Kostka-Shoji Polynomials and Lusztig's Convolution Diagram
by
Michael Finkelberg
Andrei Ionov
Vol. 13 No. 1 (2018) P.31~P.42
DOI: | https://doi.org/10.21915/BIMAS.2018102 |
| 10.21915/BIMAS.2018102 |
ABSTRACT
We propose an $r$-variable version of Kostka-Shoji polynomials
$K^{-}_{\lambda\mu}$ for $r$-multipartitions $\lambda,\mu$. Our version has
positive integral coefficients (for regular $\mu$, and conjecturally
for arbitrary $\mu$) and encodes the graded multiplicities in the
space of global sections of a line bundle over Lusztig's iterated
convolution diagram for the cyclic quiver $\tilde{A}_{r-1}$.
KEYWORDS
Kostka-Shoji polynomials, cyclic quiver, convolution diagram, Frobenius splitting, affine flag variety, Bott-Samelson-Demazure-Hansen resolution.
MATHEMATICAL SUBJECT CLASSIFICATION 2010
Primary: 05E15 (14M15, 13A35).
MILESTONES
Received: 2016-05-08
Revised : 2016-09-12
Accepted: 2016-09-14
Download Full Content