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Abstract

In this paper, we study the asymptotic behavior of the heat kernel with respect to

the Witten Laplacian. We introduce the localization and the scaling technique in semi-

classical analysis, and study the semi-classical asymptotic behavior of the family of the

heat kernel, indexed by k, near the critical point p of a given Morse function, as k → ∞.

It is shown that this family is approximately close to the heat kernel with respect to a

system of the harmonic oscillators attached to p. We also furnish some asymptotic results

regarding heat kernels away from the critical points. These heat kernel asymptotic results

lead to a novel proof of the Morse inequalities.

1. Introduction

In his marvellous paper [15], Witten gave a new proof of the Morse

inequalities by considering the family of the so called Witten Laplacians

∆k = ∆+ k2 |df |2 + kA, where k > 0 is a parameter, f is a Morse function,

and A is an operator of order 0. He proved that the spectral functions of

∆k is approximately close to the spectral functions of a system of harmonic

oscillators attached to the critical point of f , as k → ∞. His idea of studying

deformed operators indexed by k has led to several breakthrough in several

fields.

In complex geometry, Demailly [6] discovered the holomorphic Morse in-

equalities that describe the k-large asymptotic upper bounds for the Morse-
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Witten sums of the Betti numbers of ∂ on L⊗k in terms of the Chern curva-

ture of the Hermitian holomorphic line bundle L. The key of finding such in-

equalities is that he managed to localize the problem by converting the local

frame of L to the local weight function that plays a role of a Morse function

in [15]. This in turn, led to the consideration of the family of operators �k

analogous to ∆k. Meanwhile, Bismut gave the heat equation proofs of Morse

inequalities in [2] and of Demailly’s holomorphic Morse inequalities in [3],

using the probability theory. Subsequently, Demailly [7] replaced Bismut’s

probabilistic argument and recovered his holomorphic Morse inequalities by

investigating the heat kernel asymptotics. In view of the recent progress,

we feel that it is important to investigate the heat kernel asymptotics in

Witten’s classical setting.

In this present paper, we study the asymptotic behavior of the heat

kernel with respect to the Witten Laplacian ∆k and in turn recover the

Morse inequalities.

Let us briefly illustrate how we obtain our semi-classical heat kernel

asymptotics (see Theorem 1.1). Our asymptotic behaviors of the heat ker-

nel are achieved based on the two techniques: localization and scaling tech-

nique. We seek to localized the heat kernel near the critical point p of the

Morse function by constructing a metric that is flat around p together with

the Morse lemma. The localization of this kind was indeed motivated by

Witten’s work [15]. To obtain the asymptotics, we introduced the scaling

technique in semi-classical analysis. This technique allows us to consider the

family of the so-called scaled heat kernels near the critical point p, indexed

by k, and study the asymptotic behavior of this family as k → ∞. It turns

out that this family is approximately close to the heat kernel with respect to

a system of the harmonic oscillators attached to p that resembles Witten’s

finding. We would like to stress that these two techniques effectively tackle

the asymptotic behavior of heat kernels in a computable way.

These techniques have been applied to several projects. In CR geometry,

for example, Hsiao and Zhu [10] investigated the semi-classical asymptotics

of the heat kernel with respect to Kohn Laplacian using these tricks and

obtained the CR and R-equivariant Morse inequalities. On the other hand, in

complex geometry, Chiang [5] made use of these techniques and obtained the

semi-classical asymptotic behaviors of Bergman kernels and spectral kernels.

We refer the reader to [1], [13], [8], [9] for further related scaling techniques.
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To recover the Morse inequalities from the heat kernel asymptotics, we

use the classical trace integral formula (see [14]) in the local index theory.

It turns out that, somewhat surprisingly, we need more delicate asymptotic

results regarding the heat kernels away from the critical points (see Theorems

1.2 and 1.3). Perhaps one of the causes of the difference from Hsiao and

Zhu’s work [10] would be that they investigate their semi-classical heat kernel

asymptotics for each point in the underlying manifold, while we only consider

the asymptotics of this kind near the critical point. These delicate results

are obtained based on certain Bochner-type estimates.

1.1. Statements of the main results

In this subsection, we state our results in detail. We refer the reader to

Section 2 and Subsections 3.1 and 3.2 for the terminologies we use.

Let M be a compact smooth manifold of dimension n and let f be

a Morse function on M . We equip M with a metric g = 〈·|·〉 such that

for every critical point p of f , we can choose a coordinate chart such that

〈 ∂
∂xi
, ∂
∂xj

〉 = δij and f is written as a quadratic form (according to Morse

Lemma) near p, where δij is the Kronecker delta (see Theorem 3.1). For

each k > 0, denote the Witten Laplacian (acting on r-forms) by

∆
(r)
k := dkd

∗
k + d∗kdk,

where dk := e−kfdekf is the deformed exterior operator and d∗k is its formal

adjoint with respect to the induced L2-inner product from the metric g.

For each critical point p ∈ Crit (f), denote the scaled heat kernel by

Ar(k),p (t, x, y) := k−
n
2 e−

t
k
∆

(r)
k

(
x√
k
,
y√
k

)
,

where e−t∆
(r)
k (x, y) denotes the heat kernel with respect to ∆

(r)
k on r-forms.

Moreover, denote by e−t∆
(r)
f,p (x, y) the heat kernel of the system of harmonic

oscillators ∆
(r)
f,p attached to p (see (3.2)). Then our semi-classical heat kernel

asymptotics is stated as follows:
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Theorem 1.1. For each critical point p ∈ Crit (f),

lim
k→∞

Ar(k),p (t, x, y) = e−t∆
(r)
f,p (x, y) .

in C∞-topology in each compact subset of R+ ×Rn ×Rn. Consequently, we

obtain the following pointwise asymptotic

lim
k→∞

k−
n
2 e−

t
k
∆

(r)
k (p, p) = e−t∆

(r)
f,p (0, 0) .

Theorem 1.1 shows that the leading term of on-diagonal heat kernel

expansion of e−
t
k
∆

(r)
k (x, y) at the critical point p as k large is given by

e−t∆
(r)
f,p (0, 0). We can further unwind e−t∆

(r)
f,p (x, x) by Mehler’s formula and

then capture the information of the critical point p (see Theorem 5.5).

Now, let us state the asymptotic results of heat kernels away from the

critical points. Denote by BR (q) ⊂ Rn an Euclidean ball centered at q with

radius R. For each r-form ω (on Rn), let |ω| be the norm of ω induced from

the (flat) metric g (on Rn). Define the norm |·|x for the space of the linear

transformations
∧r T ∗

xR
n ⊗ (

∧r T ∗
xR

n)∗ by

|S|x := sup
ωx∈

∧r T ∗
xR

n,ωx 6=0

|Sωx|
|ωx|

for each S ∈ ∧r T ∗
xR

n ⊗ (
∧r T ∗

xR
n)∗.

Theorem 1.2. There exists D > 0 such that if k is large enough, then for

each p ∈ Crit (f) and for each N ∈ N,

∣∣∣Ar(k),p (t, x, x)
∣∣∣
x
≤ C (t,N) |x|−N ,

where C (t,N) depends on N and smoothly on t and is independent of D,x, k,

for each x ∈ Bkε (0) \B2D (0).

For each large k, set Uk =
⋃
p∈Crit(f) U

k
p , where U

k
p is identified with

B
k−

1
2+ε (0), ε ∈

(
0, 12
)
, under the coordinate chart of p ∈ Crit (f).

Theorem 1.3. If k is sufficiently large, then for each t > 0 and for each

N ∈ N,
∥∥∥e−

t
k
∆

(r)
k (x, x)

∥∥∥
C0(M\Uk)

≤ C (t,N) k−N ,
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where C (t,N) depends on N and smoothly on t and is independent of k and

the C0-norm is determined by a choice of partition of unity and orthonormal

frame. This implies

lim
k→∞

e−
t
k
∆

(r)
k (x, x) = 0

for each x ∈M \Crit (f).

From Theorems 1.1, 1.2, and 1.3, we recover the Morse inequalities (See

Section 5). In fact, from these three theorems, we can deduce

lim
t→∞

lim
k→∞

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV = mr,

where mr is the number of the critical points of f with index r (see Theo-

rem 5.6), which together with the local index theory, establishes the Morse

inequalities. We refer the reader to [12] for a topological proof of the Morse

inequalities.

This paper is organized as follows: In Section 2, we set up some notations

and review some essential notions and theorems. In Section 3, we introduce

the localization and scaling technique, and prove Theorem 1.1. Later on, in

Section 4, we introduce the Bochner-type estimate and prove Theorems 1.2

and 1.3. Finally, in Section 5, we investigate the model kernel and present

the new heat kernel proof of the Morse inequalities.

2. Preliminaries

2.1. Notations and terminologies

Let α = (α1, . . . , αn) be a multi-index and we set |α| =∑n
i=1 αi and put

∂αx =
∂|α|

(∂x1)α1 · · · (∂xn)αn
,

where x =
(
x1, . . . , xn

)
∈ Rn.

Let M be a smooth manifold of dimension n. We denote by TM the

tangent bundle of M and by T ∗M the cotangent bundle of M . We say a

(differential) r-form ω to be a section (not necessarily smooth) of the exterior

bundle
∧r (T ∗M). Choosing a local coordinate chart with the coordinates
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x1, . . . , xn, we can locally write ω as ω =
∑′

I
ωIdx

I , where the primed

sum
∑′

I
refers to the one that runs over all multi-indices I = (i1, . . . , ir)

with |I| = r arranged in increasing order (namely, 1 ≤ i1 < · · · < ir ≤ n),

and where ωI are component functions of ω and dxI = dxi1 ∧ · · · ∧ dxir .

In particular, let U ⊂ M be an open subset, and we denote by Ωr (U) =

C∞ (U,
∧r (T ∗M)) the space of smooth r-forms and by Ωrc (U) the space of

all smooth r-forms compactly supported in U . We denote by Hr
dR (M) the

r-th de Rham cohomology group on M .

Let (M,g) be an orientable Riemannian manifold endowed with the

metric g (·, ·) = 〈·|·〉 and let dV be the volume form induced by g. We denote

by |·| the norm associated to the metric g. Note that g induces the metric

on
∧r (T ∗M) (still denoted as g and its associated norm is also denoted as

|·|), and thus the L2-inner product (·|·) on Ωrc (M) with respect to dV . The

completion of Ωrc (M) with respect to (·|·) is denoted by L2
r (M). We denote

the associated L2-norm on M by ‖·‖L2(M), and we will omit the subscript

L2 (M) if there is no ambiguity. Let d be the exterior derivative and denote

by d∗ the formal adjoint of d with respect to (·|·).

Let f be a Morse function. The set consisting of all critical points of f

is denoted by Crit (f). The index of f at p ∈ Crit (f) is denoted by Indfp.

Besides, the j-th Morse number mj is defined to be the number of the set

{p ∈ Crit (f) : Indfp = j}.

We give a final remark on the appearance of constants. Throughout

this paper, C (·) denotes a constant that depends on what appears within

the parenthesis.

2.2. Witten Laplacians and heat kernels

Let M be a compact Riemannian manifold of dimension n and let f

be a Morse function on M . For each k > 0, define the deformed exterior

derivative dk : Ω
r (M) → Ωr+1 (M) by

dk := e−kfdekf = d+ kdf ∧ .
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It is evident to see that d2k = 0. Define the deformed r-th de Rham

cohomology group on M by

Hr
k (M) =

Ker
(
dk : Ω

r (M) → Ωr+1 (M)
)

Im (dk : Ωr−1 (M) → Ωr (M))
.

Proposition 2.1 ([11], Theorem 2.3). For each k > 0, Hr
k (M) is isomorphic

to Hr
dR (M).

Let d∗k : Ω
r (M) → Ωr−1 (M) be the formal adjoint of dk with respect to

the L2-inner product (·|·). Then

d∗k = ekfd∗e−kf = d∗ + kι∇f ,

where d∗ = (−1)n(r+1)+1 ∗ d∗, ∗ is the Hodge star operator, and ∇f is the

gradient of f .

For each k > 0, the Witten Laplacian on Ωr (M) is defined to be

∆
(r)
k := d∗kdk + dkd

∗
k : Ω

r (M) → Ωr (M) .

By direct computation, we obtain

∆
(r)
k = ∆(r) + k2 |df |2 + k

(
L∇f + L∗

∇f
)
, (2.1)

where L∇f denotes the Lie derivative of ∇f and L∗
∇f the formal adjoint of

L∇f with respect to the L2-inner product (·|·). Note that ∆
(r)
k is elliptic.

Moreover, ∆
(r)
k has the local expression

∆
(r)
k = ∆(r) + k2 |df |2 + k

∑

i,j

Hessf

(
∂

∂xi
,
∂

∂xj

)[
dxj∧, ι

(dxi)♯

]
, (2.2)

where Hessf = ∇TMdf is the Hessian form with respect to the Levi-Civita

connection ∇TM and
(
dxi
)♯

is the dual element to dxi with respect to the

inner product 〈·|·〉.

We extend the Witten Laplaican to ∆
(r)
k : Dom∆

(r)
k → L2

r (M) , where

Dom∆
(r)
k =

{
ω ∈ L2

r (M) : ∆
(r)
k ω ∈ L2

r (M)
}
.
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Note that Ωr (M) ⊂ Dom∆
(r)
k is dense in L2

r (M). Also, denote the adjoint

of ∆
(r)
k with respect to the L2-inner product by ∆

(r)∗
k : Dom∆

(r)∗
k → L2

r (M),

where Dom∆
(r)∗
k consists of elements ω in L2

r (M) for which there exists a

constant C > 0 such that

∣∣∣
(
ω|∆(r)

k η
)∣∣∣ ≤ C ‖η‖

for each η ∈ Dom∆
(r)
k . In fact, we can see that ∆

(r)
k is self-adjoint and

non-negative.

Let Spec∆
(r)
k be the spectrum of ∆

(r)
k and E

(r)
λ,k (M) be the eigenspace

of ∆
(r)
k corresponding to the eigenvalue λ. We have the following property

related to the alternative sum of the dimensions of the eigenspaces.

Proposition 2.2. For each k, for each r, and for each µ ∈ Spec∆
(r)
k \ {0},

we have
r∑

j=0

(−1)r−j dimE
(j)
µ,k (M) = dim dk

(
E

(r)
µ,k (M)

)
,

where dk

(
E

(r)
µ,k (M)

)
=
{
dkω : ω ∈ E

(r)
µ,k (M)

}
. Subsequently, we obtain for

each r,
r∑

j=0

(−1)r−j dimE
(j)
µ,k (M) ≥ 0,

and if r = n, the equality occurs; namely,

n∑

j=0

(−1)n−j dimE
(j)
µ,k (M) = 0.

Proof. It follows from the fact that the complex dk : E
(r)
µ,k (M) → E

(r+1)
µ,k (M)

is exact. ���

For each t > 0, define the heat operator e−t∆
(r)
k : L2

r (M) → Dom∆
(r)
k

such that e−t∆
(r)
k ω ∈ Ωr (R+ ×M) and the operator satisfies





∂
∂te

−t∆(r)
k ω +∆

(r)
k e−t∆

(r)
k ω = 0

lim
t→0+

∥∥∥e−t∆
(r)
k ω − ω

∥∥∥ = 0
.
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The associated distribution kernel

e−t∆
(r)
k (x, y) ∈ C∞

(
R
+ ×M ×M ;

r∧
(T ∗M)⊠

( r∧
(T ∗M)

)∗)

is called the heat kernel with respect to ∆
(r)
k . Here, we denote by E ⊠ F ∗

the vector bundle over M ×M whose fiber at (x, y) is the space of linear

transformations from Fy to Ex.

The heat kernel can be expressed in different ways. First, choose a

local orthonormal frame
{
EI
}
I
for
∧r (T ∗M) and denote by

(
EI
)∗

the dual

element to EI , and we can write

e−t∆
(r)
k (x, y) =

∑′

I,J

e−t∆
(r)
k I,J (x, y)E

I (x)⊗
(
EJ
)∗

(y) ,

where EI (x)⊗
(
EJ
)∗

(y) ∈ ∧r T ∗
xM ⊗

(∧r T ∗
yM

)∗
satisfies

(
EI (x)⊗

(
EJ
)∗

(y)
)
(EK (y)) = 〈EK (y) |EJ (y)〉 ·EI (x) = δKJ E

I (x) ,

and the corresponding component function e−t∆
(r)
k I,J (x, y) ∈ C∞(R+ ×M

×M).

Set dλ = dimE
(r)
λ,k (M) and let

{
ϕλi
}
i=1,...,dλ,λ∈Spec∆(r)

k

be a complete

orthonormal basis for L2
r (M) such that ∆

(r)
k ϕλi = λϕλi , and we can write the

heat kernel as

e−t∆
(r)
k (x, y) =

∑

λ∈Spec∆(r)
k

dλ∑

i=1

e−tλϕλi (x)⊗
(
ϕλi

)∗
(y) . (2.3)

In fact, this series converges uniformly on compact subsets of R+ ×M ×M .

2.3. Analytic tools

In this subsection, we review some well-known analytic tools. First, we

review the notion of Sobolev norms and adopt it for differential forms.

We begin by recalling that for each f ∈ C∞
c (Rn), the Fourier trans-

form of f is defined by f̂ (ξ) = (2π)−
n
2
∫
Rn e

−
√
−1x·ξf (x) dx, where x · ξ =
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∑n
i=1 xiξi is the standard dot product on Rn and dx = dx1 · · · dxn is the

standard volume element on Rn. Recall that the L2 space on Rn is given by

L2 (Rn) :=
{
f : Rn → R measurable functions :

∫
Rn |f |2 dx

}
together with

the inner product (f |g) :=
∫
Rn fgdx, where g is the complex conjugate of g.

It is well-known that we can extend the notion of Fourier transform to L2

functions. Recall also that the Parseval’s formula:
(
f̂ |ĝ
)

= (f |g) for any

two f, g ∈ L2 (Rn).

Let m ∈ N ∪ {0}. Define the Sobolev norm of order m on L2 (Rn) by

‖f‖m :=

(∫

Rn

(
1 + |ξ|2

)m ∣∣∣f̂ (ξ)
∣∣∣
2
dξ

) 1
2

.

We putWm (Rn) :=
{
f ∈ L2 (Rn) : ‖f‖m <∞

}
. By the Parseval’s formula,

we see that ‖f‖0 = ‖f‖L2(Rn). Let U ⊂ Rn be an open subset and we set

Wm
c (U) := {f ∈Wm (Rn) : supp f ⊂ U is compact} .

Let U be a subset of Rn. For each l ∈ N ∪ {0}, define the Cl-norm on

Cl (U) by

‖f‖Cl(U) :=
∑

|α|≤l
sup
U

|∂αx f |

for each f ∈ Cl (U). Let us state the Sobolev embedding theorem as follows:

Theorem 2.3. If f ∈Wm (Rn), m ≥ n
2 + 1 + l, then f ∈ Cl (Rn) and

‖f‖Cl(Rn) ≤ C ‖f‖m .

Let m ∈ N ∪ {0}. We define the Sobolev norm of order −m by du-

ality: given an open subset U ⊂ Rn, let W−m
c (U) be the set consisting

of measurable functions f on U for which there exists C > 0 such that∣∣∫
U fgdx

∣∣ ≤ C ‖g‖m for each g ∈Wm
c (U); then we define the Sobolev norm

of order −m on Wm
c (U) by

‖f‖−m := sup
g ∈ Wm

c (U)
g 6= 0

∣∣∫
U fgdx

∣∣
‖g‖m

.
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If m = 0, then this duality defined norm coincides the usual L2-norm

‖·‖L2(U), so we included this case as we defined the negative norms.

It is clear to see C∞
c (U) ⊂ W−m

c (U). In fact, the negative norm of

f ∈ C∞
c (U) has an upper bound in terms of Fourier transform.

Proposition 2.4. Let U ⊂ Rn be an open subset and let f ∈ C∞
c (U). Then

for each m ∈ N ∪ {0},

‖f‖−m ≤
(∫

Rn

(
1 + |ξ|2

)−m ∣∣∣f̂ (ξ)
∣∣∣
2
dξ

) 1
2

. (2.4)

Proof. By the Parseval’s formula, we derive that

∣∣∣∣
∫

U
fgdξ

∣∣∣∣ =
∣∣∣∣
∫

Rn

f̂ ĝdξ

∣∣∣∣ =
∣∣∣∣
∫

Rn

(
1 + |ξ|2

)−m
2
f̂ ·
(
1 + |ξ|2

)m
2
ĝdξ

∣∣∣∣

≤
(∫

Rn

(
1 + |ξ|2

)−m ∣∣∣f̂ (ξ)
∣∣∣
2
dξ

) 1
2

‖g‖m ,

which implies (2.4). ���

To extend the notions of Sobolev norms and Cl-norms to the Riemannian

vector bundle (E,M) over a Riemannian manifold M , we choose a pair

(V,P, E) as follows: let V be a set given by chosen coordinate charts of M

such that their coordinate domains cover M , let P be a partition of unity P
subordinate to the open cover from V and

∑
ψ∈P ψ

2 = 1, and let E be the set

collecting chosen local orthonormal frames {EI}I of E over the coordinate

domains from V.
Let m ∈ Z. For each smooth section s ∈ C∞

c (M,E), define the Sobolev

norm of order m by

‖s‖m :=
( ∑

ψi∈P
‖ψis‖2m

) 1
2
,

where

‖ψis‖m :=
(∑

I

∥∥(ψisI) ◦ ϕ−1
i

∥∥2
m

) 1
2
,

and (Vi, ϕi) ∈ V, ψis =
∑

I ψisIEI in Vi, and
∥∥(ψisI) ◦ ϕ−1

i

∥∥
m
is then defined

as above. Note that ‖·‖0 = ‖·‖L2(M,E).
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Let U ⊂ M be a subset. For each l ∈ N ∪ {0}, define the Cl-norm of

s ∈ C∞ (M,E) by

‖s‖Cl(U) :=
( ∑

ψi∈P
‖ψis‖2Cl(U)

) 1
2
,

where

‖ψis‖Cl(U) := sup
U∩Vi

∑

|α|≤l

(∑

I

∣∣∂α
[
(ψisI) ◦ ϕ−1

i

]∣∣2
) 1

2

and (Vi, ϕi) ∈ V, ψis =
∑

I ψisIEI in Vi.

If both of the manifold M and the vector bundle E are global (for

example, M = Rn and E =
∧r T ∗Rn), then choosing a partition of unity to

define the Sobolev norms and Cl-norms is redundant.

Finally, we review the spectral theorem in functional analysis.

Theorem 2.5. Let X be a Hilbert space and let A : DomA ⊂ X → X be

a self-adjoint operator with the spectrum S = SpecA. Then there exists a

finite measure µ on S × N and a unitary operator U : X → L2 (S × N) that

is one-to-one, onto with the following properties:

(a) Let η ∈ X. Then η ∈ DomA if and only if s · U (η) ∈ L2 (S × N);

(b) Define the operator S by

S : DomS ⊂ L2 (S × N) → L2 (S × N)

g (s, n) 7→ sg (s, n) ,

where

DomS =
{
g (s, n) ∈ L2 (S ×N) : sg (s, n) ∈ L2 (S × N)

}
;

then UAU−1 = S on U (DomA).

It follows from Theorem 2.5 that we can identify the element ω ∈ DomA

with the element g = U (ω) ∈ L2 (S × N), the operator A with the operator

S. Additionally, if A is non-negative, then the heat operator e−tA can be

identified with the operator defined by

P (t) : L2 (S × N) → L2 (S × N)

g (s, n) 7→ e−tsg (s, n) .
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3. Scaled Heat Kernel Asymptotics

In this section, we prove Theorem 1.1. To do so, we introduce the

localization and scaling technique.

3.1. Localization

To capture the local geometric data attached to the critical points of a

Morse function, we introduce the locally flat metric as follows:

Theorem 3.1 ([4], [15]). Let M be a compact orientable smooth manifold

of dimension n and f be a Morse function. Then M admits a metric g and

coordinate charts (Up, ϕp) around critical points p ∈ Crit (f) such that in

each of the coordinate charts (Up, ϕp), we have

f (x) = −
l∑

i=1

1

2

(
xi
)2

+
n∑

i=l+1

1

2

(
xi
)2

with l = Indfp and

g

(
∂

∂xi
,
∂

∂xj

)
= δij ,

where δij is the Kronecker delta.

The construction of this metric is due to the Morse lemma and tech-

niques in [4], but for the reader’s convenience, we give a proof:

Proof of Theorem 3.1. By the Morse lemma, we have for each p ∈
Crit (f), there exists a coordinate chart (Vp, ϕp) around p such that f is

expressed as shown above.

Now, assume Vp ∩ Vp′ = ∅ if p 6= p′. For each p, let Up ⊂ Up ⊂ Vp and

put

W =M \
⊔

p∈Crit(f)

Up.

Note that W is open. Let {Wα}α be an open cover of W consisting of

coordinate neighborhoods. Hence, {Gβ}β = {Wα}α ∪ {Vp}p∈Crit(f) is an
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open cover of M . (Gβ , ϕβ) denotes the coordinate chart for each β. Define

gβ = ϕ∗
βg,

where g is the usual Euclidean metric on ϕβ (Gβ) and ϕ
∗
βg is the pullback of

g by ϕβ.

Finally, let {ψβ}β be a partition of unity subordinate to the cover {Gβ}β
and put

g =
∑

β

ψβgβ.

Then g is a Riemannian metric on M . Note that in each of the coordinate

charts (Up, ϕp), we have

g

(
∂

∂xi
,
∂

∂xj

)
= gp

(
∂

∂xi
,
∂

∂xj

)
= δij ,

since ψp (x) = 1 in Up. Therefore, we have furnished the desired metric. ���

In the sequel, we adopt this metric throughout this paper together with

the local charts around the critical points of a Morse function in question.

Under such a metric, the local representation (2.2) can be reduced to

∆
(r)
k

(
ωdxI

)
=

[
−

n∑

i=1

∂2

∂ (xi)2
+ k2

(
xi
)2

+ k

n∑

i=1

εiε
I
i

]
ωdxI (3.1)

under the coordinate chart (Up, ϕp) around p ∈ Critf , where εi and ε
I
i are

defined respectively by

εi =

{
−1 ; i ≤ Indfp

1 ; otherwise

and by

εIi =

{
1 ; i appears in I

−1 ; otherwise
,

for each smooth r-form ω = ωIdx
I acting on ∆

(r)
k with I = (i1, . . . , ir) in

increasing order. As you can see, this local representation looks exactly like
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the harmonic oscillator with perturbation accordingly by the critical point

p.

For each p ∈ Crit (f), define ∆
(r)
f,p to be the differential operator acting

on smooth r-forms on an open subset in Rn given by

∆
(r)
f,p

(
ωdxI

)
= ∆

(r)
1

(
ωdxI

)
=

[
−

n∑

i=1

∂2

∂ (xi)2
+
(
xi
)2

+

n∑

i=1

εiε
I
i

]
ωdxI .

(3.2)

Note that ∆
(r)
f,p is the system of the harmonic oscillators attached to the

critical point p ∈ Crit (f) as in Witten’s paper [15].

3.2. Scaling technique

Let p ∈ Crit (f) and let (Up, ϕp) be the coordinate chart around p such

that Up = ϕ−1
p

(
B 3

2
(0)
)
with a fixed δ > 0.

Given a sufficiently large k > 0, put

Ukp := ϕ−1
p

(
B
k−

1
2+ε (0)

)
⊂ Up

with ε ∈
(
0, 12
)
.

Let ω =
∑′

I ωIdx
I ∈ Ωr (Bkε (0)) and define

ω[k] (x) =
∑′

I

ωI

(√
kx
)
dxI ∈ Ωr

(
B
k−

1
2+ε (0)

)
.

Through the coordinate map ϕp, we see that the pulled back form of ω[k] is

of Ωr
(
Ukp
)
and we still denote it by ω[k].

We give the following formula to illustrate how these two operators ∆
(r)
f,p

and ∆
(r)
k relate to one another.

Proposition 3.2. For each k > 0, and for each ω ∈ Ωr (Bkε (0)),

∆
(r)
f,pω =

1

k

(
∆

(r)
k ω[k]

)

[ 1k ]
. (3.3)

Proof. This formula follows from the local expression (3.1) and change of

variables. ���
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Define the scaled heat kernel at p ∈ Crit (f) by

Ar(k),p (t, x, y) := k−
n
2 e−

t
k
∆

(r)
k

(
x√
k
,
y√
k

)

∈ C∞
(
R
+ ×Bkε (0)×Bkε (0) ,

r∧
(T ∗

R
n)⊠

( r∧
(T ∗

R
n)
)∗)

,

where x√
k
∈ Rn, for the sake of convenience, stands for ϕ−1

p

(
x√
k

)
. We can

write Ar(k),p (t, x, y) as

Ar(k),p (t, x, y) =
∑′

I,J

Ar(k),pI,J (t, x, y) dx
I (x)⊗

(
dxJ

)∗
(y) ,

where the component functions

Ar(k),p (t, x, y) I,J (t, x, y) = k−
n
2 e−

t
k
∆

(r)
k I,J

( x√
k
,
y√
k

)
.

For each t > 0, define the scaled heat operator at p by

Ar(k),p (t) : Ω
r
c (Bkε (0)) → Ωr (Bkε (0))

ω 7→
∫

Bkε (p)
Ar(k),p (t, x, y)ω (y) dy.

Note that Ar(k),p (t)ω ∈ Ωr (R+ ×Bkε (0)) for each ω ∈ Ωrc (Bkε (0)).

Let us show how the scaled heat kernel/operator relates to the ordinary

heat kernel/operator as follows:

Proposition 3.3. For each k > 0

Ar(k),p (t)ω =
(
e−

t
k
∆

(r)
k ω[k]

)

[ 1k ]
(3.4)

for each ω ∈ Ωrc (Bkε (0)).

Proof. By change of variables, for each ω ∈ Ωrc (Bkε (0)), we deduce

(
Ar(k),p (t)ω

)
(x) = k−

n
2

∫

Bkε (p)
e−

t
k
∆

(r)
k

( x√
k
,
y√
k

)
ω (y) dy

=

∫

B
k
− 1

2+ε
(p)
e−

t
k
∆

(r)
k

( x√
k
, y
)
ω[k] (y) dy
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=

∫

M
e−

t
k
∆

(r)
k

( x√
k
, y
)
ω[k] (y) dVM =

(
e−

t
k
∆

(r)
k ω[k]

)

[ 1k ]
(x) . ���

Now, we have the following important observation:

Lemma 3.4. For each k > 0





∂
∂tA

r
(k),p (t)ω +∆

(r)
f,pA

r
(k),p (t)ω = 0

limt→0+

∥∥∥Ar(k),p (t)ω − ω
∥∥∥
L2(Bkε (0))

= 0

for each ω ∈ Ωrc (Bkε (0)).

Proof. This lemma essentially follows from (3.3) and (3.4). Given ω ∈
Ωrc (Bkε (0)), we deduce

∂

∂t
Ar(k),p (t)ω =

1

k

(
∂

∂t
e−

t
k
∆

(r)
k ω[k]

)

[ 1k ]
= −1

k

(
∆

(r)
k e−

t
k
∆

(r)
k ω[k]

)

[ 1k ]

= −∆
(r)
f,p

(
e−

t
k
∆

(r)
k ω[k]

)

[ 1k ]
= −∆

(r)
f,pA

r
(k),p (t)ω.

where the first equation holds by the chain rule. Hence, we obtain

∂

∂t
Ar(k),p (t)ω +∆

(r)
f,pA

r
(k),p (t)ω = 0

for each ω ∈ Ωrc (Bkε (0)).

Finally, note that

lim
t→0+

∥∥∥Ar(k),p (t)ω − ω
∥∥∥
L2(Bkε(0))

= lim
t→0+

∥∥∥e−
t
k
∆

(r)
k ω[k] − ω[k]

∥∥∥
L2

(

B
k
− 1

2+ε
(0)

)

= lim
t→0+

∥∥∥e−
t
k
∆

(r)
k ω[k] − ω[k]

∥∥∥
L2(M)

= 0. ���

Lemma 3.4 motivates us to seek a local bound for scaled heat kernels

stated as follows:

Theorem 3.5 (Local Boundedness of the Scaled Heat Kernels). Given p ∈
Crit (f), let T and K be compact subsets in R+ and in Rn, respectively. Then

for each l ∈ N ∪ {0}, the sequence
{
Ar(k),p (t, x, y)

}
k
is uniformly bounded

in T ×K ×K with respect to the Cl-norm; namely, there exists a constant
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C (T,K) > 0 such that

∥∥∥Ar(k),p (t, x, y)
∥∥∥
Cl(T×K×K)

≤ C (T,K)

for each k sufficiently large.

We will prove Theorem 3.5 in Section 3.3.

3.3. Locally uniform bound for scaled heat kernels

We find a locally uniform bound through investigating the scaled heat

operators. The key of finding such a bound is that we manage to show

the scaled heat operators are ”locally uniformly bounded” by a constant

independent of k. We illustrate it in what we call the mapping property as

follows:

Theorem 3.6 (Mapping Property). Given a compact subset K ⊂ Rn, choose

a bounded open subset U such that K ⊂ U and choose a cut-off function

χ ∈ C∞
c (U) such that χ = 1 in K. Then for each p ∈ Crit (f) and for each

cut-off function χ̃ ∈ C∞
c (U), there exists a constant C (χ, χ̃, t) > 0 such that

∥∥∥χ̃Ar(k),p (t)χω
∥∥∥
2m

≤ C (χ, χ̃, t) ‖ω‖−2m ,

where C (χ, χ̃, t) depends on the choices of χ and χ̃ and smoothly on t only,

for each ω ∈ Ωrc (U), if k is large enough.

Proof. Before we start, we point out that the following reasoning works for

k large enough for us to have U ⊂ Bkε (0), ε ∈
(
0, 12
)
.

Firstly, by the G̊arding’s inequality, we obtain

∥∥∥χ̃Ar(k),p (t)χω
∥∥∥
2m

≤C1 (χ̃)
∥∥∥χ1

(
∆

(r)
f,p

)m
Ar(k),p (t)χω

∥∥∥
0

+ C2 (χ̃)
∥∥∥χ2A

r
(k),p (t)χω

∥∥∥
0
,

where χ1, χ2 ∈ C∞
c (U) are the cut-off functions chosen to satisfy χ1 = 1 = χ2

in supp χ̃. Therefore, we reduce to the L2-norm estimates for the two term

on the right.
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Next, to estimate the L2-norm of the first term, observe that

∥∥∥χ1

(
∆

(r)
f,p

)m
Ar(k),p (t)χω

∥∥∥
0
:= sup

η∈Ωr
c(U),η 6=0

∣∣∣
(
χ1

(
∆

(r)
f,p

)m
Ar(k),p (t)χω

∣∣η
)∣∣∣

‖η‖0
,

so we consider the inner product on the right hand side. By Theorem 2.5,

(3.3) and (3.4), we see that

∣∣∣
(
χ1

(
∆

(r)
f,p

)m
Ar(k),p (t)χω

∣∣η
)∣∣∣ = k−m

∣∣∣
(
(χ1)[k]

(
∆

(r)
k

)m
e−

t
k
∆

(r)
k χ[k]ω[k]

∣∣η[k]
)∣∣∣

= k−m
∣∣∣
(
ω[k]

∣∣χ[k]e
− t

k
∆

(r)
k

(
∆

(r)
k

)m
(χ1)[k] η[k]

)∣∣∣

=
∣∣∣
(
ω
∣∣χAr(k),p (t)

(
∆

(r)
f,p

)m
χ1η

)∣∣∣

for each η ∈ Ωrc (U) with η 6= 0. Moreover, by definition of Sobolev norms,

we see that

∣∣∣
(
ω

∣∣∣∣χA
r
(k),p (t)

(
∆

(r)
f,p

)m
χ1η

)∣∣∣ ≤ ‖ω‖−2m

∥∥∥χAr(k),p (t)
(
∆

(r)
f,p

)m
χ1η

∥∥∥
2m
.

Again, by the G̊arding’s inequality, we obtain

∥∥∥χAr(k),p (t)
(
∆

(r)
f,p

)m
χ1η

∥∥∥
2m

≤C3 (χ)
∥∥∥χ3

(
∆

(r)
f,p

)m
Ar(k),p (t)

(
∆

(r)
f,p

)m
χ1η

∥∥∥
0

+ C4 (χ)
∥∥∥χ4A

r
(k),p (t)

(
∆

(r)
f,p

)m
χ1η

∥∥∥
0
,

where χ3, χ4 ∈ C∞
c (U) are the cut-off functions chosen to satisfy χ3 = 1 = χ4

in suppχ. Moreover, by Theorem 2.5, (3.3) and (3.4), we derive

∥∥∥χ3

(
∆

(r)
f,p

)m
Ar(k),p (t)

(
∆

(r)
f,p

)m
χ1η

∥∥∥
2

0

≤ k
n
2
−4m

∥∥∥
(
∆

(r)
k

)m
e−

t
k
∆

(r)
k

(
∆

(r)
k

)m
(χ1η)[k]

∥∥∥
2

L2(M)

≤ k
n
2

∫

S×N

( s
k

)4m
e−2t s

k |g (s, n)|2 dµ

≤ k
n
2C5 (t)

∫

S×N

|g (s, n)|2 dµ

= C5 (t) ‖χ1η‖20 ≤ C5 (t) ‖η‖20 ,
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where C5 (t) =
(
2m
t

)4m
e−4m > 0 depends smoothly on t. Hence, we conclude

∥∥∥χ3

(
∆

(r)
f,p

)m
Ar(k),p (t)

(
∆

(r)
f,p

)m
χ1η

∥∥∥
0
≤ C6 (t) ‖η‖0 , (3.5)

where C6 (t) =
√
C5 (t). Similarly, we can obtain

∥∥∥χ4A
r
(k),p (t)

(
∆

(r)
f,p

)m
χ1η

∥∥∥
0
≤ C7 (t) ‖η‖0 , (3.6)

where C7 (t) depends smoothly on t. By (3.5) and (3.6), we conclude

∥∥∥χAr(k),p (t)
(
∆

(r)
f,p

)m
χ1η

∥∥∥
2m

≤ C8 (χ, t) ‖η‖0 ,

for each η ∈ Ωrc (U) with η 6= 0, which in turn, implies

∥∥∥χ1

(
∆

(r)
f,p

)m
Ar(k),p (t)χω

∥∥∥
0
≤ C9 (χ, t) ‖ω‖−2m , (3.7)

where C9 (χ, t) depends on χ and smoothly on t.

Using the similar argument, we can obtain

∥∥∥χ2A
r
(k),p (t)χω

∥∥∥
0
≤ C10 (χ, t) ‖ω‖−2m , (3.8)

where C9 (χ, t) depends on χ and smoothly on t.

Finally, by (3.7) and (3.8), we have established

∥∥∥χ̃Ar(k),p (t)χω
∥∥∥
2m

≤ C (χ, χ̃, t) ‖ω‖−2m ,

where C (χ, χ̃, t) depends on χ, χ̃ and smoothly on t, for each ω ∈ Ωrc (U)

with suppω ⊂ K. ���

Now, to show Theorem 3.5, let us recall the definition of approximate

identities. Let B1 (0) be the unit Euclidean ball centered at 0 and choose a

cut-off function χ ∈ C∞
c (B1 (0)) such that

∫

Rn

χ (x) dx = 1.
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For each x0 ∈ Rn and for each δ > 0, define

χx0,δ (x) := δ−nχ
(x− x0

δ

)
∈ C∞

c (Bδ (x0)) . (3.9)

We call the family {χx0,δ}δ an approximate identity with respect to the point

x0. Note that a change of variable gives

∫

Rn

χx0,δ (x) dx =

∫

Rn

χ (x) dx = 1.

An important feature of an approximate identity is illustrated as below.

Lemma 3.7. Given a multi-index α, there exists a constant C > 0 such that

for each x0 ∈ Rn, for each α and for each I, set

ωα,x0,I,δ = ∂αχx0,δ dx
I ∈ Ωrc (Bδ (x0)) (3.10)

and we obtain

lim sup
δ→0

‖ωα,x0,I,δ‖−m ≤ C,

if m is sufficiently large.

Proof. By Proposition 2.4, it suffices to show there exists C > 0 such that

∫

Rn

(
1 + |ξ|2

)−m ∣∣ ̂ωx0,α,I,δ (ξ)
∣∣2 dξ ≤ C

for each δ and for each x0, if m is large enough.

First, observe that

∣∣ω̂x0,α,I,δ (ξ)
∣∣2 =

∣∣∣∣
∫

Rn

e−
√
−1x·ξ∂αχx0,δ (x) dx

∣∣∣∣
2

≤ |ξ|2|α|
∫

Rn

χ dx = |ξ|2|α| .

Now, if m ≥ n
2 + |α|+ 1, then

∫

Rn

(
1 + |ξ|2

)−m ∣∣ω̂x0,α,I,δ (ξ)
∣∣2 dξ ≤

∫

Rn

(
1 + |ξ|2

)−m
|ξ|2|α| dξ

≤ C1

∫

Rn

(
1 + |ξ|2

)−m+|α|
dξ ≤ C2,
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where C1, C2 are independent of δ and the choice of x0. Hence, we have

established Lemma 3.7. ���

Proof of Theorem 3.5. Let T be a compact interval in R+ and K be a

compact subset in Rn. We choose MK ∈ N such that

K ⊂ Bkε (0)

for all k ≥MK and, without loss of generosity, discard the rest k’s for which

K 6⊂ Bkε (0).

Write

Ar(k),p (t, x, y) =
∑′

I,J

Ar(k),p (t, x, y) dx
I (x)⊗

(
dxJ

)∗
(y) .

To establish Theorem 3.5, it suffices to show its component functions are

locally uniformly bounded; in other words, we show for any two multi-indices

I ′, J ′, there exists a constant C (T,K) such that

∥∥∥Ar(k)I′,J ′ (t, x, y)
∥∥∥
Cl(T×K×K)

≤ C (T,K) .

First of all, we show that for each t0 ∈ T , for each y0 ∈ K, for each α,

and for each J ′,

lim
δ→0

∥∥∥∥A
r
(k),p (t0)ωα,y0,J ′,δ −

∑′

I

∂αyA(k),pI,J ′ (t0, x, y0) dx
I

∥∥∥∥
Cl(K)

= 0, (3.11)

where ωα,y0,J ′,δ is as defined in (3.10). To see it, for each x ∈ K, note that

∑

|α|≤l

(∑′

I

∣∣∣∣∂
γ
x

(∫

Rn

Ar(k),pI,J ′ (t0, x, y) ∂
α
y χy0,δdy−∂αyAr(k),pI,J ′ (t0, x, y0)

)∣∣∣∣
2) 1

2

=
∑

|α|≤l

(∑′

I

∣∣∣∣
( ∫

Rn

∂γx
(
∂αyA

r
(k),pI,J ′ (t0, x, y)

− ∂αyA
r
(k),pI,J ′ (t0, x, y0)

)
χy0,δdy

)∣∣∣∣
2) 1

2

=
∑

|α|≤l

(∑′

I

∣∣∣∣
( ∫

Rn

(
∂γx∂

α
yA

r
(k),pI,J ′ (t0, x, δy + y0)
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− ∂γx∂
α
yA

r
(k),pI,J ′ (t0, x, y0)

)
χ dy

)∣∣∣∣
2) 1

2

.

Now, since the function ∂γx∂αyA
r
(k),pI,J

′ (t0, x, y) is uniformly continuous in

K ×K, we obtain (3.11) and thus

∥∥∥
∑′

I

∂αyA
r
(k),pI,J ′ (t0, x, y0) dx

I
∥∥∥
Cl(K)

= lim
δ→0

∥∥A(k),p (t0)ωy0,α,J ′,δ

∥∥
Cl(K)

.

(3.12)

Next, we deduce to find a local bound. Let W be a chosen open subset

such that K ⊂W ⋐ Bkε (p) for each k ≥MK and let χ, χ̃ ∈ C∞
c (W ) be two

cut-off functions such that χ = 1 in K and χ̃ = 1 in suppχ. By Theorem

2.3, there exists C1 > 0 independent of k and y0, such that

∥∥A(k),p (t0)ωy0,α,J ′,δ

∥∥
Cl(K)

≤ C1

∥∥∥χ̃Ar(k),p (t0)χωy0,α,J ′,δ

∥∥∥
2m
, (3.13)

for some m ∈ N. Moreover, by Theorem 3.6, we obtain

∥∥∥χ̃Ar(k),p (t0)χωy0,α,J ′,δ

∥∥∥
2m

≤ C2 (χ, χ̃, t) ‖ωy0,α,J,δ‖−2m≤ C3 (χ, χ̃, t0) ,

(3.14)

where C2, C3 depend on χ, χ̃, t0, but on neither k nor y0. Hence, by (3.12),

(3.13) and (3.14), we conclude

∥∥∥Ar(k),pI′,J ′ (t0, x, y)
∥∥∥
Cl(K×K)

≤
∥∥∥
∑′

I

Ar(k),pI,J ′ (t0, x, y) dx
I
∥∥∥
Cl(K×K)

≤C3 (χ, χ̃, t0) (3.15)

for any two I ′, J ′.

Finally, to establish Theorem 3.5, it remains to deal with t-derivatives.

By nature of scaled heat kernels, we see

∂βt A
r
(k),p (t)ω = −

(
∆

(r)
f,p

)β
Ar(k),p (t)ω

for each ω ∈ Ωrc (W ) and the constant C3 depends smoothly on t0 ∈ T (by

Theorem 3.6), so by (3.15), we conclude that for each l ∈ N ∪ {0} and for

each I ′, J ′
∥∥∥Ar(k),pI′,J ′ (t, x, y)

∥∥∥
Cl(T×K×K)

≤ C (T,K) ,
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where C depends on T and K. Therefore, Theorem 3.5 has been shown. ���

3.4. Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1.

Let {Ti}∞i=1 ⊂ R+ be a collection of compact subsets satisfying Ti ⊂ T ◦
i+1

and
⋃∞
i=1 Ti = R+ and let {Ki}∞i=1 ⊂ Rn be a collection of compact subsets

satisfying Ki ⊂ K◦
i+1 and

⋃∞
i=1Ki = Rn.

Owing to Theorem 3.5 and the Arzela-Ascoli theorem, there exists a

strictly increasing sequence {n1,k}k ⊂ N such that the subsequence{
Ar
(n1,k),p

(t, x, y)
}
k
that converges in C1-norm in T1 × K1 × K1. Again,

according to Theorem 3.5 and the Arzela-Ascoli theorem, there exists a

strictly increasing sequence {n2,k}k ⊂ {n1,k}k such that the subsequence{
Ar
(n2,k),p

(t, x, y)
}
k
that converges in C2-norm in T2×K2×K2. We proceed

in the same manner to obtain a subsequence
{
Ar
(ni,k),p

(t, x, y)
}
k
for each i

that converges in Ci-norm in Ti ×Ki ×Ki. Finally, the diagonal argument

enables us to find a subsequence
{
Ar(nk),p

(t, x, y)
}
nk

such that

lim
k→∞

Ar(nk),p
(t, x, y) = Br

p (t, x, y)

in C∞-topology in each compact subset of R+ × Rn × Rn. Note that

Br
p (t, x, y) ∈ C∞

(
R
+ × R

n × R
n;

r∧
(T ∗

R
n)⊠

( r∧
(T ∗

R
n)
)∗)

.

In addition, for each t > 0, define the operator Br
p (t) : Ω

r
c (R

n) → Ωr (Rn)

by

(
Br
p (t)ω

)
(x) =

∫

Rn

Br
p (t, x, y)ω (y) dy.

Note that Br
p (t)ω ∈ Ωr (R+ × Rn).

Now, to see Br
p (t, x, y) = e−t∆

(r)
f,p (x, y), we need to show that for each

t > 0,

Br
p (t) : Ω

r
c (R

n) → Dom∆
(r)
f,p :=

{
ω ∈ L2

r (R
n) : ∆

(r)
f,pω ∈ L2

r (R
n)
}

(3.16)
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and that 



∂
∂tB

r
p (t)ω +∆

(r)
f,pB

r
p (t)ω = 0

lim
t→0+

∥∥Br
p (t)ω − ω

∥∥
L2(Rn)

= 0
(3.17)

for each ω ∈ Ωrc (R
n).

To see (3.16), it suffices to show for each m ∈ N ∪ {0},
∥∥∥
(
∆

(r)
f,p

)m
Br
p (t)ω

∥∥∥
L2(Rn)

<∞

for each ω ∈ Ωrc (R
n). Observe that, by Fatou’s lemma, we obtain

∥∥∥
(
∆

(r)
f,p

)m
Br
p (t)ω

∥∥∥
L2(Rn)

≤ lim inf
R→∞

∥∥∥
(
∆

(r)
f,p

)m
Br
p (t)ω

∥∥∥
L2(BR(0))

.

Now, choose two cut-off function χ, χ̃ ∈ C∞
c (B1 (0)) such that χ̃ = 1 in

suppχ, and for each k, put

χk (x) := χ
( x
kε

)
∈ C∞

c (Bkε (0)) , χ̃k := χ̃
( x
kε

)
∈ C∞

c (Bkε (0)) .

Then by Theorem 2.5, we derive

∥∥∥
(
∆

(r)
f,p

)m
Br
p (t)ω

∥∥∥
L2(BR(0))

≤ lim
k→∞

∥∥∥χ̃nk

(
∆

(r)
f,p

)m
Ar(nk),p

(t)χnk
ω
∥∥∥
L2(Rn)

≤C (t) ‖ω‖L2(Rn) ,

where C (t) is a constant that depends smoothly on t but is independent of

R, k. Hence, we conclude

∥∥∥
(
∆

(r)
f,p

)m
Br
p (t)ω

∥∥∥
L2(Rn)

≤ C (t) ‖ω‖L2(Rn) <∞

and (3.16) is now established.

To see (3.17), let ω ∈ Ωrc (R
n). For each ω ∈ Ωrc (R

n), by Theorem 3.5,
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we see
(
∂

∂t
Br
p (t)

)
ω =

∫

Rn

∂

∂t
Br
p (t, x, y)ω (y) dy= lim

k→∞

∫

Rn

∂

∂t
Ar(nk),p

(t, x, y)ω (y)dy

= − lim
k→∞

∫

Rn

∆
(r)
f,pA

r
(nk),p

(t, x, y)ω (y) dy

= −
∫

Rn

∆
(r)
f,pB

r
p (t, x, y)ω (y) dy = −∆

(r)
f,pB

r
p (t)ω

for each (t, x) ∈ K, where K is a compact subset in each compact subset of

R+ ×Rn. This shows ∂
∂tB

r
p (t)ω +∆

(r)
f,pB

r
p (t)ω = 0.

To see limt→0+
∥∥Br

p (t)ω − ω
∥∥
L2(Rn)

= 0, by Fatou’s lemma, we obtain

for each t > 0,

∥∥Br
p (t)ω − ω

∥∥
L2(Rn)

≤ lim inf
R→∞

∥∥Br
p (t)ω − ω

∥∥
L2(BR(0))

.

Again, let χk, χ̃k ∈ C∞
c (Bkε (0)) as previously given. By Theorem 2.5 and

the mean value theorem, we derive

∥∥Br
p (t)ω−ω

∥∥2
L2(BR(0)) ≤ lim

k→∞

∥∥∥χ̃nk

(
Ar(nk),p

(t)χnk
ω − χnkω

)∥∥∥
2

L2(Rn)

≤ lim
k→∞

(nk)
n
2

∥∥∥∥e
− t

nk
∆

(r)
nk (χnk

ω)[nk]
−(χnk

ω)[nk]

∥∥∥∥
2

L2(M)

= lim
k→∞

(nk)
n
2

∫

S×N

(
e
− t

nk
s − 1

)2
|g|2 dµ

= lim
k→∞

(nk)
n
2

(
t

nk

)2 ∫

S×N

e
− tk

nk
s |sg|2 dµ

≤ lim
k→∞

(nk)
n
2 t2

∥∥∥∥
1

nk
∆(r)
nk

(χnk
ω)[nk]

∥∥∥∥
2

L2(M)

=t2
∥∥∥∆(r)

f,pω
∥∥∥
2

L2(Rn)
,

where tk ∈ (0, t) and g ∈ L2 (S × N) is identified with (χnk
ω)[nk]

according

to Theorem 2.5.

This implies for each ω ∈ Ωrc (R
n),

∥∥Br
p (t)ω − ω

∥∥
L2(Rn)

≤ t
∥∥∥∆(r)

f,pω
∥∥∥
L2(Rn)

→ 0
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as t→ 0+.

Finally, to see

Br
p (t, x, y) = e−t∆

(r)
f,p (x, y)

in R+ × Rn × Rn, it suffices to show

Br
p (t) = e−t∆

(r)
f,p

in Ωrc (R
n). To see it, we can first observe that

lim
h→0

∥∥∥∥
(
Br (t+ h)−Br (t)

h
− ∂

∂t
Br (t)

)
ω

∥∥∥∥
L2(Rn)

= 0

from the following estimate obtained by Theorem 2.5:

∥∥∥∥
(
Br
p (t+ h)−Br

p (t)

h
− ∂

∂t
Br (t)

)
ω

∥∥∥∥
L2(Rn)

≤ h

∥∥∥∥
(
∆

(r)
f,p

)2
ω

∥∥∥∥
L2(Rn)

for each ω ∈ Ωrc (R
n). This shows

d

dt

(
Br (t)ω

∣∣∣∣η
)

=

(
∂

∂t
Br (t)ω

∣∣∣∣η
)

for each ω ∈ Ωrc (R
n) and for each η ∈ L2

r (R
n). Hence, by the fundamental

theorem of Calculus and the fact that Br (t)ω ∈ Dom∆
(r)
f,p for each ω ∈

Ωrc (R
n), we derive

(
Br
p (t)ω

∣∣η
)
−
(
ω
∣∣e−t∆

(r)
f,pη
)
= lim

q→0+

∫ t

q

d

ds

(
Br
p (s)ω

∣∣e−(t+q−s)∆(r)
f,pη
)
ds

= lim
q→0+

∫ t

q

(( ∂
∂s
Br
p (s)

)
ω
∣∣∣e−(t+q−s)∆(r)

f,pη
)
−
(
Br
p (s)ω

∣∣∣
( ∂
∂s
e−(t+q−s)∆(r)

f,p

)
η

)
ds

= lim
q→0+

∫ t

q

(
−∆

(r)
f,pB

r
p (s)ω

∣∣∣e−(t+q−s)∆(r)
f,pη

)
+

(
Br
p (s)ω

∣∣∣∆(r)
f,pe

−(t+q−s)∆(r)
f,pη

)
ds

= lim
q→0+

∫ t

q

(
−∆

(r)
f,pB

r
p (s)ω

∣∣∣e−(t+q−s)∆(r)
f,pη

)
+

(
∆

(r)
f,pB

r
p (s)ω

∣∣∣e−(t+q−s)∆(r)
f,pη

)
ds

=0
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for any two ω, η ∈ Ωrc (R
n). This shows

(
Br
p (t)ω

∣∣η
)
=
(
ω
∣∣e−t∆

(r)
f,pη
)
=
(
e−t∆

(r)
f,pω

∣∣η
)

for any two ω, η ∈ Ωrc (R
n), implying Br

p (t) = e−t∆
(r)
f,p in Ωrc (R

n) and thus

Br
p (t, x, y) = e−t∆

(r)
f,p (x, y) in R+ × Rn × Rn.

Note that the previous argument implies that every convergent subseqe-

unce of the sequence of the scaled heat kernels
{
A

(r)
(k),p (t, x, y)

}
k
converges to

the same limit, so together with Theorem 3.5, we can further conclude this

sequence in effect converges to that limit. Therefore, we have established

Theorem 1.1.

4. Heat Kernel Asymptotics away from Critical Points

In this section, we give proofs of Theorem 1.2 and Theorem 1.3.

The key point of obtaining the two theorems is based on the remark that

we can retrieve pointwise bound for the heat kernels in question by establish-

ing their corresponding mapping properties (see Theorem 4.4 and Theorem

4.7). These mapping properties are established based on a Bochner-type

estimate related to differential forms with support away from the critical

points (see Lemma 4.1 and Lemma 4.5).

Throughout this section, for each p ∈ Crit (f), we additionally identify

the coordinate neighborhood Up of p with the Euclidean ball B 3
2
(0) and p

with 0, under the coordinate chart ϕp. For each large k > 0, put

Uk =
⋃

p∈Crit(f)

Ukp ,

where Ukp is identified with the Euclidean ball B
k−

1
2+ε (0), ε ∈

(
0, 12
)
under

the coordinate chart ϕp, as in Subsection 3.2.

4.1. Proof of Theorem 1.2

Choose D > 1 and let k large enough so that 2D < kε. For each
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p ∈ Crit (f), let x ∈ Bkε (0) \B2D (0) and put

Akx := ϕ−1
p

(
B
k−

1
2+ε (0) \B |x|

2
k−

1
2
(0)
)
⊂ Ukp

The choice of D plays a role in the following Bochner type estimate:

Lemma 4.1. If D is large enough, let x ∈ Bkε (0) \B2D (0) and we have

(
∆

(r)
k ω|ω

)
≥ Ck |x|2 ‖ω‖2 (4.1)

for each ω ∈ Ωr (M) with suppω ⊂ Akx and for large k, where C is indepen-

dent of D,x, k.

Proof. Recall that we can write the Witten Laplacian ∆
(r)
k as

∆
(r)
k = ∆(r) + k2 |df |2 + k

(
L∇f + L∗

∇f
)
.

Put A = L∇f + L∗
∇f .

Note that

|df |2 ≥ 1

4k
|x|2

in Akx (with respect to (Up, ϕp)). Moreover, by the local expression (2.2) and

partition of unity, there exists m ∈ R such that (Aη|η) ≥ m ‖η‖2 for each

η ∈ Ωr (M). For this m, let D large enough such that

∣∣∣ m
D2

∣∣∣ < 1

8
.

Now, for each ω ∈ Ωr (M) with suppω ⊂ Akx, we deduce

(
∆

(r)
k ω|ω

)
≥ k |x|2

(
1

4
+

m

|x|2
)
‖ω‖2 ≥ Ck |x|2 ‖ω‖2

with C = 1
4 . ���

LetD > 1 be large enough such that Lemma 4.1 holds and let k > 0 large

enough such that 2D < kε. Given p ∈ Crit (f), for each x ∈ Bkε (0)\B2D (0),

let χ[1] ∈ C∞
c (Up) be a cut-off function such that χ[1] = 1 in ϕ−1

p

(
B 1

2
(0)
)
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and χ[1] = 0 in M \ ϕ−1
p

(
B 3

4
(0)
)
. Put χ

[1]
x,k ∈ C∞

c

(
Ukp
)
such that

χ
[1]
x,k ◦ ϕ−1

p (q) = χ[1]
(
|x|−1 k

1
2 q
)

for each q ∈ ϕp (Up) ⊂ Rn. Similarly, let χ[2] ∈ C∞
c (Up) be a cut-off function

such that χ[2] = 1 in ϕ−1
p

(
B 5

4
(0)
)

and χ[2] = 0 in ϕ−1
p

(
B 3

2
(0)
)
. Put

χ
[2]
x,k ∈ C∞

c

(
Ukp
)
such that

χ
[2]
x,k ◦ ϕ−1

p (q) = χ[2]
(
|x|−1 k

1
2 q
)

for each q ∈ ϕp (Up) ⊂ Rn. Finally, set χx,k ∈ C∞
c

(
Akx
)
by

χx,k = χ
[2]
x,k − χ

[1]
x,k. (4.2)

In particular, χx,k = 1 in ϕ−1
p

(
B 5|x|

4
k−

1
2
(0) \B 3|x|

4
k−

1
2
(0)

)
. Note that

sup
Rn

∣∣∣Dαχ
[1]
x,k

∣∣∣ ≤ C
(
χ[1], χ[2]

)
|x|−|α| k

|α|
2 , (4.3)

where C
(
χ[1], χ[2]

)
depends on χ[1] and χ[2], with respect to the coordinates

given by (Up, ϕp). The construction of χx,k can be given from the same

cut-off functions χ[1] and χ[2] as long as x ∈ Bkε (0) \ B2D (0) and k > 0,

in which circumstance, the constant C
(
χ[1], χ[2]

)
in (4.3) does not rely on x

and k.

With Lemma 4.1 at hand, we can obtain the following L2-estimate.

Theorem 4.2. Let D > 1 be large enough such that Lemma 4.1 holds, and

for large k > 0 and for each x ∈ Bkε (0) \ B2D (0), let χx,k be the cut-off

function given by the cut-off function χ[1], χ[2] as in (4.2). Then for each

N ∈ N,
∥∥∥χx,ke−

t
k
∆

(r)
k ω

∥∥∥ ≤ C
(
χ[1], χ[2], t,N

)
|x|−N ‖ω‖ , (4.4)

for each ω ∈ Ωr (M), where C
(
χ[1], χ[2], t,N

)
depends on χ[1], χ[2], N and

smoothly on t but is independent of x and k.

Proof. First, we show (4.4) holds for N = 1. For higher positive integers

N , we can achieve similarly.
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Since χx,ke
− t

k
∆

(r)
k ω has its support in Akx, by Lemma 4.1, we obtain

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C1k
−1 |x|−2

(
∆

(r)
k χx,ke

− t
k
∆

(r)
k ω

∣∣∣∣χx,ke
− t

k
∆

(r)
k ω

)

= C1k
−1 |x|−2

(∥∥∥dk
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥d∗k

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2
)
. (4.5)

Hence, the L2-norm estimate of χx,ke
− t

k
∆

(r)
k ω is determined by the two L2-

norms in the right hand side (4.5). Before we proceed, note that by direct

computation, we see the following analogous Leibniz rules:

dk (χx,kη) = dχx,k ∧ η + χx,kdkη (4.6)

and that

d∗k (χx,kη) = (−1)n(r+1)+1 ∗ (dχx,k ∧ ∗η) + χx,kd
∗
kη (4.7)

for each η ∈ Ωr (M).

To deal with the first term on the right hand side of (4.5), by (4.6) with

η = e−
t
k
∆

(r)
k ω, we see that

∥∥∥dk
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤ 4

(∥∥∥dχx,k ∧ e−
t
k
∆

(r)
k ω

∥∥∥
2

+
∥∥∥χx,kdke−

t
k
∆

(r)
k ω

∥∥∥
2
)
.

(4.8)

Note that χx,k ∈ C∞
c

(
Ukp
)
and has the local expression dχx,k=

∑n
i=1

∂χx,k

∂yi
dyi

in
(
Ukp , ϕp

)
. Hence, by the local nature of χx,k (4.3) and Theorem 2.5, we

obtain

∥∥∥dχx,k ∧ e−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C2

(
χ[1], χ[2]

)
k |x|−2

∥∥∥e−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C3

(
χ[1], χ[2], t

)
k |x|−2 ‖ω‖2 , (4.9)

where C3

(
χ[1], χ[2], t

)
depends on χ[1], χ[2] and smoothly on t but indepen-

dent of D,x, k. Moreover, by Theorem 2.5, we obtain

∥∥∥χx,kdke−
t
k
∆

(r)
k ω

∥∥∥
2

≤
∥∥∥dke−

t
k
∆

(r)
k ω

∥∥∥
2

≤
(
∆

(r)
k e−

t
k
∆

(r)
k ω

∣∣∣∣e
− t

k
∆

(r)
k ω

)

≤C4 (t) k ‖ω‖2 . (4.10)
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Hence, using (4.8), (4.9) along with the fact that |x|−2 < 1, and (4.10), we

conclude
∥∥∥dk

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤ C5

(
χ[1], χ[2], t

)
k ‖ω‖2 , (4.11)

where C5

(
χ[1], χ[2], t

)
depends on χ[1], χ[2] and smoothly on t but indepen-

dent of D,x, k.

We can achieve an upper bound for the second term in the similar fashion

and let us briefly go through the deduction. By (4.7) with η = e−
t
k
∆

(r)
k ω, we

see

∥∥∥d∗k
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤ 4

(∥∥∥∗
(
dχx,k ∧ ∗e− t

k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥χx,kd∗ke−

t
k
∆

(r)
k ω

∥∥∥
2
)
; (4.12)

by doing so, we break down this L2-norm term into two terms, one is with

χx,k differentiated and the other without. By local nature of χx,k along with

Theorem 2.5, we can obtain

∥∥∥∗
(
dχx,k ∧ ∗e− t

k
∆

(r)
k ω

)∥∥∥
2

≤ C6

(
χ[1], χ[2], t

)
k |x|−2 ‖ω‖2 . (4.13)

By Theorem 2.5, we can see

∥∥∥χx,kd∗ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C7

(
χ[1], χ[2], t

)
k ‖ω‖2 . (4.14)

Finally, by (4.12), (4.13), and (4.14), we can conclude

∥∥∥d∗k
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤ C8

(
χ[1], χ[2], t

)
k ‖ω‖2 , (4.15)

where C8

(
χ[1], χ[2], t

)
depends on χ[1], χ[2] and smoothly on t but indepen-

dent of D,x, k.

Subsequently, by (4.5), (4.11), and (4.15), we conclude

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C9

(
χ[1], χ[2], t

)
|x|−2 ‖ω‖2 ,

where C9

(
χ[1], χ[2], t

)
depends on χ[1], χ[2] and smoothly on t but indepen-

dent of D,x, k. Namely, we have established (4.4) for N = 1.
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Similarly, we can obtain (4.4) holds for each positive integer N > 1. To

explain, we divide it into two cases: N is even and N is odd. If N is even,

then we can apply Lemma 4.1 repeatedly until we obtain

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤C10k
−N |x|−2N

( ∥∥∥(dkd∗k)
N
2

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥(d∗kdk)

N
2

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2 )

;

By the Leibniz rules (4.6), (4.7), local nature of χx,k, and Theorem 2.5, we

can deduce

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C11

(
χ[1], χ[2], t,N

)
k−N |x|−2N · kN ‖ω‖2

= C11

(
χ[1], χ[2], t,N

)
|x|−2N ‖ω‖2 ,

where C11

(
χ[1], χ[2], t,N

)
depends on N due to (4.6) and (4.7) but is inde-

pendent of D,x, k.

If N is odd, we can obtain

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2
≤C12k

−N |x|−2N

(∥∥∥(dkd∗k)
N−1

2 dk

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥(d∗kdk)

N−1
2 d∗k

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2
)

and so we can proceed to obtain

∥∥∥χx,ke−
t
k
∆

(r)
k ω

∥∥∥
2

≤ C13

(
χ[1], χ[2], t,N

)
|x|−2N ‖ω‖2 .

Hence, we have established Theorem 4.2. ���

More generally, using similar iterative argument, we can in effect obtain

the following L2-estimate involving the Witten Laplacian ∆
(r)
k :

Corollary 4.3. Let D > 1 be large enough such that Lemma 4.1 holds, and

for large k > 0 and for each x ∈ Bkε (0) \ B2D (0), let χx,k be the cut-off

function given by the cut-off function χ[1], χ[2] as in (4.2). Then for each

m ∈ N ∪ {0} and for each N ∈ N,

∥∥∥
(
∆

(r)
k

)m (
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥ ≤ C
(
χ[1], χ[2], t,m,N

)
km |x|−N ‖ω‖ , (4.16)
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for each ω ∈ Ωr (M), where C
(
χ[1], χ[2], t,m,N

)
depends on χ[1], χ[2],m,N

and smoothly on t but is independent of x and k.

Proof. Corollary 4.3 can be obtained similarly to Theorem 4.2.

Since d2k = 0 = (d∗k)
2, we see that

∥∥∥
(
∆

(r)
k

)m (
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤ 4

(∥∥∥(dkd∗k)m
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥(d∗kdk)m

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2
)
.

As in the proof of Theorem 4.2, repeated use of Lemma 4.1 gives

∥∥∥
(
∆

(r)
k

)m(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤C1k
−N |x|−2N

(∥∥∥(dkd∗k)
N
2
+m
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥(d∗kdk)

N
2
+m
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2
)
;

for each even positive integer N , and

∥∥∥
(
∆

(r)
k

)m (
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

≤C1k
−N |x|−2N

(∥∥∥(dkd∗k)
N−1

2
+m dk

(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2

+
∥∥∥(d∗kdk)

N−1
2

+m d∗k
(
χx,ke

− t
k
∆

(r)
k ω

)∥∥∥
2
)
;

for each odd positive integer N . Hence, the Leibniz rules (4.6), (4.7), the

local nature of χx,k (see (4.3)) and Theorem 2.5 allow us to establish Corol-

lary 4.3. Note that the constant C
(
χ[1], χ[2], t,m,N

)
in (4.16) depends on

m due to not only the Leibniz rules (4.6) and (4.7) but also Theorem 2.5,

and on N due to again (4.6) and (4.7). ���

Finally, we can show the following mapping property:

Theorem 4.4. Let D > 1 be large enough such that Lemma 4.1 holds, and

for large k > 0 and for each x ∈ Bkε (0) \ B2D (0), let χx,k be the cut-off

function given by the cut-off function χ[1], χ[2] as in (4.2). Then for each

m ∈ N∪ {0} and for each N ∈ N, there exists C
(
χ[1], χ[2], t,m,N

)
> 0 such
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that

∥∥∥(χx,k)[ 1k ]A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
2m

≤ C
(
χ[1], χ[2], t,m,N

)
|x|−N ‖ω‖−2m ,

(4.17)

for each ω ∈ Ωrc (Bkε (0)), where C
(
χ[1], χ[2], t,m,N

)
depends on χ[1], χ[2],m,

N and smoothly on t and is independent of D, k, x.

Proof. Thanks to G̊arding’s inequality and (3.3), (3.4), we obtain

∥∥∥(χx,k)[ 1k ]A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
2m

≤C1

∥∥∥
(
∆

(r)
f,p

)m
(χx,k)[ 1k ]

Ar(k),p (t) (χx,k)[ 1k ]
ω
∥∥∥
0

+ C2

∥∥∥(χx,k)[ 1k ]A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
0

≤C3

(
χ[1], χ[2]

) ∥∥∥χ̃1

(
∆

(r)
f,p

)m
Ar(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
0

+ C4

(
χ[1], χ[2]

)∥∥∥χ̃2A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
0
,

where C3

(
χ[1], χ[2]

)
, C4

(
χ[1], χ[2]

)
depends on χ[1] and χ[2], but is indepen-

dent of x, k since (χx,k)[ 1k ]
(·) = χ[1]

(
|x|−1 ·

)
− χ[2]

(
|x|−1 ·

)
with respect

to
(
Ukp , ϕp

)
and |x| > D > 1, and χ̃1, χ̃2 ∈ C∞

c

(√
kAkx

)
are cut-off functions

such that χ̃1 = 1 = χ̃2 in
√
k suppχx,k.

Next, for each η ∈ Ωrc (Bkε (0)) with η 6= 0, note that

(
χ̃1

(
∆

(r)
f,p

)m
Ar(k),p (t) (χx,k)[ 1k ]

ω
∣∣η
)

‖η‖0

≤
‖ω‖−2m

∥∥∥ (χx,k)[ 1k ]A
r
(k),p (t)

(
∆

(r)
f,p

)m
χ̃1η

∥∥∥
2m

‖η‖0
.

By G̊arding’s inequality, Corollary 4.3 and Theorem 2.5,

∥∥∥(χx,k)[ 1k ]A
r
(k) (t)

(
∆

(r)
f,p

)m
χ̃1η

∥∥∥
2m

≤C5

∥∥∥∥
(
∆

(r)
f,p

)m
(χx,k)[ 1k ]

Ar(k) (t)
(
∆

(r)
f,p

)m
χ̃1η

∥∥∥∥
0

+ C6

∥∥∥∥ (χx,k)[ 1k ]A
r
(k) (t)

(
∆

(r)
f,p

)m
χ̃1η

∥∥∥∥
0
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=C5k
n
2
−2m

∥∥∥
(
∆

(r)
k

)m
χx,ke

− t
k
∆

(r)
k

(
∆

(r)
k

)m
(χ̃1η)[k]

∥∥∥
L2(M)

+ C6k
n
2
−m
∥∥∥χx,ke−

t
k
∆

(r)
k

(
∆

(r)
k

)m
(χ̃1η)[k]

∥∥∥
L2(M)

≤C7

(
χ[1], χ[2],

t

2
,m,N

)
|x|−N k n

2
−m
∥∥∥e

t
2k

∆
(r)
k

(
∆

(r)
k

)m
(χ̃1η)[k]

∥∥∥
L2(M)

≤C8

(
χ[1], χ[2],

t

2
,m,N

)
|x|−N ‖η‖0 ,

where C8

(
χ[1], χ[2], t2

)
depends on χ[1], χ[2],m,N and smoothly on t but is

independent of D,x, k. Thus, we deduce

∥∥∥χ̃1

(
∆

(r)
f,p

)m
Ar(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
0
≤ C8

(
χ[1], χ[2],

t

2
,m,N

)
|x|−N ‖ω‖−2m .

Similarly, we can obtain

∥∥∥χ̃2A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
0
≤ C9

(
χ[1], χ[2],

t

2
,m,N

)
|x|−N ‖ω‖−2m ,

where C9

(
χ[1], χ[2], t2 ,m,N

)
depends on χ[1], χ[2],m,N and smoothly on t

but is independent of D,x, k.

Finally, we conclude

∥∥∥(χx,k)[ 1k ]A
r
(k),p (t) (χx,k)[ 1k ]

ω
∥∥∥
2m

≤ C10

(
χ[1], χ[2], t,m,N

)
|x|−N ‖ω‖−2m ,

where C10

(
χ[1], χ[2], t,m,N

)
depends on χ[1], χ[2],m,N and smoothly on t

but is independent of D,x, k. ���

As a consequence of Theorem 4.4, we can prove Theorem 1.2:

Proof of Theorem 1.2. The main key of proving this theorem is similar

to Theorem 3.5.

Write

Ar(k),p (t, x, x) =
∑′

I,J

Ar(k),pI,J (t, x, x) dx
I ⊗

(
dxJ

)∗

∈ C∞
(
R
+ ×Bkε (0)×Bkε (0) ,

r∧
T ∗

R
n
⊠

( r∧
T ∗

R
n
)∗)

.

Recall that for each S ∈ ∧r T ∗
xR

n⊗ (
∧r T ∗

xR
n)∗, the norm of S is defined to
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be |S|x := supωx∈
∧r T ∗

xR
n,ωx 6=0

|Sωx|
|ωx| , and note that

∣∣∣Ar(k),p (t, x, x)
∣∣∣
x
≤
(∑

I,J

∣∣∣Ar(k),pI,J (t, x, x)
∣∣∣
2
) 1

2

,

so it suffices to show for any two I, J and for each N ∈ N,

∣∣∣Ar(k),pI,J (t, x, x)
∣∣∣ ≤ C (t,N) |x|−N ,

whereC (t,N) depends onN and smoothly on t and is independent ofD,x, k.

Let D > 1 be large enough such that Lemma 4.1 holds. Let x ∈ Bkε (0)\
B2D (0), and put ωx,I,δ = χx,I,δdx

I and ωx,J,δ′ = χx,J,δ′dx
J as in (3.10). By

integration by part, we see that

Ar(k),pI,J (t, x, x) = lim
δ→0

lim
δ′→0

(
Ar(k),p (t)ωx,J,δ′

∣∣ωx,I,δ
)
.

Now, let χx,k be the cut-off function as in (4.2) given by χ[1], χ[2]. Using

Theorem 4.4 and Lemma 3.7 with fixed large m, we obtain, if δ, δ′ are small

enough,

∣∣∣
(
Ar(k),p (t)ωx,J,δ′

∣∣ωx,I,δ
)∣∣∣≤

∥∥∥ (χx,k)[ 1k ]A
r
(k),p (t) (χx,k)[ 1k ]

ωx,J,δ′
∥∥∥
2m
‖ωx,I,δ‖−2m

≤ C
(
χ[1], χ[2], t,m,N

)
|x|−N ,

where C
(
χ[1], χ[2], t,m,N

)
depends on χ[1], χ[2],m,N and smoothly on t but

independent of D,x, k, δ, δ′ , for large k.

For each x ∈ Bkε (0) \B2D (0), observe that the cut-off function χx,k is

constructed from the same cut-off functions χ[1], χ[2], leading to Ar(k),pI,J(t, x,

x) enjoying the same upper bound. Hence, we conclude

∣∣∣Ar(k),pI,J (t, x, x)
∣∣∣ ≤ C (t,N) |x|−N ,

where C (t,N) depends on N and smoothly on t and independent of D,x, k

and N is an arbitrary positive integer. (The contribution of m to the con-

stant is insignificant and thus is not marked in the parenthesis). ���



402 ERIC JIAN-TING CHEN [December

4.2. Proof of Theorem 1.3

The main idea of this proof is similar to Theorem 1.2. Recall that for

each p ∈ Crit (f), we additionally identify the coordinate neighborhood Up

of p with the Euclidean ball B 3
2
(0) and p with 0, and for each k > 0, put

Uk =
⋃

p∈Crit(f)

Ukp ,

where Ukp is identified with the Euclidean ball B
k−

1
2+ε (0), ε ∈

(
0, 12
)
.

First, we need the following estimate of Bochner type.

Lemma 4.5. If k is sufficiently large,

(
∆

(r)
k ω|ω

)
≥ Ck1+2ε ‖ω‖2 (4.18)

for each ω ∈ Ωr (M) with suppω ⊂M \ Uk, where C is independent of k.

Proof. The key point of this proof is virtually the same as in Lemma 4.1.

Since M is compact and df = 0 at p ∈ Crit (f), we can see

|df |2 ≥ k−1+2ε

in M \ Uk if k is sufficiently large; furthermore, we can let k large enough

such that
∣∣∣ m
k2ε

∣∣∣ < 1

2
,

where m ∈ R is given from the fact that (Aω|ω) ≥ m ‖ω‖2 for each ω ∈
Ωr (M) in which A = L∇f+L∗

∇f . Hence, for each ω ∈ Ωr (M) with suppω ⊂
M \ Uk, we deduce

(
∆

(r)
k ω|ω

)
≥ k−1+2ε

(
1 +mk−2ε

)
‖ω‖2 ≥ 1

2
k−1+2ε ‖ω‖2 . ���

Put U =
⋃
p∈Crit(f) Up (with Up identified as B 3

2
(0) under the co-

ordinate chart ϕp for each p ∈ Crit (f)), and let τ ∈ C∞
c (U) be a cut-

off function such that τ = 1 in
⋃
p∈Crit(f) ϕ

−1
p

(
B 1

2
(0)
)

and τ = 0 in
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M \⋃p∈Crit(f) ϕ
−1
p (B1 (0)). For (large) k, put τk ∈ C∞

c

(
Uk
)
such that

τk ◦ ϕ−1
p (q) = τ

(
k

1
2
−εq
)

for each q ∈ ϕp (Up) ⊂ Rn and for each p ∈ Crit (f). Finally, we set

χk = 1− τk ∈ C∞
c

(
M \

⋃

p∈Crit(f)

ϕ−1
p

(
B 1

2
k−

1
2+ε (0)

))
(4.19)

Note that χk = 1 in M \ Uk. Moreover, we can see Dαχk ∈ C∞
c

(
Uk
)
and

sup
Rn

|Dαχk| ≤ C (τ) k−ε|α|k
|α|
2

with respect to each of the coordinate charts (Up, ϕp), for each multi-index

α 6= 0.

Again, we have the following L2-estimate via Lemma 4.5.

Theorem 4.6. Let χk be the cut-off function given by the cut-off function

τ as in (4.19). If k is large, then for each N ∈ N and for each fixed m ∈ N,

∥∥∥
(
∆

(r)
k

)m (
χke

− t
k
∆

(r)
k ω

)∥∥∥ ≤ C (τ, t,m,N) km−N ‖ω‖ (4.20)

for each ω ∈ Ωr (M), where C (τ, t,m,N) depends on τ,m,N and smoothly

on t but is independent of k.

Proof. Theorem 4.6 can be established by the arguments in Theorem 4.2

and Corollary 4.3 by replacing |x| with kε, and χ[1], χ[2] with τ . ���

Theorem 4.7. For each p ∈ Crit (f), let χk be the cut-off function given by

the cut-off function τ as in (4.19). If k is sufficiently large, then for each

N ∈ N, for each m ∈ N ∪ {0},
∥∥∥χke−

t
k
∆

(r)
k χkω

∥∥∥
2m

≤ C (τ, t,m,N) k−N ‖ω‖−2m (4.21)

for each ω ∈ Ωrc (V ), where C (τ, t,m,N) > 0 depends on τ,m,N and

smoothly on t but is independent of k.

Proof. The main idea of proving Theorem 4.7 is very similar to Theorem

3.6. Choose a pair (V,P, E) so that the Sobolev norms are defined on M .
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By definition,

∥∥∥χke−
t
k
∆

(r)
k χkω

∥∥∥
2

2m
=
∑

ψ∈P

∥∥∥ψχke−
t
k
∆

(r)
k χkω

∥∥∥
2

2m
. (4.22)

By G̊arding’s inequality, we see that

∥∥∥ψχke−
t
k
∆

(r)
k χkω

∥∥∥
2m

≤C1 (ψ) k
m
∥∥∥ψ̃1

(
∆

(r)
k

)m (
χke

− t
k
∆

(r)
k χkω

)∥∥∥
0

+ C2 (ψ) k
m
∥∥∥ψ̃2χke

− t
k
∆

(r)
k χkω

∥∥∥
0
,

where ψ̃1, ψ̃2 are cut-off functions with compact support in the coordinate

domain in which suppψ lies and ψ̃1 = 1 = ψ̃2 in suppψ. Moreover, by

Theorem 4.7, we obtain for each N1 ∈ N,

∥∥∥ψχke−
t
k
∆

(r)
k χkω

∥∥∥
2m

≤
(
C3

(
ψ, τ,

t

2
,m,N

)
k2m−N1+C4

(
ψ, τ,

t

2
,m,N

)
km−N1

)∥∥∥e−
t
2k

∆
(r)
k χkω

∥∥∥
L2(M)

≤C5 (ψ, τ, t,m,N) k2m−N1

∥∥∥e−
t
2k

∆
(r)
k χkω

∥∥∥
L2(M)

, (4.23)

where C5 (ψ, τ, t,m,N) depends on ψ, τ,m,N and smoothly on t but is in-

dependent of k.

Now, since
∑

ψ∈P ψ
2 = 1, for each η ∈ Ωr (M), η 6= 0, we deduce

∣∣∣
(
e−

t
k
∆

(r)
k χkω

∣∣η
)∣∣∣

‖η‖L2(M)

=

∣∣∣
(
ω
∣∣χke−

t
k
∆

(r)
k η
)∣∣∣

‖η‖L2(M)

≤
∑

ψ∈P

∣∣∣
(
ψω
∣∣ψχke−

t
k
∆

(r)
k η
)∣∣∣

‖η‖L2(M)

≤
∑

ψ∈P

‖ψω‖−2m

∥∥∥ψχke−
t
k
∆

(r)
k η
∥∥∥
2m

‖η‖L2(M)

.

Using G̊arding’s inequality again, we obtain

∥∥∥ψχke−
t
k
∆

(r)
k η
∥∥∥
2m

≤ C6 (ψ) k
m
∥∥∥ψ̃3

(
∆

(r)
k

)m
χke

− t
k
∆

(r)
k η
∥∥∥
0
+ C7 (ψ) k

m
∥∥∥ψ̃4χke

− t
k
∆

(r)
k η
∥∥∥
0
,

where ψ̃3, ψ̃4 are cut-off functions with compact support in the coordinate
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domain in which suppψ lies and ψ̃3 = 1 = ψ̃4 in suppψ. By Theorem 4.7,

we obtain for each N2 ∈ N,

∥∥∥ψχke−
t
k
∆

(r)
k η
∥∥∥
2m

≤ C8 (ψ, τ, t,m,N) k2m−N2 ‖η‖L2(M) ,

C8 (ψ, τ, t,m,N) depends on ψ, τ,m,N and smoothly on t but is independent

of k. Hence, we conclude

∥∥∥e−
t
k
∆

(r)
k χkω

∥∥∥
L2(M)

≤ C9 (τ, t,m,N) k2m−N2
∑

ψ∈P
‖ψω‖−2m

≤ C10 (τ, t,m,N) k2m−N2

(∑

ψ∈P
‖ψω‖2−2m

)1
2

= C10 (τ, t,m,N) k2m−N2 ‖ω‖−2m . (4.24)

where C10 (τ, t,m,N) depends on τ,m,N and smoothly on t but is indepen-

dent of ψ, k.

Hence, by (4.22), (4.23), and (4.24), we deduce for each N1, N2 ∈ N,

∥∥∥χke−
t
k
∆

(r)
k χkω

∥∥∥
2m

= C11 (τ, t,m,N) k4m−N1−N2 ‖ω‖−2m ,

where C11 (τ, t,m,N) depends on τ,m,N and smoothly on t but is indepen-

dent of ψ, k. Finally, take N1, N2 large enough, we can conclude for each

N ∈ N,
∥∥∥χke−

t
k
∆

(r)
k χkω

∥∥∥
2m

= C12 (τ, t,m,N) k−N ‖ω‖−2m

as desired. ���

Now, we can start to prove Theorem 1.3.

Proof of Theorem 1.3. The argument of Theorem 1.3 is very similar to

Theorem 1.2.

Choose a pair (V,P, E) such that the sup-norm ‖·‖C0 and the Sobolev

norms are defined.

For each large k > 0, let x ∈ M \ Uk. Put ωx,I,δ = χx,I,δE
I and

ωx,J,δ′ = χx,J,δ′E
J with χx,I,δ, χy,J,δ′ as in (3.9) and

{
EI
}
I
⊂ E is a local
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orthonormal frame. By integration by part, we see that

∣∣∣e−
t
k
∆

(r)
k I,J (t, x, x)

∣∣∣ = lim
δ→0

lim
δ′→0

∣∣∣
(
e−

t
k
∆

(r)
k ωx,J,δ′

∣∣ωx,I,δ
)∣∣∣.

Let χk be the cut-off function as in (4.19). Fix a large m, and we obtain

∣∣∣
(
e−

t
k
∆

(r)
k ωx,J,δ′

∣∣ωx,I,δ
)∣∣∣ ≤

∑

ψ∈P

∣∣∣
(
ψχke

− t
k
∆

(r)
k χkωx,J,δ′

∣∣ψωx,I,δ
)∣∣∣

≤
∑

ψ∈P

∥∥∥ψχke−
t
k
∆

(r)
k χkωx,J,δ′

∥∥∥
2m

‖ψωx,I,δ‖−2m .

Then in view of Lemma 3.7, we can deduce ‖ψωx,I,δ‖−2m ≤ C1 (ψ); moreover,

by definition,
∥∥∥ψχke−

t
k
∆

(r)
k χkωx,J,δ′

∥∥∥
2m

≤
∥∥∥χke−

t
k
∆

(r)
k χkωx,J,δ′

∥∥∥
2m

. Hence,

by Theorem 4.7, we conclude for each N ∈ N,

∣∣∣
(
e−

t
k
∆

(r)
k ωx,J,δ′

∣∣ωx,I,δ
)∣∣∣ ≤ C2

∥∥∥χke−
t
k
∆

(r)
k χkωx,J,δ′

∥∥∥
2m

≤ C3 (τ, t,N) k−N ,

where C3 (τ, t,N) depends on τ,N and smoothly on t but is independent

of x, k, δ, δ′ (Dependence of m is again redundant). In addition, note that

the cut-off function χk is constructed so that χk = 1 in M \ Uk, which

indicates e−
t
k
∆

(r)
k I,J (t, x, x) shares the same upper bound for each x ∈ M \

Uk. Therefore, we obtain for each t ∈ T , for each x ∈ M \ Uk, and for each

N ∈ N,
∣∣∣e−

t
k
∆

(r)
k I,J (t, x, x)

∣∣∣ ≤ C4 (t,N) k−N ,

where C4 (t,N) depends on N and smoothly on t and is independent of x, k.

Finally, for each t > 0 and for each N ∈ N, we deduce

∥∥∥e−
t
k
∆

(r)
k (t, x, x)

∥∥∥
2

C0(M\Uk)

=
∑

ψ∈P

∥∥∥ψe−
t
k
∆

(r)
k (t, x, x)

∥∥∥
2

C0(M\Uk)

=
∑

ψ∈P

(
sup

suppψ∩M\Uk

(∑

I,J

∣∣∣ψe−
t
k
∆

(r)
k I,J (t, x, x)

∣∣∣
2 ) 1

2

)2

≤ C5 (t,N) k−N ,

where C5 (t,N) depends on N and smoothly on t. This furnishes Theorem

1.3. ���
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5. Morse Inequalities

In this section, we give a new analytic proof of the Morse inequalities as

an application of our heat kernel results: Theorems 1.1, 1.2, and 1.3.

First, we review the Morse inequalities:

Theorem 5.1 (The Morse Inequalities). Let M be a compact orientable

smooth manifold of dimension n and let f be a Morse function. Then

(a) for each 0 ≤ r ≤ n,

dimHr
dR (M) ≤ mr; (5.1)

(b) for each 0 ≤ r ≤ n,

r∑

j=0

(−1)r−j dimHj
dR (M) ≤

r∑

j=0

(−1)r−jmj (5.2)

and the equality holds if r = n; namely,

n∑

j=0

(−1)n−j dimHj
dR (M) =

n∑

j=0

(−1)n−jmj . (5.3)

To prove Theorem 5.1, let us recall the local index theory. Let X be an

inner product space and let {EI}I be an orthonormal basis for X. Recall

that a trace of a linear transformation A : X → X is given by

trA =
∑

I

〈AEI |EI〉.

Then we can derive the following McKean-Singer type trace integral formula:

Lemma 5.2 (McKean-Singer Type Trace Integral Formula, cf. [14]). Let

M be a compact orientable Riemannian manifold of dimension n. Then for

each t > 0 and for each k > 0, we have

(a) for each r,

dimHr
dR (M) ≤

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV ;
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(b) for each r,

r∑

j=0

(−1)r−j dimHj
dR (M) ≤

r∑

j=0

(−1)r−j
∫

M
tr e−

t
k
∆

(j)
k (x, x) dV,

and the equality holds if r = n; namely,

n∑

j=0

(−1)n−j dimHj
dR (M) =

n∑

j=0

(−1)n−j
∫

M
tr e−

t
k
∆

(j)
k (x, x) dV.

Proof. We begin by noting that, from (2.3),

tr e−
t
k
∆

(r)
k (x, x) =

∑

λ∈Spec∆(r)
k

dλ∑

i=1

e−
t
k
λ trϕλi (x)⊗

(
ϕλi

)∗
(x)

=
∑

λ∈Spec∆(r)
k

dλ∑

i=1

e−
t
k
λ
∣∣∣ϕλi (x)

∣∣∣
2
,

where dλ = dimE
(r)
λ,k (M).

For each r, observe that

Zr =

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV = dimHr

k (M) +
∑

λ∈Spec∆(r)
k

\{0}

e−
t
k
λ dimE

(r)
λ,k (M) ,

which follows from the fact that the order of integral and infinite sum can

interchange since the series representation (2.3) converges uniformly on com-

pact subsets. Hence, we conclude

dimHr
k (M) ≤ Zr.

This proves (a).

To see (b), notice that

r∑

j=0

(−1)r−j Zj

=
r∑

j=0

(−1)r−j dimHj
k (M) +

r∑

j=0

(−1)r−j
∑

λ(j)∈Spec∆(j)
k

\{0}

e−
t
k
λ(j) dimE

(j)

λ(j),k
(M)
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=

r∑

j=0

(−1)r−j dimHj
k (M) +

∑

λ∈R+

e−
t
k
λ

r∑

j=0

(−1)r−j dimE
(j)
λ,k (M) ,

where we interpret E
(j)
λ,k (M) = {0} if λ is not an eigenvalue of ∆

(j)
k . Finally,

by Proposition 2.2 and Proposition 2.1, we have established (b). ���

Thanks to Lemma 5.2, proving Theorem 5.1 boils down to investigating

the trace integral of the heat kernel e−
t
k
∆

(r)
k (x, y), from which our main

results (Theorems 1.1, 1.2, 1.3) come in handy.

5.1. Model kernels

To deal with the trace integral in question, it is important to know of the

heat kernel e−t∆
(r)
f,p (x, y) with respect to ∆

(r)
f,p that we call the model kernel

in this paper. In this subsection, we give the explicit expression for the trace

of this model kernel by the Mehler’s formula (see Theorem 5.3). With that

in mind, we will be able to see that the trace integral of e−t∆
(r)
f,p (x, y) can be

considered as an indicator of critical points of index r (see Theorem 5.5).

First, we review some facts about the usual harmonic operators. Let L

be the harmonic oscillator given by

L = − d2

dx2
+ x2

on DomL :=
{
f ∈ L2 (R) : Lf ∈ L2 (R)

}
. It is well-known that the eigen-

functions of L are given by for each N ∈ N ∪ {0},

ΦN (x) =
HN (x) e−

x2

2

π
1
4

√
2NN !

,

where

HN (x) = (−1)N ex
2 dN

dxN
e−x

2
,

and with respect to which the eigenvalue is 2N + 1.

Also, we have the following well-known Mehler’s formula:

Theorem 5.3 (Mehler’s formula). For each ρ ∈ [0, 1) and for x, y ∈ R, we
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have

∑

n≥0

ρn

2nn!
Hn (x)Hn (y) e

−x2+y2

2 =
1√

1− ρ2
exp

(
4xyρ−

(
1+ρ2

) (
x2+y2

)

2 (1− ρ2)

)
.

(5.4)

Similarly, put

L± = − d2

dx2
+ x2 ± 1

on DomL± :=
{
f ∈ L2 (R) : L±f ∈ L2 (R)

}
. Note that the eigenfuctions

of both operators L± are again given by {ΦN}N∈N∪{0}, but the eigenvalue

corresponding to ΦN is 2N + 2 for L+ while is 2N for L−. Thus, by the

Mehler’s formula (5.4) with ρ = e−2t, we obtain

e−tL
±
(x, y) = e(−1∓1)t

∑

N∈N∪{0}
e−2NtΦN (x) ΦN (y)

= e(−1∓1)t 1

π
1
2

∑

N∈N∪{0}
e−2Nt 1

2NN !
HN (x)HN (y) e−

x2+y2

2

= e(−1∓1)t 1

π
1
2

1√
1− e−2t

exp

(
4xye−2t −

(
1 + e−4t

) (
x2 + y2

)

2 (1− e−4t)

)
.

(5.5)

To write down the heat kernel explicitly, recall that for each p ∈ Crit (f)

and for each multi-index I,

∆
(r)
f,p

(
gdxI

)
=

[
−

n∑

i=1

∂2

∂ (xi)2
+
(
xi
)2

+

n∑

i=1

εiε
I
i

]
gdxI ,

where εi, εI as indicated in (3.1). For each strictly increasing multi-index I

with |I| = r, define ∆I
f,p : Dom∆I

f,p → C∞ (Rn) by

∆I
f,pg = −

n∑

i=1

∂2g

∂ (xi)2
+
(
xi
)2
g +

n∑

i=1

εiε
I
i g,

where Dom∆I
f,p =

{
g ∈ L2 (Rn) : ∆I

f,pg ∈ L2 (Rn)
}
. As we can see, ∆I

f,pg

is given by taking the I-coefficient from ∆
(r)
f,p

(
gdxI

)
(Note that

{
dxI
}
I
is a
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global orthonormal frame for
∧r T ∗Rn); namely,

∆I
f,pg =

(
dxI
)∗ (

∆
(r)
f,p

(
gdxI

))

for each g ∈ Dom∆I
f,p. Moreover, ∆I

f,p is self-adjoint and non-negative, so

we can speak of its heat kernel e−t∆
I
f,p (x, y) ∈ C∞ (R+ × Rn × Rn).

Set

L±
i − ∂2

∂ (xi)2
+
(
xi
)2 ± 1.

and, we can write

∆I
f,p =

∑

{i∈I:i≤Indfp}
L−
i +

∑

{i∈I:i>Indfp}
L+
i +

∑

{i/∈I:i≤Indfp}
L−
i +

∑

{i/∈I:i>Indfp}
L+
i . (5.6)

From the previous presented facts, we can see

ΦN1,...,Nn

(
x1, . . . , xn

)
= ΦN1

(
x1
)
· · ·ΦNn (x

n)

constitute the set of orthonormal eigenfunctions for ∆I
f,p, with respect to

which the eigenvalue is

λN1,...,Nn

=
∑

{i∈I:i≤Indfp}
2Ni +

∑

{i∈I:i>Indfp}
(2Ni + 2) +

∑

{i/∈I:i≤Indfp}
2Ni +

∑

{i/∈I:i>Indfp}
(2Ni + 2) .

Hence, put x =
(
x1, . . . , xn

)
, y =

(
y1, . . . , yn

)
and the heat kernel e−t∆

I
f,p

can be given by

e−t∆
I
f,p (x, y) =

∑

N1,...,Nn∈N
e−tλN1,...,NnΦN1,...Nn (x) ΦN1,...,Nn (y)

=
∏

{i∈I:i≤Indfp}
e−tL

−
i
(
xi, yi

) ∏

{i∈I:i>Indfp}
e−tL

+
i
(
xi, yi

)

×
∏

{i/∈I:i≤Indfp}
e−tL

+
i
(
xi, yi

) ∏

{i/∈I:i>Indfp}
e−tL

−
i
(
xi, yi

)
,

(5.7)

and each of the heat kernels e−tL
±
i

(
xi, yi

)
can be written explicitly via (5.5).
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Proposition 5.4. For any two x, y ∈ Rn, write

e−t∆
(r)
f,p (x, y) =

∑′

I,J

e−t∆
(r)
f,pI,J (x, y)

(
dxI
)
(x)⊗

(
dxJ

)∗
(y) .

Then

e−t∆
(r)
f,p
I,I (x, y) = e−t∆

I
f,p (x, y) . (5.8)

Proof. Put AI,I (t) : C∞
c (Rn) → C∞ (Rn) by

(AI,I (t) g) (x) =

∫

Rn

e−t∆
(r)
f,p
I,I (x, y) g (y) dy.

To prove (5.8), it suffices to show AI,I (t) g ∈ Dom∆I
f,p and





∂
∂tAI,I (t) g +∆I

f,pAI,I (t) g = 0

lim
t→0+

‖AI,I (t) g − g‖L2(Rn) = 0

for each g ∈ C∞
c (Rn).

Note that

∥∥∆I
f,pAI,I (t) g

∥∥
L2(Rn)

=
∥∥∥
(
dxI
)∗ (

∆
(r)
f,p (AI,I (t) g) dx

I
)∥∥∥

L2(Rn)

≤
∥∥∥∥∆

(r)
f,pe

−t∆(r)
f,p
(
gdxI

)∥∥∥∥
L2(Rn)

<∞

and

∆I
f,pAI,I (t) g =

(
dxI
)∗
[
∆

(r)
f,p

(∫

Rn

e−t∆
(r)
f,p (x, y)

(
g (y) dxI

)
dy

)]

=
(
dxI
)∗
[
− ∂

∂t

(∫

Rn

e−t∆
(r)
f,p (x, y)

(
g (y) dxI

)
dy

)]

= − ∂

∂t
AI,I (t) g

for each g ∈ C∞
c (Rn). Since

{
dxI
}
I
is an orthonormal frame, we see that

for each g ∈ C∞
c (Rn),

∥∥∥∥e
−t∆(r)

f,p
(
gdxI

)
− gdxI

∥∥∥∥
2

L2(Rn)

∑′

K 6=I

∫

Rn

∣∣∣∣
∫

Rn

e−t∆
r
f,p
K,I (x, y) g (y) dy

∣∣∣∣
2

dx
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+

∫

Rn

∣∣∣∣
∫

Rn

e−t∆
r
f,pI,I (x, y) g (y) dy − g (x)

∣∣∣∣
2

dx→ 0

as t→ 0+, implying

‖AI,I (t) g − g‖2L2(Rn) =

∫

Rn

∣∣∣∣
∫

Rn

e−t∆
r
f,pI,I (x, y) g (y) dy − g (x)

∣∣∣∣
2

dx→ 0

as t→ 0+. Finally, by using the fundamental theorem of Calculus, together

with ∆I
f,pAI,I (t) g ∈ L2 (Rn) as in the last part of proof of Theorem 1.1, we

obtain AI,I (t) = e−t∆
I
f,p in C∞

c (Rn). Hence, we have furnished (5.8). ���

Proposition 5.4 shows that, under the global orthonormal frame
{
dxI
}
I
,

the diagonal entries of the model kernel e−t∆
(r)
f,p (x, y) as an linear transfor-

mation from
∧r T ∗

xR
n to

∧r T ∗
yR

n are nothing but e−t∆
I
f,p (x, y). That being

said, we see that the trace of e−t∆
(r)
f,p (x, y) is given by

tr e−t∆
(r)
f,p (x, y) =

∑′

I

e−t∆
(r)
f,p

I,I (x, y) =
∑′

I

e−t∆
I
f,p (x, y) (5.9)

and e−t∆
I
f,p (x, y) can be written as in (5.7).

Theorem 5.5.

lim
t→∞

∫

Rn

tr e−t∆
(r)
f,p (x, x) dVx =

{
1 , if r = Indfp

0 , otherwise
. (5.10)

Proof. By (5.9), (5.7), and the Fubini theorem, the trace integral in question

is determined by the (trace) integrals of e−tL
±
i (x, y):

lim
t→∞

∫

R

e−tL
±
i

(
xi, xi

)
dxi.

By (5.5), we can write

e−tL
±
i
(
xi, xi

)
=e(−1∓1)t 1

π
1
2

1√
1−e−2t

exp
(4
(
xi
)2
e−2t−2

(
1+e−4t

) (
xi
)2

2 (1−e−4t)

)
.

Since e−t → 0 as t → ∞, e−tL
±
i

(
xi, xi

)
are both bounded by an integrable
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function. Also, we can see

lim
t→∞

e−tL
+
i
(
xi, xi

)
=0

and

lim
t→∞

e−tL
−
i

(
xi, xi

)
=

1

π
1
2

e−(x
i)

2

.

Thus, by the Lebesgue dominated convergence theorem, we obtain

lim
t→∞

∫

R

e−tL
+
i
(
xi, xi

)
dxi =0

and

lim
t→∞

∫

R

e−tL
−
i
(
xi, xi

)
dxi =1.

Now, to see (5.10), if r = Indfp, choose I0 = (1, . . . , r) and we obtain

e−t∆
I0
f,p (x, x) =

n∏

i=1

e−tL
−
i
(
xi, xi

)
,

in which case, we deduce

lim
t→∞

∫

Rn

e−t∆
I0
f,p (x, x) dx = 1.

For each of the other strictly increasing indices I 6= I0, there must exists

s ∈ I such that s > r = Indfp, implying, from (5.7), e−t∆
I
f,p (x, x) contains

the kernel e−tL
+
s (xs, xs). This leads to

lim
t→∞

∫

Rn

e−t∆
I
f,p (x, x) dx = 0.

Hence, we conclude limt→∞
∫
Rn tr e

−t∆(r)
f,p (x, x) dx = 1 if r = Indfp.

If r 6= Indfp, we discuss in the two cases for strictly increasing indices

I: I whose elements are lower or equal to Indfp and the others. For each

strictly increasing index I whose elements are lower or equal to Indfp, there

must exist s /∈ I such that s ≤ Indfp. This implies e−t∆
I
f,p (x, x) con-

tains e−tL
+
s (xs, xs), resulting in limt→∞

∫
Rn e

−t∆I
f,p (x, x) dx = 0. For each

of the other strictly increasing indices I, I must contains at least one el-

ement s such that s > Indfp. This implies again e−t∆
I
f,p (x, x) contains
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e−tL
+
s (xs, xs) and so limt→∞

∫
Rn e

−t∆I
f,p (x, x) dx = 0. Therefore, we con-

clude limt→∞
∫
Rn tr e

−t∆(r)
f,p (x, x) dx = 0 if r 6= Indfp. Hence, we have fur-

nished Theorem 5.5. ���

We will see in a moment that Theorem 5.5 plays a central role in tackling

the trace integral of e−
t
k
∆

(r)
k (x, y).

5.2. Heat kernel proof

In this subsection, we give our heat kernel proof of the Morse inequal-

ities. The essence of our proof is that our main results (Theorems 1.1, 1.2,

and 1.3) allow us to see as k → ∞, the trace integral of e−
t
k
∆

(r)
k (x, y) is ap-

proximately close to the sum of the trace integral of the model kernels, which

further converges to the Morse number mr by Theorem 5.5 as t → ∞. In

other words, we can deduce the following result regarding the trace integral

in question based upon our main results:

Theorem 5.6.

lim
t→∞

lim
k→∞

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV = mr (5.11)

for each r.

Proof. Let D be the positive number given in Theorem 1.2. For each p ∈
Crit (f), put Dk

p = ϕ−1
p

(
B

2Dk−
1
2
(0)
)
and Dk =

⋃
p∈Crit(f)D

k
p . Moreover,

let Uk be as given in Theorem 1.3. Note that

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV

=

∫

Dk

tr e−
t
k
∆

(r)
k (x, x) dV

︸ ︷︷ ︸
(A)

+

∫

Uk\Dk

tr e−
t
k
∆

(r)
k (x, x) dV

︸ ︷︷ ︸
(B)

+

∫

M\Uk

tr e−
t
k
∆

(r)
k (x, x) dV

︸ ︷︷ ︸
(C)

. (5.12)
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By a change of variable, we see that

(A) =
∑

p∈Crit(f)

∫

B2D(0)
trAr(k),p (t, x, x) dx.

By Theorem 1.1, we obtain

lim
k→∞

(A) =
∑

p∈Crit(f)

∫

B2D(0)
tr e−t∆

(r)
f,p (x, x) dx. (5.13)

Similarly, we obtain

(B) =
∑

p∈Crit(f)

∫

Rn

1Bkε (0)\B2D(0) trA
r
(k),p (t, x, x) dx,

where 1Bkε (0)\B2D(0) is the characteristic function of Bkε (0) \B2D (0). Now,

Theorem 1.2 indicates that the integrand is bounded above by an integrable

function |x|−N with large N ; namely,

∣∣∣1Bkε (0)\B2D(0) trA
r
(k),p (t, x, x)

∣∣∣ ≤ C1

|x|N
,

where C1 is independent of D,x, k, for each x ∈ Rn and for large k. Hence,

by Theorem 1.1 and Lebesgue dominated convergence theorem, we retrieve

lim
k→∞

(B) =
∑

p∈Crit(f)

∫

Rn\B2D(0)
e−t∆

(r)
f,p (x, x) dx. (5.14)

To deal with (C), choose a pair (V,P, E) so that the C0-norm is defined

on the compact manifold M . Using the partition of unity, we can rewrite

(C) as the finite sum:

(C) =
∑

ψ∈P

∫

M
1suppψ∩M\Uk · ψ tr e−

t
k
∆

(r)
k (x, x) dV.

By Theorem 1.3, choose a positive integer N ∈ N and we see that

∣∣∣1suppψ∩M\Uk · ψ tr e−
t
k
∆

(r)
k (x, x)

∣∣∣ ≤ C2 (t)

kN
→ 0, as k → ∞
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where C2 (t) depends on t but is independent of k and ψ ∈ P, for each

x ∈M . Hence, by Lebesgue dominated convergence theorem, we conclude

lim
k→∞

(C) = 0. (5.15)

Therefore, by (5.12), (5.13), (5.14), and (5.15), we obtain

lim
k→∞

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV =

∫

Rn

tr e−t∆
(r)
f,p (x, x) dx.

Finally, Theorem 5.5 gives

lim
t→∞

lim
k→∞

∫

M
tr e−

t
k
∆

(r)
k (x, x) dV = mr.

Hence, we have established Theorem 5.6. ���

Morse inequalities now follows from by Lemma 5.2 and Theorem 5.6.

Acknowledgment

This paper is adapted from the author’s master thesis. The author

would like to thank deeply to Professor Chin-Yu Hsiao for his kind, dedicated

supervision.

References

1. R. Berman, Bergman Kernels and Local Holomorphic Morse Inequalities, Math. Z.,
248.2 (2004), 325-344.

2. J. M. Bismut, The Witten complex and the Degenerate Morse Inequalities, J. Differ-

ential Geom., 23 (1986), 207-240.

3. J. M. Bismut, Demailly’s asymptotic Morse inequalities: A heat equation proof, J. of
Functional Analysis, 72 (1987), 263-278.

4. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math.,
133 (1974), 219-271.

5. Y. L. Chiang, Semi-classical Asymptotics of Bergman and Spectral Kernels for (0, q)-
forms, Bulletin of the Institute of Mathematics, Academia Sinica, 18 (2023) no. 3,
299-364.

6. J.-P. Demailly, Champs magnetiques et inegalite de Morse pour la d′′- cohomologie,
Ann. Inst. Fourier, 35 (1985), 189-229.



418 ERIC JIAN-TING CHEN [December

7. J. P. Demailly, Holomorphic Morse Inequalities. In Several Complex Variables and
Complex Geometry, Part 2 (Santa Cruz, CA,1989), Proc. Sympos. Pure Math., 52

(1991), 93-144. Amer. Math. Soc., Providence.
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