上期徵答問題

優勝名單

11201 優勝名單

優良:胡豐榮(台中師專)

問題詳解

11201 「用鴿籠原理解數論問題」解答(孫 鎮藥提供)

這個問題分爲六部分,從簡單到難,事實上只要回答(已)部份,找出 g (m , n)就回答了所有其他部份。問題所以這樣安排,是希望讀者從特例的經驗,一步步走到最後總答案,因此我們的解答也就不厭其煩,從簡單的寫起。

從另一個角度來看,先會解答簡單情況以後,下一步才有可能去問更難的問題。事實上當我寄出這個問題時,正在授課中討論(T),這本是Brualdi書中的一個習題,回答了這個習題以後,很自然的,就問了成和问這樣的問題

。很高興可以告訴大家的是,最近這些問題的完整答案都已寫出來,由逢甲大學郝新生教授和我發表在ORDER 3 (1987) 355—357,文章名稱爲The minimum of the antichains in the factor poset。(請參見「附錄」)

甲假設 a_1 , … , a_{101} 是從 1 , … , 200 中 選出來的 101 個數 , 將他們寫成

$$a_1 = 2^{n_1} b_1$$
 $a_2 = 2^{n_2} b_2$
 \vdots
 $a_{101} = 2^{n_{101}} b_{101}$ (共101個)

其中各 n_i 爲非負整數,各 b_i 爲奇數,這些奇數(共 101 個)必是從 1,3,5,……, 199 這 100個數目中選出來的,所以由鴿籠原理,必存在某個 $b_i = b_j$ (其中 $i \neq j$),假設 $n_i \leq n_j$,我們可以取 $x = a_i = 2^{n_i}b_i$,, $y = a_j = 2^{n_j}b_j$,則x整除y。

[[[n+1]] [n+2]] [[] [[] [] [] [[] [] [] [[] [] [[] [[] [] [[] [[] [] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[] [[[] [[] [[[] [[] [

(T)假設 *a*₁ , ······ , *a*₁₀₀ 是從 1 , ······· , 200 中選出來的 100 個數 , 將它們寫成

$$a_2 = 2^{n_1} \cdot b_2$$

$$\vdots$$

$$\vdots$$

$$a_{100} = 2^{n_{100}} b_{100}$$

其中各 n_i 為負整數,各 b_i 為奇數,如果有某個 $b_i = b_j$ (其中 $i \neq j$),則如(用)所述,可得某x 整除y。所以可以假設這100個奇數 b_i 均相異,也就是 $1,3,\dots,199$ 全部出現在這些 b_i 中,且每一個恰好出現一次。為簡化計,乾脆假設我們選出來的100 個數是

$$c_1 = 2^{m_1} \cdot 1$$
 $c_3 = 2^{m_3} \cdot 1$

$$\vdots$$

$$c_{199} = 2^{m_{199}} \cdot 199$$

 $m_3 \geq 3$ 可得 $c_3 \geq 24$; $m_5 \geq 3$ 可得 $c_5 \geq 40$; $m_7 \geq 3$ 可得 $c_7 \geq 56$; $m_9 \geq 2$ 可得 $c_9 \geq 36$; $m_{11} \geq 2$ 可得 $c_{11} \geq 44$; $m_{13} \geq 2$ 可得 $c_{13} \geq 52$; $m_{15} \geq 2$ 可得 $c_{15} \geq 60$; $c_i \geq 17$ 對於 $i \geq 17$ 。
這和存在某個 $c_i < 16$ 矛盾。所以證明完畢。

 $m_1 > 4$ 可得 $c_1 > 16$;

成和同的證明只是將上述的方法寫得更一般化就可,有興趣的讀者可以參考我們在 ORDER上的文章。在這裡我只將答案寫出來

ORDER上的文章。在這裡我只將答案寫出來 ,證明省略。

定理 $g(m,n)=2^{i}$,對於 $i \leq log_{3}m$, $1+s(m,i)\leq n\leq 1+s(m,i)$ 恒成立,其中 s(m,i) 是滿足 $m/3^{i} < x \leq m$ 的奇數個數。

「例〕
$$m = 200$$
 時 , $log_3 m = 4.82 \cdots$
 $s(m, 1) = 67$, $g(m, n) = 2$
其中 $2 \le n \le 68$;
 $s(m, 2) = 89$, $g(m, n) = 4$
其中 $69 \le n \le 90$,
 $s(m, 3) = 96$, $g(m, n) = 8$
其中 $91 \le n \le 97$;
 $s(m, 4) = 99$, $g(m, n) = 16$
其中 $98 \le n \le 100$ 。

附錄:

Order **3** (1987), 355–357. © 1987 by D. Reidel Publishing Company 355

The Minimum of the Antichains in the Factor Poset

GERARD J. CHANG*

Department of Mathematics, National Central University, Chung-Li 32054, Taiwan, Republic of China

Institute of Information Science, Academia Sinica, Nankang 11529, Taipei, Taiwan, Republic of China

and

FRED H. HAO

Department of Applied Mathematics, Feng Chia University, Tai-Chung, Taiwan, Republic of China

Communicated by P. Héll

(Received: 20 August 1986; accepted: 10 December 1986)

Abstract. Denote g(m, n) the minimum of min A, where A is a subset of $\{1, 2, ..., m\}$ of size n and there do not exist two distinct x and y in A such that x divides y. We use a method of poset to prove that $g(m, n) = 2^i$ for positive integer $i \le \log_3 m$ and $1 + s(m, i - 1) < n \le 1 + s(m, i)$, where s(m, i) is the number of odd integers x such that $m/3^i < x \le m$.

AMS subject classifications (1980). 05App, 06A10.

Key words. Factor poset, antichain, depth.

1. Introduction

Consider the poset $N(m) = \{1, 2, ..., m\}$ in which $x \propto y$ if and only if x is a proper factor of y; we call this poset a factor poset. A trivial linear extension of the factor poset N(m) is to view x < y as x less than y in the usual sense of integers. In this paper, the 'minimum' of a subset A of the factor poset N(m) always means the minimum of A in this linear extension.

It is a well-known application of the pigeonhole principle to prove that the factor poset N(2n) has no antichain of size n+1. A slightly more complicated argument proves that the factor poset N(200) has no antichain of size 100 containing an element less than 16 in the usual sense (see page 22 of [1]). Let g(m, n) be the minimum of the minimal element of an antichain of size n in the factor poset N(m). The above results are then equivalent to (i) g(2n, k) is

^{*} Research was supported by National Science Council of Republic of China under Grant NSC74-0201-M008d-02.

defined only for $k \le n$ and (ii) $g(200, 100) \ge 16$. The purpose of this paper is to generalize these results. g(m, 1) = 1 is clear. In general we have

MAIN THEOREM. $g(m, n) = 2^i$ for positive integer $i \le \log_3 m$ and $1 + s(m, i - 1) < n \le 1 + s(m, i)$, where s(m, i) is the number of odd integers x such that $m/3^i < x \le m$.

2. The Proof of Main Theorem

The set O(m) of all odd numbers in N(m) induces a subposet of N(m). Denote d the depth function of O(m), i.e., for any $x \in O(m)$, d(x) is the maximum r such that there exist $x = x_r \propto x_{r-1} \propto \cdots \propto x_1$ in O(m). It is easy to see that $3^{d(x)-1}x \le m < 3^{d(x)}x$; consequently, $d(x) = 1 + \lfloor \log_3(m/x) \rfloor$. Denote L(m, i) the set of all elements of O(m) whose depth is no more than i. Then $L(m, i) = \{x \in O(m): m < 3^i x\}$ and has size $s(m, i) = \lceil m/2 \rceil - \lceil \lfloor m/3^i \rfloor / 2 \rceil$, where $\lceil x \rceil$ is the smallest integer greater than or equal to x and $\lfloor x \rfloor$ the largest integer less than or equal to x.

LEMMA 1. If A is an antichain of the factor poset N(m), then for any two distinct elements $2^r x$ and $2^s y$ of A, where $x, y \in O(m)$, we have (i) $x \neq y$ and (ii) $x \propto y$ implies r > s. Consequently, $A^* = \{x \in O(m): 2^r x \in A \text{ for some } r\}$ has the same size as A.

LEMMA 2. If an antichain A of the factor poset N(m) contains the element 2^i with $i \ge 0$, then $|A| \le 1 + s(m, i)$.

Proof. The case of i=0 is trivial, so we can assume that $i \ge 1$. By Lemma 1, every $x=2^ry \in A'=A-\{2^i\}$ with $y \in O(m)$ must have r < i and $y \ne 1$. Define $f: A' \to L(m,i)$ by $f(x)=3^{\max\{0,d(y)-r-1\}}y$. Since $d(a)=1+\lfloor \log_3(m/a)\rfloor$ for any $a \in O(m)$, we have

$$d(f(x)) = d(y) - \max\{0, d(y) - r - 1\} = \min\{d(y), r + 1\} \le i,$$

which proves that f is well-defined.

Next we will show that f is one to one and so the lemma holds. Suppose there exist two distinct elements $x = 2^r y$ and $z = 2^s w$, where y and w are in O(m), such that f(x) = f(z). By the definition of f we know that

$$3^{\max\{0, d(y)-r-1\}} y = 3^{\max\{0, d(w)-s-1\}} w.$$

Without loss of generality, we have that $y \propto w$ and then $\max\{0, d(y) - r - 1\} > \max\{0, d(w) - s - 1\}$. The former implies r > s by Lemma 1 and the latter implies d(y) > r + 1. So

$$d(f(x)) = \min\{d(y), r+1\}$$

= r+1 > s+1 \ge \min\{d(w), s+1\} = d(f(z)),

which contradicts f(x) = f(z).

ANTICHAINS IN THE FACTOR POSET

LEMMA 3. If an antichain A of the factor poset N(m) contains $x < 2^{i+1}$ for some i, then $|A| \le 1 + s(m, i)$.

Proof. Suppose $x = 2^r y$, where $y \in O(m)$. Consider $B = \{z \in N(n) : zy \in A\}$, where $n = \lfloor m/y \rfloor$. It is clear that B is an antichain of N(n). Since $2^r \in B$, by Lemma 2, $|B| \le 1 + s(n, r)$. Let $A^* \subseteq O(m)$ and $B^* \subseteq O(n)$ be the sets corresponding to A and B, respectively, as in Lemma 1. Then $|A^*| = |A|$ and $|B^*| = |B|$. Also

$$|O(m)| - |A^*| \geqslant |O(n)| - |B^*|$$

$$\geqslant \lceil n/2 \rceil - 1 - s(n, r) = \lceil \lfloor n/3^r \rfloor / 2 \rceil - 1.$$

Note that $3^{i-r} \ge 2^{i+1-r} - 1 \ge y$, so $m/(y3^r) \ge m/3^i$ and then

$$|A| = |A^*| \le \lceil m/2 \rceil - \lceil \lfloor n/3^r \rfloor / 2 \rceil + 1$$

$$\le \lceil m/2 \rceil - \lceil \lfloor m/3^i \rfloor / 2 \rceil + 1 = 1 + s(m, i).$$

Proof of Main Theorem. Let A be an antichain of size n in the factor poset N(m) such that g(m, n) is the minimum of A. Suppose $g(m, n) < 2^i$. By Lemma 3, we have $n = |A| \le 1 + s(m, i - 1)$, which is impossible. Thus $g(m, n) \ge 2^i$.

On the other hand, since $n \le 1 + s(m, i)$, we can choose a subset A' of L(m, i) of size n - 1. Note that $i \le \log_3 m < d(1)$ and $1 \notin L(m, i)$. Let $A = \{2^i\} \cup \{2^{d(x)-1}x : x \in A'\}$. It is clear that A is an antichain of size n in N(m). For any $x \in A'$ we have

$$3^{d(1)-1} \le m < 3^{d(x)}x$$
.

Then

$$3^{d(1)-d(x)-1} < x$$
.

So

$$2^{d(1)-d(x)} \le 3^{d(1)-d(x)-1} + 1 \le x$$
.

Therefore

$$2^{i} \le 2^{d(1)-1} \le 2^{d(x)-1}x$$
.

This proves that min $A = 2^i$ and then $g(m, n) \le 2^i$. So $g(m, n) = 2^i$.

EXAMPLE. m = 200, |O(m)| = 100, $\log_3 200 = 4.82...$

$$s(m, 1) = 67, g(m, n) = 2$$
 for $2 \le n \le 68,$
 $s(m, 2) = 89, g(m, n) = 4$ for $69 \le n \le 90,$

$$s(m, 3) = 96, g(m, n) = 8$$
 for $91 \le n \le 97$,

$$s(m, 4) = 99, g(m, n) = 16$$
 for $98 \le n \le 100$,

Reference

1. R. A. Brualdi (1977) Introductory Combinatorics, North-Holland, New York, Oxford, Amsterdam.