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HOLLAND’S METHOD IN 3-DIMENSIONAL
COVARIANCE STABILIZING TRANSFORMATIONS

BY

C. C. SONG (5f44%)

Abstract. Holland’s method is extended to the 3-dimen-
sional case. A necessary and sufficient condition for the exis-
tence of solutions is derived. Also, whenever the solutions exist,
they may be obtained by solving a system of partial differential
equations of the first order.

1. Introduction. Holland (1973) extended the idea of covariance sta-
bilizing transformations from one-dimensional case to multivariate case, and
gave a necessary and sufficient condition for the existence of 2-dimensional
covariance stabilizing transformations. He also noted that his method does
not appear to generalize to the cases more than 2-dimensions. The main
reason that we are not likely to generalize Holland’s method is that it is
difficult to write a general n x n orthogonal matrix in terms of n(n —1)/2
independent parameters. However, this can be done for a 3 x 3 orthogonal
matrix. In this paper, following Holland’s idea, we extend his result to the
3-dimensional case by proving a necessary and sufficient condition for the
existence of 3-dimensional covariance stabilizing transformations. To get
through with this job, some tedious computations more complicated than

the 2-dimensional case are inevitable.

2. Review of Holland’s method. The question of whether a co-

variance stabilizing transformation exists is equivalent to solve a system of
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partial differential equations Jr - X - JE =1 for F = (f1, f2,---,fn) where
Jr is the Jacobian matrix of F, and ¥ is a given positive definite covari-
ance matrix. Notice that the function F', and the matrix ¥ are assumed to
be functions of independent variables z,y,z and the entries of ¥ are usu-
ally at least C? functions. It is also assumed that the domain of F is an
open, connected set 2. The equation Jr - X - J}; = I can be rewritten as
JE - Jp = (E“%)TE"%, in which 7% is any square root of £~1. Then the
existence of a solution to the equation is equivalent to the existence of an

1

orthogonal matrix I' such that I'Y™2 is a Jacobian matrix for some func-
tion F. Holland’s technique for solving the general covariance stabilizing
transformations problems is to find out the condition under which such an
orthogonal matrix I" will exist. As noted by Holland, it is often easier to do
so by choosing ¥-% to be a triangular matrix. In the sequel, we will focus
on the 3-dimensional case. It is noteworthy that the procedure described in
Section 3 presents a way to solving this problem in the multi-dimensional

case.

3. Necessary and sufficient condition for the existence of 3-

dimensional covariance stabilizing transformations. Let
L ayl 0 0
2-”2_ = a21 a22 0 — (a(l), a(2)’ a(s))_
as1 a3z @33

Suppose that there exists an orthogonal matrix I such that rs-z = (I‘a(l),
['a(®,Ta®) is a Jacobian matrix of some function. For the case detT' =1,
T can be expressed as a product of three matrices I'y, I's and Iy, i.e.,
I'=TyTeI'y, where

cosy siny O 1 0 0
Fy=|—siny cosyp 0}, Tog=]0 cosf sinf |,
0 0 1 0 —sinf@ cosé

cos¢p sing 0O
T'y=1—sing cos¢ 0},
0 0 1
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and 0 < 9,6,¢ < 7 are assumed to be C2-functions of z,y and z (for
details, see for example, Hsiung (1980), p.50). When detT = —1, since
det(~T') = 1 and the relation (-T')~% = J_p holds, thus, we only need
consider the situation for which detT = 1.

From the Jacobian matrix I‘Z‘%, it follows that

0 0 0 0 0 0
Wy = @) Wy = ® @) = ®

B B 9 )
T ()@ _ [\, mY_ 9 @_9 (9
g ((Bﬂcr)a (3yr>a ) ay” 8z
) ) ] )
T, il @) _ |2 @y 2 @ _Y 3
M) r (((iyr) <3zr)a ) 8z* ay"

o 15) o 03]
T . il €3 I B @Yy -2 3_Y @
T ((Bzr)a (er) ) 8wa aza ’

By taking partial derivatives on both sides of I' = I'yI'¢T'y with respec-

or,

tive to z,y and 2, we may obtain

7] o 3¢ a0
T . —_ —_ — —_ —_—
T (&cr) gr M1 g Me + 5 Ms
3] o ) o0
T . —_— P — —_— —
(2) r (af) 8yM1+ 8yM2+8yM3
0 oY J¢ a0
T . — —_ — —_— —
T <3zr) 0z M+ 0z M+ 32M3
- where
0 cosf cos ¢sin 8
M, = —cos 0 sin¢siné |,
—cos¢sinf —sin¢gsind 0
0 1 0 0 0 —sing
My=1-1 0 0}, M= 0 0 cos¢o | .
0 0 0 sin¢g —cos¢ 0
. . . T a T a
Now substitute expressions in (2) for I'T . BEF , . a—yI‘ and

r’. (‘;—I‘) into (1). Then, after a tedious simplication and rearrangement
z
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1t yields
b b 0|2 20 00 0 59 0 oy o9 207"
(3) 0 g P Oxr Ox O0r Oy Oy Oy 0z 0z Oz
=[By By B; By Bs Bs By By Bo]”
where

cos 1 0
P= jcos¢sind 0 —sing |,

singsinfd 0 cos¢

1 Oa Q320 oa a da da
B =1 11 32091 21, _An ( 21 22)

azx 0y  ayjagaszs 0z  ajjaze \ Jy Oz
L L _omaxn (day  dags a31021  Oase
2 4110920433 oz ox Q11022033 0z
a31 dazy Oasy az; Oagy
— +
ajiaze \ Oy Oz ajiazs Oz
a%l 80,32 8&33 azs 6a11
+ - - ’
aj1azeass \ 0z Oy azazz Oz
B 1 asjaze [ Oaz;  Oagg a3,  Oax
g == — — —
2 4311492033 0z ozr a11Qa990a33 oz

as1 8a31 8(132) as1 6(121 a91G31 6&32 60,33
_ + —
oz oy

ayiazy \ Oy Ox ai1azz Oz a11022033

1 Ba a da da
L% _an ( 31 33>,
a3 0z = apiass

oz ox

B _1| a3 (das  dass L % day;y 1 (Oa3z; Oasy
3 2 92033 0z oz Q92033 0z a929 8y oz

+_1__5’6121 L _0a1 (3a32 B 31133)]

ass 0z Q22033 0z 8y
1 60,21 80,22 1 0%2 8a31 60,33
By =— S -
a1 \ Oy oz 2 a11G92a33 \ Oz oz
as1a3z2 Oagy aso (3(131 _ 3032) _ a3z Oay
a11G32033 Oz ayiazy \ Oy Oz ajiazz Oz

asziazy [Oagy  Oass azy Oagy
— + R
a11@22a33 \ 0z Oy ajjasz 0z
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B _1] a3 (Baszy dag Q3 Oay + 1 (daz; Ddass
) aii1agz \ Oz oz a1i1a33 Oz a1 \ Oy oz ‘

azy Oag 4 %31 (3032 3033)] __a21032 (3032 6a33>

aijazz 0z 411033

3z oy
Bs :i Oagg 4 a2 (3(132 8a33)’

ass oz a220a33 Oz - 8y

a1i1@290a33 \ 0z Jy

B _1[ ass (3(131 3033) a1 Oagy
L === _ ~

2 Q11099 Oz o a11a92 Oz
4 03 daz 3(132) + 1 dan 4 0 dazy  Oass
a11Q099 8y ozr ail 0z a11099 9z 8y ’
Be — 1 (Oaz  dass a21 [Oazs  Oazz
8 Tap \ 9z Ox a11a99 \ Oz oy )’
1 8(132 8(1.33)
By =— _
i 49292 ( 82: 6y ’

From (3) it follows immediately that

oy a¢ 9017 T [y 8¢ 9017 T
o Mo o] ~mmnl” P[RR o a
4
o ¢ 9017 T
or
o 8¢ 0917 r [0y 8¢ 9017 T
_ L = _— = - 4 5 g
oxr O0x Oz Q[Bl By B3] dy dy 9y ‘Q[B B B]
(5) T
oY 8¢ 00
in which
0 cos ¢ sin ¢
sin 8 sin 8
Q=P l= 1 _cosfcos¢d  cosfsing
sin 8 sin @
0 —sin¢ cos ¢

Now differentiate both sides of the first equation in (4) with respect to

¥, and the second equation with respect to z, we may have
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$p ___S] oy 9¢ 09 +P oy 8¢ 99 |7
(— ) 8r 8z dz| ~ ~ |9ydx dydx Oydx

)
3 [831 8B, 333}

(6)

oy dy dy
and
T 2 2 2 T
(2ns s [22 26 277, ol 20 2 220 |
@) ox oz dy Oy Oy 0xdy 0xdy Ox0ly
_ [9B4 055 95"
|8z Or Oz
where

( 0 0 0 —sinf 0 O
R=| —sin¢gsind 0 —cos¢ |, S=|cosgpcosé¢ 0 O].
\ cos¢sinfd 0 —sing sin¢gcosd 0 O
oy 0¢ 90 oY 9¢ 8917
Bz’ Oz 8:):] and [3y oy =0
into (6) and (7), then, substracting the resulting equation of (7) from that
of (6), it gives that

3y 0%y 3¢ 024 %0 _ %6
dydxr ~ 8zdy’ Oydxr  Oxdy’ Oydr  Oxdy’

Substituting, res.pectively, l

if and only if

(0 2o 1 (0 S

8
®) B PB1 0By 0B; 0Bs 0B; _ 636]

Jy ox 0y Ox Oy ox

d¢ 96 ¢
Now, first we obtain 3y 3y o and 3— from (5). Then, substitute

these into (8), and, finally, we are given

0 0
-@[Bl 32 B3]T - $[34 B5 BG]T = [B4 Bs BG]T X [B]_ B2 Bg]T

(9)

where [By, Bs, Bs|T x [B1, Bs, B3]T = [B3Bs — B2 Be, By B — B3 By, By By —
B Bs)T is the usual cross product of two vectors. Consequently,

Fy % o*¢ 8% 9’0 9%

dydx ~ Oxdy’ Oydx Oxdy’ Oydxr  Oxdy
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if, and only if, (9) holds. By the analogous argument, we may also drive

g 0

(10) =-[Ba Bs Bg]" - @[37 Bs By|" = [By Bs Bo)” x [By Bs Be)”
and

a T OJ T T T
(11) a[Bl B; Bs]” — £[37 Bg Bo|” = [By Bs By|” x [B; By Bs]

are, respectively, necessary and sufficient conditions for

Py B ¢ 0%¢ 9% _ 0%
028y  Oydz’ 020y  9ydz’ 820y  Oydz’

and
0% _ 0%y 3% _ ¢ 0% _ %0
820  0x0z’ 0z0x  0x8z’ 920r  Ozdz
Hence, we have finished the proof of the “only if” part of the following
theorem.

Theorem 1. There ezists an orthogonal matriz T' such that TS™% is
a Jacobian matriz if, and only if, (9), (10) and (11) hold.

Notice that we may still obtain the same resulting equations (9), (10),
(11) by directly working with (5). The reason we did not do so is, beside
products, quotients of cosine and sine functions also get involved in Q, and
when taking partial derivatives, the computations will certainly becomes
much more complicated. '

To complete the proof of “if” part, we need to use the following well-
known theorem, namely, the existence and uniqueness theorem for system of
partial differential equations of the first order (see Hsiung (1980), p. 309). In
fact we only have to use this theorem to guarantee the existence of solutions

for our problem.

Theorem 2. Consider a system of partial differential equations of the

form

oy* m n
(12) Ei—;=f§(ul,u2,...,u ;y17y27"'7y )a kzla"-an;azl,“'ama
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where the function f* are of class C? and satisfy the integrability conditions

82 yk 32 yk
oucuP  OuPdu’

k=1,...,n; o,0=1,...,m,

in some neighborhood of (ud,...,uT;0,...,0) € E™ x E™. Then there erist
neighborhoods U of the origin in E™ and V of (ug,...,ul") in E™ such
that for any (yd,...,y3) € u and all (ul,... ,u™) € V there exists a unique
solution y*(ul,...,u™),i=1,...,n, of (12), satisfying Y (ud, ..., ul) =i,

1=1,...,n.

Now suppose (9), (10), and (11) hold. Obviously, (5) forms a system
of partial differential equations of the first order, and satisfies the integra-
bility conditions (9), (10), (11). Therefore, by Theorem 2, there exists a
local solution (¢, ¢,0) for (5). Then it follows that locally there exists an
orthogonal matrix I' such that I'S~% is a Jacobian matrix. Hence for each
point (z,y,z) in 2 we have a local solution F satisfying Jr - - JE = I.

Next we shall describe how to construct a global covariance stabilizing
transformation by connecting the local solutions together. First choose and
fix an arbitrary point po = (o, yo, 20) in Q. Assume at py = (0, 0, 20) We
have a local solution Fy in the neighborhood B(pg), an open ball with center
at po, of po. Let p = (z,y,2) be any other point in Q. To obtain a global
solution we shall define a local solution at p = (z,y,2) in the following
manner. Since {2 is open and connected, we can join py = (%o, Yo, 20) to
p = (z,y,z) by a path in Q. Cover the path by a finite nmber of open balls
B(po), B(p1),-- -, B(pn) satisfying the following requirements.

(i) p=(z,9,2) € B(pn)-

(i) Bp:;)NB(pi—1) #0,Vi=1,...,n.
(iii) At p; there exists a local solution F; on B(p;), Vi=1,...,n.
(iv) F;_1 = F; on B(p;) N B(p;—1), Vi=1,...,n.
Notice that since covariance stabilizing transformations are unique up to an
arbitrary additive constant and an arbitrary constant orthogonal transfor-
mation, we may modify Fy, F, ..., F, to meet the requirement (iv).

Then we define the local solution at p to be F,,. Proceed in this manner,
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starting from a fix point py = (%0,90,20), we may define a global solution,
say F, with value F,(z,y,2) at the point p = (z,y,2), ie., F(z,y, z) =
Fo(z,y,2).

Still we must show that the global solution, described and obtained as
before, is independent of the choice of the path connecting py = (2, yo, 20)
to p = (z,y,2) and the open covering. Suppose B(py) = B(py), B(p)),...,
‘B(p;,), and Fo, F{,...,F’ are alternative open covering and local solutions
satisfying the requirements (i), (ii), (iii), and (iv).

Now define functions F', F’ on UizoB(p:) and U™ B(p}), respectively,
as follows: F(r,s,t) = F(r,s,t) whenever (r,5,t) € B(p;),and F'(r,s,t) =
F(r,s,t) whenever (r,s,t) € B (p;). It follows that F and F" are solutions on
UroB(ps) and UL B(pl). Hence ' = TF-+c on (U B(p:)) N (U o B(ol)
where I" is a constant orthogonal matrix and ¢ is a constant vector. Note
that B(po) C (U2, B(p;)) N (UZoB(p})). Since |Jp| # 0, then F is an open
mapping on B(py), and there exists an open ball D C F(B(pg)) such that
g=Iq+cforall ¢ € D. It is not difficult to show that I' = I, the identity
matrix, and ¢ = 0. Therefore F' = F’ on (Uf_eB(ps)) N (U B(ph)), and
this gives F,(z,y,2) = F/, (z,y,2). We not only have finished the proof of
Theorem 1, but also shown that under conditions (9), (10), and (11) a global

solution exists.

4. Example. Now we give the following simple example to illustrate

the existence of covariance stabilizing transformation. Let

2_1 [ 0,11(-'17) a21(-'17) a31(x) ] [ a11($) 0 0 ]

0 axn(y) as(y) a21(z) axn(y) 0
0 0 azs(z) a31(x) a32(y) ass(2)
a}1(z) + 0}, (z) + a3, () a21(%)azz (y)+ az1(z)asz (y)  az1(z)ass(z)
a21(7)azs (y)+ as1 (x)asz (y) a35(y) + a3y (y) a32(y)ass(z)
a31(z)ass(2) a32(y)ass(z) a3 (2)
where a11,a91,0a31, a2, a39,a33 are C2-functions, and (z,y,2) is restricted
so that a11(z) > 0, as2(y) > 0, ass(z) > 0. Then ¥ is positive definite. In
this case, B; =0, Vi=1,2,...,9, and obviously conditions (9), (10), and

(11) hold. Thus, by Theorem 1, covariance stabilizing transformations exist
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for this example.
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