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Abstract. Denote g(m, n) the minimum of min 4, where 4 is a subset of {1,2,...,m} of size n and
there do not exist two distinct x and y in 4 such that x divides y. We use a method of poset to prove
that g(m, n)=2' for positive integer i <logym and 1 +s(m,i—1)<n<1+s(m, i), where s(m, i) is
the number of odd integers x such that m/3' < x < m.
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1. Introduction

Consider the poset N(m)=1{1,2,..., m} in which xacy if and only if x is a
proper factor of y; we call this poset a factor poset. A trivial linear extension
of the factor poset N(m) is to view x < y as x less than y in the usual sense of
integers. In this paper, the ‘minimum’ of a subset 4 of the factor poset N(m)
always means the minimum of 4 in this linear extension.

It is a well-known application of the pigeonhole principle to prove that the
factor poset N(2n) has no antichain of size n+ 1. A slightly more complicated
argument proves that the factor poset N(200) has no antichain of size 100 con-
taining an element less than 16 in the usual sense (see page 22 of [1]). Let
g(m, n) be the minimum of the minimal element of an antichain of size # in
the factor poset N(m). The above results are then equivalent to (i) g(2n, k) is

* Research was supported by National Science Council of Republic of China under Grant NSC74-
0201-M008d-02.




WA

33

356 GERARD J. CHANG AND FRED H. HAO

defined only for k< n and (ii) g(200, 100) > 16. The purpose of this paper is
to generalize these results. g(m, 1) = 1 is clear. In general we have

MAIN THEOREM. g(m,n)=2" for positive integer i<logzm and 1+
s(myi— 1)< n< 1 +s(m, 1), where s(m, i) is the number of odd integers x such
that m/3' < x < m.

2. The Proof of Main Theorem

The set O(m) of all odd numbers in N(m) induces a subposet of N(m). Denote
d the depth function of O(m), i.e., for any xe O(m), d(x) is the maximum r
such that there exist x = x,0c x,_joc---ocx; in O(m). It is easy to see that 3909~ 1x <
m < 390 . consequently, d(x)=1+ llogz(m/x)]. Denote L(m,i) the set of
all elements of O(m) whose depth is no more than i. Then L(m, i) = {x € O(m):
m < 3'x} and has size s(m, iy=[m/21=[Lm/37]/2], where [x] is the smallest
integer greater than or equal to x and |x] the largest integer less than or equal
to x.

LEMMA 1. If A is an antichain of the factor poset N(m), then for any two
distinct elements 2"x and 25y of A, where x, ye O(m), we have (i) x # y and (ii)
xocy implies r>s. Consequently, A* = {xe O(m):2"xe A for some r} has the
same size as A.

LEMMA 2. If an antichain A of the factor poset N(m) contains the element
2 withi>0, then |AI< 1 + s(m, i).

Proof. The case of i =0 is trivial, so we can assume that i > 1. By Lemma 1,
every x=2"ye A’= A — {27} with ye O(m) must have r<i and y+# 1. Define f:
A’— L(m, i) by f(x)=3"x10.d0=r=1}y, Qince d(a)= 1+ llogs(m/a)| for any
a e O(m), we have

d(f(x)) = d(y) — max{0, d(y) — r — 1} = min{d(p), r + 1} <,

which proves that fis well-defined.

Next we will show that f is one to one and so the lemma holds. Suppose
there exist two distinct elements x=2"y and z=2°w, where y and w are in
O(m), such that f(x) = f(z). By the definition of f we know that

3max{0, d(y)—r— l}y = 3max{0, d(w)—s—1} w.

Without loss of generality, we have that yocw and then max{0, d(y) —r— 1} >
max{0, d(w) — s — 1}. The former implies r>s by Lemma 1 and the latter
implies d(y) >r+ 1. So

d(f(x)) = min{d(y), r+ 1}
=r+41>s+1>min{d(w), s+ 1} = d(f(2)),
which contradicts f(x) = f(z).
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LEMMA 3. If an antichain A of the factor poset N(m) contains x<2'*! for
some i, then |Al< 1 + s(m, i).

Proof. Suppose x=2"y, where ye O(m). Consider B={ze N(n): zye 4},
where n=|m/y]. It is‘'clear that B is an antichain of N(n). Since 2" € B, by
Lemma 2, |BI<1+5(n,r). Let A*< O(m) and B* < O(n) be the sets corre-
sponding to 4 and B, respectively, as in Lemma 1. Then | 4*| =14 and |B*|=
[Bl. Also :

[o(m)| =1 4*|=l0n)|—|B*|
>[n/2]1—=1=s(n,r)=[ln/371/2]1- 1.
Note that 3=">2+'="_ | >y, so m/(y3") > m/3' and then
lal=14*<[m/2]1=Tln/371721+ 1
<[mr21=[lm/34/21+ 1 =1 4 s(m, i).

Proof of Main Theorem. Let A be an antichain of size n in the' factor poset
N(m) such that g(m, n) is the minimum of 4. Suppose g(m, n) < 2'. By Lemma
3, we have n=14|< 1 4+ s(m, i — 1), which is impossible. Thus g(m, n) = 2.

On the other hand, since n< 1+ s(m, i), we can choose a subset A{ of
L(m, i) of size n — 1. Note that i<logzm < d(1) and 1 ¢ L(m, ). Let A= {27}u

{240=1x:xe A’}. It is clear that 4 is an antichain of size n in N(m). For any
x € A’ we have '

34M-1 < « 39y,
Then

3d(—d)-1
So

2d(=d(x) ¢ 3AD—d@~1 | | < .
Therefore

212401 < 21y,
This proves that min 4 = 2/ and then g(m, n) <2'. So g(m, n) =2".
EXAMPLE. m =200, |0(m)|= 100, log; 200 = 4.82....

s(m, 1)=67, g(m,n)=2 for 2<n<68,
s(m,2)=289,g(m,n)=4 for 69 <n<90,
s(m,3)=96,g(m,n)=8 for91<n<97,
s(m,4)=99, g(m,n)=16 for98 <n< 100,
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