & p.257] or see Figure 1). It is visible on the
bifurcation diagram when y(b) is attracting and invisible otherwise.
Since the bifurcation diagram of the family 1 — —x2 (to be exact,
the family 1 — bz?) is well-known, Theorem 2 gives the existence of
‘bubbles’ for the family g.(z) = a — ¢(1 + z2?). Note that, under the
linear map A7l (x) = a%cm with ¢ # a, the bifurcation diagram of
gc(z), for ¢ € (0,a), is mapped onto that of F, .(z) =1~ c(a—c)z? =

1-— [% — (¢— £)%]z? whose bifurcation diagram is obviously symmetric

- with respect to the vertical line ¢ = § (Figure 2).

The two-parameter family Q, .(z) = 3 — ax + ¢ of cubic polynomials
has been widely studied ([7,8,11]). A special case of it is the one-
parameter family ¢.(z) = Q2.(z) = 2® — 2z + ¢. When ¢ = 715,
it can be easily verified that qf/\/?-’(:c) -z = (2 - 3z + —%)(az3 -
V32?2 + =) (2! + 2¢/3217 — 621 — 16v/32™® + 1971 + 59+/3z13 —
55412 403f 11 4 133,10 4 1793f 9 634338 560\/_ 74 707336 +
ﬂ%@xs - 4%0 4 301‘/_ S 2723:2 + 70‘/_32 + 18 That is, each zero
of the polynomial 2% — /322 + ﬁ is a period 3 point of ql/\/g(x) with
multiplicity two. The computer experiments seem to suggest that the
value ¢ = % is the only value of ¢ such that the map g.(z) has period
3 points and so the one-parameter family ¢.(z) seems to have a point
bifurcation of period 3 points at ¢ = % However, we are unable
to prove it. On the other hand, it is easy to see that, for each fixed
a > 0, the map Q, .(z) has no periodic points other than fixed points
for every sufficiently large c. So, when the fixed number a > 0, is
not too large, say, when Q, ¢(z) has only a finite number of periodic
points, then as the parameter ¢ in the one-parameter family Qa,c(z)
is varied increasingly from 0, new periodic points may be born and
then eventually disappear. Therefore, the bifurcation diagram of such
one-parameter family Q,.(z) (with ¢ as the param'eter) may have
‘bubbles’. Figure 3 is one such example. Similar argument applies
to the two-parameter family T; .(z) = z* — 2% — ax + ¢. Figure 4

is one such example. Note that, in Figure 4, the left shows stable
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Figure 1. The bifurcation diagram with “bubbles” for the family g.(z)
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2. The bifurcation diagram with “bubbles” for the family f.(z) = 1— c(2.675 —¢)x?.

period 1 and period 2 attractors, the right shows ‘bubbles’, and in the
middle there seems to have a sudden appearing chaotic attractor (see
also [13, p.264]). On the other hand, if p.(z) = 2% + az? + bz + ¢
and d = :i‘f%i‘lﬁ — ¢, then it is easy to see that 1[(c,p.(z)) +
(d,pa(~2a —z))] = (=4el+18ab=18a ~%) . Thus, for fixed @ and b, the

- 54 ’
one-parameter family p.(z) = 23 + az? + bz + ¢ will have a bifurcation

diagram (on the c-z plane) which is symmetric with respect to the
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Figure 3. The bifurcation diagram with “bubbles” for the family gc(z) = z® — 2.018z +c.

1.5 — l I

0.5 —

-0.5 —

—1 }—

I |
~1.5 -1 —0.5 0 0.5 1 1.5 2

Figure 4. The bifurcation diagram for the family t.(z) = z* — z? — 1.084z + c.

. — 3 —
oint (=e +18ab—18a _ 2} 41,4 g0 may have bubbles.

(5) For one-parameter families of continuous maps, the question, whether
the topological entropy [1] varies in a monotone way with the param-
eter, is often asked. The widely studied families of quadratic polyno-
mials he(x) = cx(l — z), fo(z) = 1 — cz?, or uc(z) = ¢ — 2? [6] (they

are topologically conjugate to one another) are known to have this
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monotone property [12]. However, the family g.(z) = a — c(1 + z?)
does not although it is also a family of unimodal maps with negative

Schwarzian derivatives (see also [6, 9]).
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