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Abstract. The crossing number of a poset P is denoted
by x(P). Let P, be the poset By(rank 1 U rnak 2}, i.e., P, is
the subposet of Boolean lattice B, restricted to ranks 1 and 2.
In this paper we use Ramsey theory to show that x(P,) =3 for
large n.

1. Introduction. The crossing number of a finite poset was defined in
[5], and was used to show the existence of a 4-dimensional noncircle order 5],
a (2n + 2)-dimensional non-n-gon order [5], a 5-dimensional nonangle order
[7], and a 4-dimensional nonregular n-gon order [4]. It was shown [6] that
the crossing number is a comparability graph invariant. Some properties of
crossing numbers were derived in [3]. Let us give the definition.

For a function f, we use G(f) to denote the graph of f, i.e., G(f) =
{(t, f(t)) : t € domain of f}. Now let P = (X,<) be a poset. We use
z € P to denote z € X. For each x € P, we associate a continuous,
real-valued function f, defined on the interval [0,1]. The set.of functions
€ = {f, : ¢ € P} is called a function diagram for P, if
(1) for z,y € P with .z # y, G(f=)NG(fy) is a finite set, and f,(0) # fy(0),

£-(1) # £, (D),
(2) each time the graphs of two different functions in § intersect, they cross

each other, and
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(3) z<yin P& f.(t) < fy(t) for all t € [0,1].
The crossing number for the function diagram ¢ = {f, : x € P} is defined
by x(¢) = max{|G(f.) N G(fy)| : z,y € P,x # y}. The crossing number for
the poset P is defined by x(P) = min{x(£) : € is a function diagram for P}.
We may assume further that the graphs of any three different functions in a
function diagram have an empty intersection. It is trivial from the definition
that if Q is a subposet of a poset P, then x(Q) < x(P).

We need some notation. We use [n] to denote the set {1,2,...,n}. Let
B,, be the poset (P[n]),C), where P([n]) is the power set of [n] and the
relation C is the set inclusion. The poset B, is usually called a Boolean
lattice. Let rank ¢ denote the set {A C [n] : |A| =i}. P =(X,<)isa
poset and A C X, we use P(A) to denote the poset which is the restriction
of Pto A. If Q is a subposet of P, we write ) C P” Two distinct elements

z,y in P are denoted z||y if they are incomparable in P.
The following theorem was proved in [3].

Theorem. Letn be an integer > 4. For 2 <1 < %, let Q; = By (rank1
Urank: U rankn — 1), end S; = Bp(rank1l Urank2 U --- U rank? U rank
n—i+1Urankn—i+2U---Urankn—1). IfQ; C P C S;, then x(P) = 2i—1.

From the above Theorem, we have x(B,( rank 1U rank 2)) < 3. We
will show that this inequality is sharp. This result has been claimed in [3].

In this paper we give the proof.

2. The theorem and proof. We require the following Ramsey result
[2]. For positive integers k, 1,0, -+, and £, with k < 01, k < Ly, k < L,
there exists an integer m such that if all the k-element subsets of [n] are
divided into r classes, say class 1, class 2, ..., and class 7, then there exists
B C [n] with |B| = ¢; for some 7,1 < 7 < r, such that every k-element subset
of B is in the class i. The least n which satisfies the above property is called

a Ramsey number and is denoted by Ry ({1, s, -, ¢.).

Theorem. If P, = B,,( rank 1U rank 2), then x(P,) = 3 for large n.
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Proof. Let n be the Ramsey number R3(ni,4,4,6,6) where n; = 2R,
(2,2,8,8). We will show that x(P,) > 3. Let £ = {f, : * € P,} be an
arbitrary function diagram for P,. Assume that the graphs of any three
distinct functions in £ have an empty intersection. Let G(C) denote the
graph of a function fo where C € P,,. Without loss of generality, we assume
that f(13(0) > fr23(0) > --- > f(x3(0).

We need to show that x(£) > 3. Suppose, on the contrary, that x(¢) <
2. We can extend each function f¢ in € to be a function on the interval [0,2]
by joining the point (1, fo(1)) to the point (2, fc(0)) with a line segment.
This generates a new function diagram ¢’ for P, with x(¢') < 2 and f(1;(2) >
f123(2) > -+ > f(n}(2). So we may assume that in { we have f(;;(1) >
fro3(1) > - > fap (1)

Let 1,7,k be integers in [n] with ¢ < j < k. ‘Since {¢}||{j} in P,
G({3}) and G({j}) intersect. The graphs G({¢}) and G({j}) are as in Fig.1.
Since {1,k} > {i}, {i,k} > {k} and {3, k}||{j} in P, G({i,k}) lies above
G({z}) and G({k}), and intersects G({j}). Thus some part of G({j}) lies
above both G({i}) and G({k}). Similarly since {i,5} > {3}, {t,7} > {4}
and {7,7}||{k} in P, G({i,j}) lies above G({i}) and G({j}), and intersects
G({k}). Thus some part of G({k}) lies above both G({i}) and G({j}).
Therefore the triple {G({i}), G({j}), G({k})} is of one of the five types in
Figs 2.a, 2.b, 2.c, 2.d and 2.e.

For 7,7,k € [n] with i < j < k, consider the type of {G({i}),G({7}),
G({k})}. Apply Ramsey theory. From the definition of n = R3(n1,4,4,6,6),
there exists B C [n] such that one of the following five conditions holds.
(1) |B| = n1, and for any 4,7,k € B with i < j < k, {G({3}), G({7}),G(

{k})} is of the type of Fig. 2.a.

(2) |B| =4, and for any i,j,k € Bwithi < j <k, {G({i}),G{i}),G{k}}

is of the type of Fig. 2.b.

(3) |B| =4, and forany i,j,k € Bwithi <j <k, {G({3}),G{s}),G{k})}

is of the type of Fig. 2.c.
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GlliN< J | K

Fig. 1

(4) |B| =6, and for any 7, j,k € Bwithi < j <k, {G({1}),G{7}),G({k})}
is of the type of Fig. 2.d.
(5) |B| =6, and for any i, 4,k € Bwithi < j <k, {G({:}),G{3}),.G({k})}
is of the type of Fig. 2.e..
For simplicity of notation we let B = {1,2,3,---,|B|} in each condition.
The above five conditions of {G({i}) : ¢ € B} are shown in Figs. 3.a, 3.b,
3.c, 3.d and 3.e, respectively.

We divide these five conditions into three cases: (1) Fig. 3.b or 3.c, (2)
Fig. 3.a and (3) Fig. 3.d or 3.e. We will show that each case leads to a

contradiction.

Case 1. The condition of Fig. 3.b or 3.c.

By symmetry, it suffices to consider Fig. 3.b. Now G({1,3}) is above
G({1}),G({3}), and has some part below G({2}) and some part below
G({4}), and G({2,4}) is above G({2}) and G({4}), and has some part below

G({1}) and some part below G({3}). We can easily see that |G({1,3}) N
G({2,4})| > 3, a contradiction.

Case 2. The condition of Fig. 3.a.

We give the following notations. Suppose 1 < i < 7 < k < n;. Let
C;(i,k) and Cj(i,k) be the left part and the right part, respectively, of
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G({j}) which lie above both G({i}) and G({k}). Let C;(j) and C!(j) be
the left part and the right part, respectively, of G({i}) which lie above

G({j}). Let Ci(j,7) be the part of G({k}) which lies above G({j}). We
give an illustration of these in Fig. 4.

Let 4,7, k,£ be integers with 1 < i < j < k < £ < n;. We consider
the graphs G({3,k}) and G({j,¢}). Since G({,k}) is above G({i}), G({k}),
and has some part below G({j}), we see that G({7, k}) has some part below
(3,k). Similarly G({j,£}) has some part below Cy(j,£) or
C,.(j,£). We thus give the following terminologies.

Cj(i, k) or C_;
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(1) If G({3,k}) has some part below C;(z, k), and G({7,£}) has some part
below Gg(j,£), then we say that the pair {G({i,k}), G({j,£})} is of
type L

(2) If G({,k}) has some part below C’(i,k), and G({j,£}) has some part
below G} (j,£), then we say that the pair {G({i,k}),G({j,£})} is of
type IL

(3) If G({é,k}) has some part below C;(¢, k), and G({j,£}) has some part
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below G (j,£), then we say that the pair {G({4,k}),G({j,£})} is of
type IIL.

(4) If G({i, k}) has some part below C}(i,k), and G({j,£}) has some part
below Gi(j,£), then we say that the pair {G({¢,k}),G({j,£})} is of
type IV.

We also give some notation. Let G(A) be the graph of f4 for some

A€ P, and let C = Ci(j),C!(j),C;(i, k) or Ce(k,k). We use EL) to

denote that G(A) is above C, and % to denote that some part of G(A)

is below C.

We have two Remarks.

Remark 1. Let 1 <i < j <k << ny. If {G{i,k}),G({5,£})} is of
type I or type 11, then |G({i, k}) N G({j,£})| = 3.
Check. Due to the symmetry, we only need to consider the type I case,
ie., G({i,k}) has some part below C;({,k}), and G({j,¢}) has some part
below Cr({j,€}). Since {i,k} > {i},{s,k} > {k},{i,k}|{{} in P,, we see
that G({i,k}) is above C;(j),Cx(j,¢) and Cj(j), and has some part below
Ce(k, k). Since {7,¢} > {j},{4, £} > {£} in P,, G({4,£}) is above C;(i, k)
and Cg(k‘, k)

Thus we have

X O X U X
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where X = G({3,k}),0 = G({j, £}).

Furthermore since {j,¢} > {j}, {4,¢}|{:} in P,, G({j,¢}) has some
part below C;(j) or C;(j). Then we can see that |G({z,k}) N G({j,£})] > 3.
This completes the check of Remark 1.

Remark 2. Let 1 <41 < iy < i3 < 1q4 < i5 < tg < ny. If the pair
{G({i1,13}), G({32,%4})} and the pair {G({i2,%5}), G({is,%6})} are both of
type III (or both of type IV), then |G({i1,i3}) N G({is,i5})] > 3.

Check. Due to the symmetry, we only need to consider the type III case.
The fact that the pair G({i1,73}), G({i2,74})} is of type III implies that
G({i1,43}) has some part below C;,(i1,73). And the fact that the pair
{G({i2,%5}),G({i3,%6})} is of type III implies that G({i2,%5}) has some part
below Ci, (i2,45). Thus {G({i1,i3}), G({i2,%5})} is of type 1. Hence, by Re-
mark 1, |G({i1,43})NG({i2,45})| > 3. This completes the check of Remark 2.

Recall that n1 = 2R2(2,2,8,8) (in the beginning of the proof). Let
¢y = Ry(2,2,8,8). Thus ny = 2¢;. For every pair 4,7 with 1 <1 < j < /4,
wenote 1l i1 < j3<i14+4 <j+4 S ni, and consider the type of
{G{i,1+11}), G{J,7 +£:1})}. Apply Ramsey theory. By the definition of
{1, the following cases may happen.

Case 2.a. For some 1 <1 < j < /4y, {G({3,i+41}),G({j,7 + £1})} is of
type I or type IL

Case 2.b. There exists D C [¢;],|D| = 8 such that for every ¢,j € D,i <
7, we have {G({¢,7 +£1}), G({j,j + £1})} all of type III or all of type IV.

We comnsider these cases.

Case 2.a. By Remark 1, we have |G({i,i + £1}) NG({4,7 +£1})| > 3, a
contradiction to x(£) < 2.

Case 2.b. By symmetry, we only need to consider the type III case. For
simplicity of notation, we let D = [8]. Thusfor1 <14 < j <8, {G({i,i+/{1}),
G({j,7 + £1})} is of type III. Now for every 4,j, with 1 < ¢ < j < 4, we
note 1 <¢ < j <i+4<j+4 < n;, and consider the type of G({s,7 + 4}),
G({j,j +4})}. We distinguish two subcases.

Case 2.b.1. For some 1 <4 < j <4, {G({i,3 +4}),G({j,j +4})} is of
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type I, type II or type IIL.

Case 2.b.2. For every 1 <i < j <4, {G({i,i +4}),G({j,j +4})} is of
type IV.

We consider these cases.

Case 2.b.1. For type I case and type LI case, we have, by Remark 1,
|G({i,i +4}) NG({5,5 +4})] = 3, 2 contradiction. Consider type III case,
ie., {G({i,i +4}),G({j,j + 4})} is of type L Since 1 < j <i1+4 <38,
(G({j,j + }),G{i + 41 +4+ £,))} is also of type III. Now 1 <4 <
j<itd<ji+d<jit+h < i+ 4+ £, < ny, we have, by Remark 2,
HG({i, s +4) NG{7,7 + 4l =3, 2 contradiction.

Case 2.b.2. We consider the type of {G({1,3}),G({2,4})}. If it is of
type I or II, then by Remark 1, x(€) > 3, a contradiction. If it is of type
T11, then, combined with the fact that (G({2,2 + £1}),G({3,3 + £1})} is of
type III, this implies, by Remark 2, that x(§) > 3, since 1 <2 <3 <4<
2+ ¢, < 3+ ¢ < nq, a contradiction. If it is of type IV, then, combined
with the fact that {G({2,2 +4}),G({3,3 + 4})} is of type IV, this implies,
again by Remark 2, that x(€) > 3, a contradiction. This completes Case 2.

Case 3. Condition of Fig. 3.d. or 3.e.
By symmetry, it suffices to consider Fig. 3.d.

As shown in Fig. 5, suppose that the z-coordinates of the points where
G({2}) intersects G({3}) are t; and & where #; < tg, and that those of the
points where G({2}) intersects G({5}) are t3 and t, where t3 <t4.

We see that G({3,5}) is above G({3}) and G({5}), and has some part
below G({2}). Thus G({3,5}) has some part below G({2}) between the
lines x = @ and = = b, where a,b satisfy one of the following conditions:
(Na=0b=1t (2)a= tg, b =t3 (3) a =ty,b=1. We distinguish these
conditions.

First we put conditions (1) and (3) together; hence, G({3,5}) has some
part below G({2}) either between the lines z = 0 and z = t; or between
z =t4 and z = 1. Since G({2}) is below G({2,4}), we have that
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(i) G({3,5}) has some part below G({2,4}) either between z = 0 and

x =15 or between x = t4, and z = 1.

Furthermore since G({2,4}) is above G({2}) and has some part below
G({3}), we see that G({2,4}) has some part below G({3}) between the lines
z = t; and x = t5. For a similar reason, G({2,4}) has some part below
G({5}) between the lines = t3 and = = t4. Then since G({3}) and G({5})
are below G({3,5}), we have that
(i) G({2,4}) has some part below G({3,5}) between = = t; and = = ¢,,

and also some part below G({3,5}) between z = t5 and z = ¢,.

We see that G({3,5}) has some part below G({4}) between the lines
T =ty and z = t3. Since G({4}) is below G({2,4}) we have that
(iii) G({3,5}) has some part below G({2,4}) between z = t, and z = #,.

From (i) (ii) (iii), we have |G({3,5}) N G({2,4})| > 3, a contradiction.

Next we consider condition (2), ie., G({3,5}) has some part below
G({2}) between the lines x = t5 and z = t5. Then we have that

(i) G({3,5}) has some part below G({2,6}) between 2 = t, and z = ts.

We can see that G({2,6}) has some part below G({3}) between the
lines z = t; and = = t3, and some part below G({5}) between the lines
z = t3 and = = t4. Thus we have that
(ii) G({2,6}) has some part below G({3,5}) between z = ¢; and z = t,

and also some part below G({3,5}) between = = t3 and z = ty.
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We see that G({3,5}) has some part below G({6}) between the lines
T =14 and z = 1. Thus we have that
(iii) G({3,5}) has some part below G({2,6}) between z = t4 and z = 1.
From (i) (ii) (iii), we have |G({3,5}) N G({2,6})| > 3, a contradiction.

This completes case 3, and hence the proof of the theorem.

Remark. As pointed out by an anonymous referee, the techniques
used in {1] to prove that Ps is not a circle order, are of relevance for the area

of research studied in this paper.
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