Lie-Cartan differential invariants and Poincaré-Moser normal forms: Conflunces
by
Zhangchi Chen
Wei Guo Foo
Joël Merker
The-Anh Ta
Vol. 18 No. 2 (2023) P.133~P.184
DOI: | https://doi.org/10.21915/BIMAS.2023202 |
| 10.21915/BIMAS.2023202 |
ABSTRACT
We study $2$-nondegenerate constant Levi rank $1$ rigid $\mathcal{C}^\omega$ hypersurfaces $M^5 \subset \mathbb{ C}^3$ with $0 \in M^5$ given in coordinates $(z, \zeta, w = u + iv)$ as $u = F\big(z,\zeta,\overline{z},\overline{\zeta}\big)$ under rigid biholomorphisms:
\[
(z,\zeta,w)
\,\,\,\longmapsto\,\,\,
\big(
f(z,\zeta),\,
g(z,\zeta),\,
\rho\,w+h(z,\zeta)
\big)
\,\,=:\,\,
(z',\zeta',w').
\]
In a previous article, a Cartan-type reduction to an $\{e\}$-structure was done by Foo-Merker-Ta. Three relative invariants appeared: V$_0$, I$_0$ (primary) and Q$_0$ (derived).
On the other hand, a Poincar$\acute{e}$-Moser complete normal form:
\[
u
\,=\,
\tfrac{z\overline{z}+\frac{1}{2}\,z^2\overline{\zeta}
+\frac{1}{2}\,\overline{z}^2\zeta}{
1-\zeta\overline{\zeta}}
+
\sum_{a,b,c,d\in\Bbb{N}
\atop
a+c\geqslant 3}\,
G_{a,b,c,d}
\big(F_{{\scriptscriptstyle{\bullet}}}\big)\,
z^a\zeta^b\overline{z}^c\overline{\zeta}^d,
\]
with $0 = G_{a,b,0,0} = G_{a,b,1,0} = G_{a,b,2,0}$ and $0 = G_{3,0,0,1} = {\rm Im}\, G_{1,1,3,0}$,
has been recently obtained by the authors.
The model $u =
\frac{z\overline{z}+\frac{1}{2}\,z^2\overline{\zeta}
+\frac{1}{2}\,\overline{z}^2\zeta}{
1-\zeta\overline{\zeta}}$ is equivalent to the future light cone
$({\rm Im}\, z_0)^2 = ({\rm Im}\,z_1)^2 + ({\rm Im}\,z_2)^2$ with
${\rm Im}\,z_0 > 0$ deeply investigated by Sergeev.
In order to compare the two approaches,
we compute (relative) invariants
at
every point, not only at the central point,
and we 'discover' the proportionalities:
\[
G_{0, 1, 4, 0}
\big(F_{{\scriptscriptstyle{\bullet}}}\big)
\,\propto\,
V_0,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
G_{0, 2, 3, 0}
\big(F_{{\scriptscriptstyle{\bullet}}}\big)
\,\propto\,
I_0,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
{\rm Re}\, G_{1,1,3,0}
\big(F_{{\scriptscriptstyle{\bullet}}}\big)
\,\propto\,
Q_0.
\]
With this, a bridge
Poincar$\acute{e}$ $\longleftrightarrow$ Cartan is constructed.
In terms of $F$, the numerators of V$_0$, I$_0$, Q$_0$ incorporate $11$, $52$, $824$ differential monomials.
KEYWORDS
Normal forms, power series, explicit differential invariants, Levi degenerate CR manifolds, rigid CR manifolds
MATHEMATICAL SUBJECT CLASSIFICATION 2010
Primary: 32V40, 58K50, 32V35, 53A55, 53-08. Secondary: 58A15, 32A05, 53A07, 53B25, 22E05, 22E60, 58A30
MILESTONES
Received: 2022-10-18
Revised :
Accepted:
Download Full Content