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Abstract

Recently, Pinelis (2022) gave careful consideration that large deviations of the sums of

independent and identically distributed random variables with power-like tails of index α ∈

(0, 2) are mainly due to just one of the summands. In this article, we show a corresponding

result for α = 0, which is constructed by super-heavy tailed distributions. The proof uses a

property of slow variation investigated by Bojanic and Seneta (1971). It is applied to not

only the log-Pareto distribution but also the distribution of the super-Petersburg game.

1. Introduction

1.1. Background

Throughout the article, let X,X1,X2, . . . be independent and identically

distributed random variables, whose common distribution function F (x), the

sum Sn, and the maximum Mn are defined by

F (x) = P(X ≤ x), Sn =
n∑

i=1

Xi, and Mn = max
1≤i≤n

Xi. (1)

If the tail probability function x 7→ 1−F (x) = P(X > x) is regularly varying

of index α ≥ 0 (see Embrechts et al. [2, Definition A3.1 (p. 564)]) then the
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tail of the maximum determines the tail of the sum, that is,

P(Sn > x) ∼ P(Mn > x) x → ∞,

where f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1. This basic result is

written in Embrechts et al. [2, Cor. 1.3.2 (p. 37)].

In this connection, Pinelis [11] gave careful consideration that large de-

viations of Sn are primarily due to just one of the summands when the tail

function of X is power-like of index α ∈ (0, 2). He dealt with the case that

X has a symmetric probability density function, however, this assumption is

for clarity and not very important. A crucial point is that no assumption of

regularly varying property is necessary. His discussion goes directly without

the Tauberian theorem in the sense of Karamata (see Seneta [13, Theorem

2.3 (p. 59)]). Now, the distribution of the St. Petersburg game is a simple

example in which the tail is heavy but does not satisfy the regularly varying

property. For this game, the investigation of the maximum is still significant

(see e.g. Fukker et al. [4] and [8]).

Pinelis [11] did not touch the case of α = 0. In this case, the tail is very

heavy, therefore it is called super-heavy in general. A concrete explanation

for the super-heavy tailed distribution is written in Falk et al. [3, Section 2.7

(p. 80)], but it seems that there are not many studies on probability theory

because it is not so easy to obtain interesting limit theorems. Recently,

Nakata [9] provided a few results when truncating super-heavy tails. Besides,

large deviations in the sense of Hu and Nyrhinen [7] were investigated by

[10].

1.2. Our contributions

In this article, we show a corresponding result of Pinelis [11] for α = 0.

Our assumptions written in Section 2 below come from a property of slow

variation (see [2, Definition A3.1 (p. 564)]) investigated by Bojanic and

Seneta [1] (see Lemma 4.1 below). Although our assumptions may be strong,

the assertion of Theorem 3.1, which is the main theorem, becomes simpler.

The log-Pareto distribution is an obvious application (see Equation (9)),

and the distribution of the super-Petersburg game (see Equation (10)) can

be handled.
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The plan of this article is as follows. Section 2 deals with the assump-

tions of Theorem 3.1, their remarks, and examples. In Section 3, we state

the main theorem and the corollary, and give the proofs in Section 4.

2. Our assumptions

For a fixed a > 0 let L : [a,∞) → R be a continuously differentiable

function such that

L(a) ≥ 0, L′(x) > 0 for x ≥ a, lim
x→∞

L(x) = ∞, (2)

and

lim sup
x→∞

xL′(x) < ∞. (3)

For example, functions log x, log log x, and
√
log x fulfill conditions both (2)

and (3). For a random variable X with (1) we assume (2), (3),

P(X > x) ≍ 1

L(x)
, and P(X ≥ 0) = 1, (4)

where f(x) ≍ g(x) denotes 0 < lim infx→∞ f(x)/g(x) ≤ lim sup
x→∞

f(x)/g(x) <

∞ for positive functions f(x) and g(x).

Remark 2.1.

(i) In virtue of (4), X does not necessarily have a density function, and

may be discrete. Lemma 4.1 below claims that L(x) is slowly varying,

but the tail function x 7→ P(X > x) itself need not be slowly varying. It

is an example of the O-subexponential distributions studied in Shimura

and Watanabe [14, Section 1 (p. 447)]. Also, according to [9, Definition

1.1], it is called O-super-heavy tailed.

(ii) The precise condition of (4) is that there exist 0 < C− < C+ < ∞ and

A > a such that

C−

L(x)
≤ P(X > x) ≤ C+

L(x)
for x > A. (5)

Since L(x) fulfills (2), there are constants Ã+ > 0, Ã− > 0, and 0 <
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δ < 1 with

0 < C±/L(x) < δ < 1 for x > Ã±. (6)

Hence we can construct random variables X̃+ and X̃− whose distribu-

tion functions F̃+(x) and F̃−(x) satisfy

F̃±(x) = P(X̃± ≤ x) =

{
1− C±/L(x) for x ≥ Ã±,

0 for x < Ã±,
(7)

respectively. Consequently, we have the stochastic domination

P(X̃− > x) ≤ P(X > x) ≤ P(X̃+ > x) for x > A∗, (8)

where A∗ = max{A, Ã+, Ã−}.

Example 2.1. We give two examples of random variables satisfying (2),

(3), and (4).

(i) (The log-Pareto distribution, [5, Example 2.6.1]) Let X lP be a random

variable with P(X lP ≤ x) =

{
1− 1/ log x for x > e,

0 otherwise.
Since

P(X lP > x) = 1/ log x for x > e, (9)

we have L(x) = log x,C− = C+ = 1, and A∗ = e.

(ii) (The distribution of the super-Petersburg game, [9, Example 4.2]) Let

XsP be a random variable with

P(XsP = 22
k

) = 2−k for k = 1, 2, . . . . (10)

Since

P(XsP > x) =
2{lg lgx}

lg x
for x > 4,

we have L(x) = lg x,C− = 1, C+ = 2, and A∗ = 4, where lg x =

log x/log 2 and {x} denotes the fractional part of x > 0.
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3. Results

Our main result is the following.

Theorem 3.1. Let β < 0 be a negative real number. For a random variable

X with (1), we assume (2), (3), and (4), and put c = Lβ(x). Then we have

1 ≺ cx ≺ x (11)

and

P(Sn > x) ∼ P
(
Sn > x,

⋃

i∈[n]

{Xi > x,Sn −Xi ≤ cx}
)
, (12)

whenever n ∈ N and x ∈ (0,∞) vary in such a way that

n ≺ L(x), (13)

where [n] = {1, 2, . . . , n}, and E ≺ F or F ≻ E denotes limE/F = 0 with

positive expressions E and F in terms of x and n.

Remark 3.1.

(i) In this article, both x and n are considered variables for asymptotic

symbols. While Pinelis [11] treated not only x and n but also c as

variables, c is put by Lβ(x) here.

(ii) We also use the notation E = o(F ) when E ≺ F . Since Sn−Xi ≤ cx ≺
x, Equation (12) means

P

(
Just only one Xi satisfies Xi > x,

other than Xi is o(x)

∣∣∣∣∣Sn > x

)
∼ 1.

Corollary 3.1. Under the assumptions of Theorem 3.1, we have

P(Sn > x) = o(1) if and only if (13) follows. (14)

Moreover, if (13) holds then we have

P(Sn > x) ≍ n

L(x)
. (15)
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4. Proofs

The outline of the proofs is the same as [11]. To prove Theorem 3.1, we

use four lemmas.

Lemma 4.1. Suppose that L(x) satisfies (2) and (3). Then x 7→ L(x) is a

slowly varying function, and

lim
x→∞

L(xLγ(x))

L(x)
= 1 for γ ∈ R. (16)

Proof. Combining (2) and (3) leads to

lim
x→∞

xL′(x)

L(x)
= 0,

which implies that x 7→ L(x) is a slowly varying function by Resnick [12,

Proposition 2.5 (a) (p. 31)] (see also Seneta [13, Equation (1.11) (p. 7)]).

Moreover, using (3) and limx→∞ (logL(x))/L(x) = limt→∞(log t)/t = 0, we

have

lim
x→∞

xL′(x)

L(x)
logL(x) = 0.

This assures us that (16) follows from Bojanic and Seneta [1, Theorem 1

(p. 304)]. ���

Lemma 4.2. Under the assumptions of Theorem 3.1 and (13), we have

P(Sn > x) < nP(X1 > x) ≍ n

L(x)
, (17)

where E 4 F or F < E denotes lim supE/F < ∞.

Proof. By (4) we obtain the asymptotic property ≍ of (17). It follows from

(6) that 0 < C−/L(x) < δ for x > A∗. Noting X ≥ 0 and (5), we have for

x > A∗

P(Sn > x) ≥ P(Mn > x) = 1− {1 − P(X > x)}n ≥ 1−
(
1− C−

L(x)

)n

(∗)

≥ (1− δ)C−n

L(x)
,
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which yields < of (17). The last inequality of (∗) follows by applying Gut

[6, Lemma A.4.2 (p. 561)] to n/L(x) = o(1) by (13). ���

Lemma 4.3. For c = Lβ(x) with β < 0, we have

1 ≺ c2x ≺ x. (18)

In addition, if (13) holds then we obtain

n ≺ (L(cx))2

L(x)
(19)

and

n ≺ (L(c2x))2

c
. (20)

Proof. Since L(x) is slowly varying, so is x 7→ L2β(x) from Seneta [13,

Item 3◦ (p. 18)]. Therefore, Seneta [13, Item 1◦] yields 1 ≺ xL2β(x) = c2x.

It turns out that c2x ≺ x because of β < 0 and (2). Thus we have (18),

and (11) is also proved in the same manner. Using (11), (18), and (16), we

obtain

lim
x→∞

L(cx)

L(x)
= lim

x→∞

L(c2x)

L(cx)
= 1 and lim

x→∞

L(x)

c
= ∞. (21)

Hence it follows from (13) that

n ≺ L(x) ∼ L(cx) ∼ L(cx)

L(x)
L(cx),

which gives (19). Similarly, since

n ≺ L(x) ≺ L(x)

(
L(c2x)

L(cx)

)2(
L(cx)

L(x)

)2 L(x)

c
=

(L(c2x))2

c
,

Equation (20) holds. ���

To prove Theorem 3.1, we define the following probabilities

p0(n, x) = P

(
Sn > x,max

j∈[n]
Xj ≤ cx

)
, (22)

p≥2(n, x) = P
(
Sn > x,

⋃

i∈[n]

⋃

j∈[n]\{i}

{Xi > cx,Xj > cx}
)
, (23)
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p1,0(n, x) = P
(
Sn > x,

⋃

i∈[n]

{
cx < Xi ≤ x, max

j∈[n]\{i}
Xj ≤ cx

})
, (24)

p1,1(n, x) = P
(
Sn > x,

⋃

i∈[n]

{
Xi > x, max

j∈[n]\{i}
Xj ≤ cx

})
, (25)

and the random variables

Yi = XiI{|Xi| ≤ cx} for i = 1, . . . , n, and Tn =

n∑

i=1

Yi, (26)

where I{B} denotes the indicator random variable for the event B.

Lemma 4.4. Under the assumptions of Theorem 3.1, we have

p0(n, x) = o

(
n

L(x)

)
, (27)

p≥2(n, x) = o

(
n

L(x)

)
, (28)

p1,0(n, x) = o

(
n

L(x)

)
. (29)

4.1. Proof of Lemma 4.4

In the following proofs, let x > 0 be taken sufficiently large for A∗.

(i) Proof of (27): We show

EY 2
1 4

(
cx

L(cx)

)2

(30)

and

P (Tn > x) 4n

(
c

L(cx)

)2

. (31)

Since
∫ A∗

0 u2dF (u) < ∞ and (8), we have

EY 2
1 =

∫ A∗

0
u2dF (u) +

∫ cx

A∗

u2dF (u) ≤ 2

∫ cx

A∗

u2dF̃+(u).

Using integration by parts (see Gut [6, Theorem 2.12.1 (ii) (p. 75)])
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and (3), we get

∫ cx

A∗

u2dF̃+(u) =
[
−u2(1− F̃+(u))

]cx
A∗

+

∫ cx

A∗

(u2)′(1− F̃+(u))du

= C+

{
− (cx)2

L(cx)
+

A2
∗

L(A∗)
+

∫ cx

A∗

2udu

L(u)

}

≍ − (cx)2

L(cx)
+

∫ cx

A∗

(u2)′du

L(u)
≍
∫ cx

A∗

u2L′(u)du

(L(u))2

=

∫ cx

A∗

uL′(u)× u

(L(u))2
du

(3)

4

∫ cx

A∗

u

(L(u))2
du

∼ 1

2

(
cx

L(cx)

)2

,

which proves (30). Here the last ∼ follows from the Karamata theorem

(see [2, Theorem A3.4 (p. 567)]). Thus, it turns out that

P (Tn > x) ≤ ET 2
n

x2
=

nEY 2
1

x2
4 n

(
c

L(cx)

)2

,

which yields (31). Hence we have

p0(n, x) = P

(
Sn > x,max

j∈[n]
|Xj | ≤ cx

)
≤ P (Tn > x)

4 n

(
c

L(cx)

)2

=
nL(x)

(L(cx))2
· c

2

n

n

L(x)

(19)
≺ n

L(x)
. (32)

(ii) Proof of (28): This is followed by

p≥2(n, x) ≤ P


 ⋃

1≤i 6=j≤n

{Xi > cx,Xj > cx}




≤
(
n

2

)
P(X1 > cx,X2 > cx) ≍

(
n

L(cx)

)2

=
nL(x)

(L(cx))2
n

L(x)

(19)
≺ 1× n

L(x)
.
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(iii) Proof of (29): The probability is estimated by

p1,0(n, x) ≤ nP


cx < X1 ≤ x,X1 +

n∑

j=2

Yj > x




≍
∫ x

cx
nP (Tn−1 > x− u) dF (u) 4

∫ x

cx
g(u)dF (u), (33)

where

g(u) = nmin

{
1, n

(
c

L(c(x− u))

)2
}

for cx < u < x.

The last 4 of (33) follows from (31). We define

ux = x− L−1(
√
cn)

c
, (34)

where L−1(x) is the inverse function of L(x). Note that L−1(x) for

x > 0 exists because of the strict monotonicity and continuity of L(x).

We obtain

ux ∼ x. (35)

Since
√
cn ≤ L(c2x) by (20), we have L−1(

√
cn) ≤ c2x. Therefore (35)

holds. From this and (11), we get

cx < x/2 < ux < x. (36)

Dividing the right-hand side of (33) into three parts

∫ x

cx
g(u)dF (u) =

∫ x/2

cx
+

∫ ux

x/2
+

∫ x

ux

= I1 + I2 + I3,

we show Ii ≺ n/L(x) for i = 1, 2, and 3.

• I1 : Since u 7→ 1/L(c(x − u)) is monotone increasing on cx < u <

x/2, and limcx→∞L(cx/2)/L(cx) = 1, we have

I1 =

∫ x/2

cx

(
cn

L(c(x − u))

)2

dF (u)
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≤
(

cn

L(cx/2)

)2 ∫ x/2

cx
dF (u) ≤

(
cn

L(cx/2)

)2

P(X > cx)

4

(
cn

L(cx/2)

)2 1

L(cx)
=


 c

L(cx/2)
L(cx)




2

nL(x)

(L(cx))2
1

L(cx)

n

L(x)

(19)
≺ n

L(x)
.

• I2 : Since u 7→ 1/L(c(x − u)) is also monotone increasing on x/2 <

u < ux, and L(c(x− ux)) =
√
cn, we obtain

I2 =

∫ ux

x/2
g(u)dF (u) ≤

(
cn

L(c(x− ux))

)2 ∫ ux

x/2
dF (u)

≤ cnP(X > x/2) ≍ cn

L(x/2)
≺ n

L(x)
.

• I3 : Equation (35) yields 1 ≤ L(x)/L(ux) ≤ L(x)/L(x/2)
x→∞→ 1.

Hence it follows that

I3 =

∫ x

ux

g(u)dF (u) ≤ n

∫ x

ux

dF (u) ≍ n

(
1

L(ux)
− 1

L(x)

)

=

(
L(x)

L(ux)
− 1

)
n

L(x)
≺ n

L(x)
.

4.2. Proofs of Theorem 3.1 and Corollary 3.1

4.2.1. Proof of Theorem 3.1

Equation (18) is shown in Lemma 4.3. By Lemmas 4.2 and 4.4, we

obtain

P(Sn > x) ∼ p1,1(n, x) <
n

L(x)
. (37)

Lemma 4.4 yields

n

L(x)

(17)

4 P(Sn > x) = p0(n, x) + p≥2(n, x) + p1,0(n, x) + p1,1(n, x)

= p1,1(n, x) + o

(
n

L(x)

)
∼ p1,1(n, x),
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which proves (37). Moreover, using (26) we have

|RHS of (12)− p1,1(n, x)|

≤ nP

(
X1 > x,Sn −X1 > cx, max

j∈[n]\{1}
Xj ≤ cx

)

≤ nP


X1 > x,

n∑

j=2

Yj > cx


 = nP (X1 > x) · P (Tn−1 > cx)

(17),(31)

4 P (Sn > x) · n
(

c

L(c2x)

)2

= P(Sn > x) · c · nc

(L(c2x))2

(20)
≺ P(Sn > x),

which yields (12).

4.2.2. Proof of Corollary 3.1

Let us assume (13). Then we have

P(Sn > x) ∼ p1,1(n, x) ≤ nP (X1 > x)
(5)

≤ C+
n

L(x)
= o(1). (38)

Next, we assume P(Sn > x) = o(1). It follows from [6, Equation (2.1)

(p. 270)] that there exists C > 0 such that

o(1) = P(Sn > x) ≥ P(Mn > x) ≥ CnP(X1 > x) ≍ n

L(x)
, (39)

which proves (13). Finally, if (13) holds then P(Sn > x)
(38)

4 n/L(x) = o(1).

Therefore P(Sn > x) < n/L(x), since (39) is true. Hence we have (15).
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