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1. Introduction. Staikos and Sficas [10] and Philos [6] have
recently divided the solutions of #-th order functional differential
equations into disjoint classes according to their oscillatoty character
and their behavior as £ — co. By imposing certain integral conditions
on the functions in these equations, they were able to determine
which of these classes make up the set of all solutions. An earlier
study of this type for second order equatioﬂs was carried out by
Ladas et al. [5]. ‘

Here we study the decomposition of the solutions of = the
-equation

() @)@ @)1 + 6f (2, 2(g(2))) =0

under less restrictive integral conditions than those imposed in [6]
and [10]. We also cobtain (see Theorem 1 below) results regarding
the oscillation and convergence‘ to zero of the bounded solutions of
(). o

For an extensive bibliography on nonlinear oscillation problems
for functional differential equations, the reader is referred to the
survey paper of Kartsatos [4]. Other recent results related to the
theorems in this paper can be found in the papers of
Grammatikopoulos [1], Philos [8], and the references contained

therein.

Received by the editors November 26, 1980 and in revised form May 9, 1981,
(1) Research supported by the Mississippi. State University Biological and Physical

Sciences Research Institute.
@ Research supported through the Ministry of Coordination of Greece,

517



518 GRAEF, GRAMMATIKOPOULOS AND SPIKES [December

2. An oscillation theorem. Consider the #z-th order (n#>2)
nonlinear differential equation )

1) @@ (019 + of (¢, 2(9(8))) =0 ;
where 6 =+1,1<v<#n-—1, and 7, 9: [{, ) =R and f: [, o)
X R— R are continuous. Throughout this paper we assume that
#(#) >0 on [, ®), [ [1/7(s)]ds= oo, g(t) = o as t - co, and that
f (¢, v) is nondecreasing in ¥ with vf (¢, ¥) >0 for ¥y #0.
Furthermore, it is understood that the results here pertain only
to the nontrivial continuable solutions 2(#) of (1), i.e, x() is
defined on an interval of the form [f;, o) and for every T =1i:
sup{la()|: ¢ =T} >0. Such a solution is said to be oscillatory if
its set of zeros is unbounded and nonoscillatory otherwise.
- Parts of' the proofs given here make use of the following two

lemmas due to Grammatikopoulos [2,3]. (See also Sficas and
Stavroulakis [11]).

- LEMMA 1. Let u be a positive (n— v)-limes continuously
differentiable function on the interval [a, ) and let 1 be a positive
continuous function on [a, o) such that

STu@wiat=

and the function w = pu™" is y-times continuously differentiable on
[a, ). Moreover, let
_fu®,  if 0<k<m—y-—1
PR lw(k'”’”’), if n—yv<k<in.

If w.(t) = w () is of constant sign and not identically zero for all
large t, then there exist t, > a and an integer I, 0 <1 < n, with n + [

even for o, nonnegative or n + 1 odd for o, mnonpositive, and such
that for every t =i, ' ‘

C1>0  implies  wox@)>0 (B=0,1,--,1—1)
and |
I<n-—1 implies (= Do) >0 (b=01+1,,2-1).

LEMMA 2. If the functions u, u, w and o are as in Lemmq 1
and for some k=0, 1,---, n— 2
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lim Cz)k(t)' =c, cER

o Al
then

ym (Dk+1(t) =0,

t , Wé will also make use of the following notation in the remainder
of this paper. For any T =1, and all t > T we let

| 2(t) = r(x*-" (@),
T, = [110 = sr-tsri/r()1ds/ (v = D1 (= v = D)L,

and

oL fER@w),  0<k<m—»y—1 -
op(t) = o

lzG=n0(4), n—y<k<n.

With this notation, we have the following result.

THEOREM 1. The condition that

(2) [T, 917G, A)lds = oo

Jfor every constant A0 and all large T is necessary and sufficient
for _every bounded solution x(t) of (1) to be:
(I) oscillatory if = is even‘tm‘d 6=1, or if n is odd and
B htse ,

and N |
(1) either oscillatory or satisfy wi(t) — 0 monotonically as ¢t — oo

for k=0,1,---, n—1if n is odd and 6 =1 or if nis even

and 6 = — 1. k

Proof. To prove sufficiency, assume that x(#) is a bounded
nonoscillatory solution of (1). We will give the‘déta'ils of the proof
only for the case when 2(t) is eventually positive since the proof
for the case x(Z) eventually negative is similar. To this end let
£ > max {fo, 0} Dbe such that #(#) >0 and x(g(2)) >0 for &= 4.
Then from (1) we have ‘ p

3 . 2 e <0, |
for ¢ > 41, Notice that (3) and Lemma 1 together imply that the
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integer I assigned to x(¢) by Lemma 1 is such that = +7 is odd -
for 6 =1 and is even for 6 =—1. It follows from Lemma 1 that
if §=1, then =1 for # even and /=0 for # odd for otherwise
successive integrations would show that x(#) is unbouned. By similar
reasoning, if § = — 1 we obtain /=10 for z# even and /=1 for n
odd. Furthermore, Lemma 1 implies that for the cases where /=1

(4) (=D ei(@)>0 for é=1,2,--,n—1
holds, and for /=20

(5) (—1)fwi()>0 for i=1,2,---, —1
holds,

Next, multiply (1) by J(T, ¢t), T > t1, and integrate over [T, ¢£]
to obtain

©)  [TICT (s, 2(9()) ds = — 8 [ J(T, $)z(s) ds.

But

ff@»wwww

=J(T, )z=2(t)—J" (T, 20-5(t)+ - - +(=1y~1] (T, )2l
+ (= Lyt O =y =Dl - (1) )+ L

where L is a"constant. It then follows from (4) — (6) that

%) [T 95 G, w(g(s) ds < oo

Now if I =1, then 2’(¢) >0 and this together with (7) contradicts
(2). Moreover, I =1 implies that either 6 =1 with # even or
0=—1 with # odd, and thus (1) has no bounded positive
nonoscillatory solutions in this case. For the case [ =0 nqtice that
(5) implies that x(#) is decreasing. Thereforé, if (II) does not
hold. then there exists a constant A; >0 such that A, < x2(9(t))
for t > T. Again, (7) contrad1cts (2) and the sufﬁmency part of
the’ proof is complete. ,

To prove necessity, assume that every bounded solution of (1)
satisfies either (I) or (II), but that there exists a constant c#()
such that ' ‘ )
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. |
[T, )15 s, 8e)lds < oo

Choose Ty > max{#y, 1} so that

(8) [T, 91 (s, 8e)lds < el

and consider the integral equation

© 20 =20 + o= D1 7 715 = w2 — 0 r(u)] d
S (s, 2(9(s))) ds/(v — D! (m—v — 1.

It is not difficult to verify by differentiation that a solution of (9)
is also a solution of (1). We will show that (1) has a bounded
nonoscillatory solution by using the following special case of
Tychonov’s fixed point theorem:

THEOREM. Let F be a Fréchet space and X be. a closed convex
subset of F. If G: X — X is continuous and the closure G(X) is a
compact subset of X, then there exists at least one fixed point x in
X.

. In order to utilize this theorem, let #, = min{ 7o, mins=s, 9(¢)}
and let F be the Fréchet space of all continuous functions
‘. [uy, o) > R with the topology of un1f0rm convergence on
compact subintervals of [, ).

If ¢ >0, let the closed convex subset X of F Be defined by

= {x = F; c<z(g(t)) <3¢ t= uo},,

and define the operator G on X by

% + (—1)*™16Q(2),  if t>T,

where |
Q(m) = f: (/:[‘(s — w)" Y — m) Y7 (u)] du)
< f (s, @(g(s))ds/(n ~ v — D! (v = D).

To complete the proof for the case ¢ >0, we show that G
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satisfies all the hypotheses of the fixed point theorem stated above.
First observe that for any x € X

[(Gz)(t) — 2¢]1< Q(To)

for t = uo, and that
QT < [ J(To, 9)f (s, 30)ds <c.

Thus we see that G maps X into X

- To Shown that ‘G is continuous let {x:}, Z:"i, 2,4-- be any
- sequence of functions in X converging uniformly to z € X on
every compact subinterval of [uy, ). Let t=uo and T:>max{Z, To};
then f(¢, 2:(g(®))) — F (&, 2(9(t))) uniformly on [wo, T:]. But
[(Gz) (@) — (Gx)(D| = f J(To,8) | £ (s, 22(9()))—f (s, w(g(s)))] ds,

and we see from (8) that Gxx converges uniformly to Gz on any
compact submterval of [uo, ). Hence we conclude that G is
- continuous. Rt o R '

Finally, in order to show that GX is a compact subset of X it
is sufficient to show that GX is relatively compact smce GXcX
and X is closed. Furthermore, since X is bounded, it suffices to
show that GX is equicontinuous. For this purpose we distinguish
two cases. If #— v =1, then from the definitions of Gz, J, and X
we have that there exists a constant L, such that

Gy @I [ [ 1t = wy=iw — y=-/r(w)] du)
< f(s, $(g(8)))ds/(v — D —v—2)!
<L, f J(To, ) fG, se)ds
for = u,. Hence it follows from (8) that there is a constant L
such thgi; i(Gw)’(t)[ < L; where L: is independent of both x and

¢. It then follows that GX is equicontinuous on [#,, 00).
If n—y= 1, we have for each ¢t = T, that

(GaY W < L [ (s = 0= s, alae)) as/r(t)

~for some positive constant L;. Since Gz is constant on [uo, Tol,
then ‘
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(G2) (D <L [ (s—To)”“‘f(s 3¢) ds/7(2)

for all ¢ = wu,. Notlcmg that [(s — To)”"‘/](To, s)]—0 as s——>oo \
we see that ' '

1G] < L/rD] [T T(To )/ (s, 30)ds

for some constant L, Therefore for any given closed subinterval
[wo, Ti], of [#e, ), with T1 > To, there exists a constant’ L(T:)
such that S R

[(G2)(®)] < L(TI)

where L(T:) is independent of both 2 € X and t 1n [uo, Tl] Also,
if >8> T1, then

[(Gz) (L) — (Gw)(tl)l
<f J(T,, s)f(s 3¢) ds+f J(Ty, s)f(s 3c>ds

<2f J(Ty $)f(s, 86)ds

where the last integral tends to zero as Ti—»co independent of
xe€ X and #, & in [Ty, o). It is now easy to see that GX is
equicontinuous on [#,, o) for #—y =1. :

‘We now have all the hypotheses of the: ﬁxed po1nt theorem
_ satisfied for the case ¢>0. The argument for the case.c <0 is
similar and .will be omitted. From the ﬁxed‘point theorem we have
the existence of # € X such that Gz = . But then = is a bounded
solution of (1) that satisfies neither (I) nor (II). This contradiction
completes the proof of the theorem. 7_

REMARK By d1fferent1at1ng both S1des of equatlon (9) ‘we see
that w’(t) has fixed 31gn Therefore we have actually proved that
if there ex1sts a constant c#o such that f ] ( T $)1f (s, 3¢)lds <o,
then (1) has a solut1on that converges to a nonzero constant as

t>co,

It is also interesting to observe that equation (1) may have
unbounded nonoscillatory solutions with condition-(2) holdmg This
is illustrated by the simple examples :
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[tz (1)) + 2(2)/88 =0, t>0
and | |
[tz (8)1"" + 92(2)/168* =0, t>0

which have the solutions x:(#) = t/2 and x:(¢) = 132 respectively.

REMARK. Results similar to Theorem 1 have ‘been obtained by
other authors, for example see Philos [7] and Sficas and Stavroulakis
[11]. . However, Theorem 1 above differs from their results in the
" form of the integral conditions imposed. To see that Theorem 1
applies to equations not covered by the results in [7] or [111,
consider the equation ‘ '

[z (8)/e'] + (sechf)(tanh ) #(£) =0, >3,

Conditisn (2) and the other hypotheses of Theorem 1 hold but
none of the results in [7] or [11] apply to this example. ‘

Other theorems giving sufficient conditions for solutions to
 behave as in Theorem 1 can be found in [1] and [8].

3.. Classification results. In this section we classify all solutions
of (1) according to their oscillatory character and behavior as ¢ — co. ’
For this purpose we shall use the same classification used by Ph1los
[6] and Staikos and Sficas [10].

Let S(6) denote -the set of all solutions of (1) and let the
subsets S~(38), 8%0), 8:°(3), 8:=(8), Sr=(s), S7=(8), S*=(3), and

S-=(8) be subsets of S(5) defined as follows.
- (a) 8~(8) is the set of all oscillatory x € S(a)
(b) S°s) is the set of all nonoscillatory x € S(6) with
w(t) — 0 monotonically as ¢— o for £=0, 1,---, #—1,
(c) S7=(8) is the set of all x € S$(6) for which there exists
' ~ an integer N, 0SN<#n—1, with #+N odd and such that:
(P;) liMaw @p(t) = o for every =0, 1,---, N;
(Py) If N<#n—2, then lims.o one1(2) exists in R;
(Ps) If N<#—3, then for every k=N +2,---, 2—1
limpw @x(2) =0, @x(2) =0 for all large £, and
w0p() wpe1(2) <0 for all large £, -
(d) S#°(8) is the set of all x# € §(d) which possess propert1es
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(P1)-(P3) for some integer N, 0 < N < 7 — 1, with # + N
" even, ’
“(e) 8§7*(8) is the set of all z 8(6) for which the function
— 2 possesses properties (P;)-(Py) for some integer N, -
0< N<#n-—1, with -+ N odd.
(f) S:=(8) is the set of all 2 € §(9) for which the functlon
‘ — x possesses properties (P;)-(Ps) for some integer N,
0L N<n—1, with  + N even.
(g) S$+=(8) = 81"(38) U $5(9).
(h) §-=(6) = S7°(8) U §7°(3).

The following lemma will bé used in the proof of our next
theorem; a proof of this lemma can be found in [9]_. :

LEMMA 3. Cousider the linear differential equation
(10) ¥y — P (NO)ly—HMBI/PR) =0
where H, P’':[ty, ©0)— R are continuous, |P'(+)| > 0, and hm,_mP(t)
belongs to the set {0, — oo, oo}, If liMs.o H(t) exists in the extended
real line, then so does limi..y(t) for any solution y(t) of (10) which
satisfies y(ty) =0. Moreover, limi.o|H(t)| =0 implies that

THEOREM 2, If (2) is satisfied, then the solutions of (1) have
the following decomposition.
(111) For n even ;
S(+ 1) =8~(+1) U S+(+1) U S—(+ 1)
and
S(—1) =8"(— 1) UusS(—1u S+°°(-—1) US-—(—1).
(IV) For n odd

‘ S(-l-l) S(+1)US°(—I—1)US+°°(+1)US°°(+1)
and ‘
S(—1)= S~(— nHu S’““’(— 1 US=(—-1).

Proof. Let x(t) be a mnonoscillatory solution of (1) and let
11 > max{t,, 0} be such that lz(g(®))] >0 and |x(t)| >0 for ¢ =11,
Then, since ,(¢) =2z (#) dces not change sign on [#, o), each
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wr(t) eventually has fixed sign for £=0, 1,---, # — 1. Therefore,
for each % satisfying 1<k<#z—1, limyo ox(¢) exists in the
extended real number system, : :

Now suppose that x(2)>0 on [T, ), T >=t; and that
limsoe 2(2) 0. Then there exists a constant M >0 so that
2(g($)) = M for t > T. Define the functions k; by ‘

m() = [ JO-0(T, $)20(s) ds
and integrate by parts to obtain |
hi(t) = JO=O(T, t)29-9(¢) — f,t]“""‘”(T, $)z¢-V(s)ds
= J@=O(T, t)]"’ HO(T, D)/ T (T, )
— f Je—iD(T, $)z20¢-D(s) ds
= JO=O(T, Oa(8)/ T~ H+0(t) — hioa(2) .

Hence ‘we see»that for t>T, hia(t) is a solutidn of the equation ,

(L) Y —Jo- z“”(T Hly — H()1/T-P@) = =0

for i=1, 2,---, v where H,(t) = —Jp; (t) Moreover, i-(T) = 0
Noticing also that

W= [ J(T () ds
) f;](T, s)f (s, :v(’gq(s))‘)”ds_; . ’
we have

@i = [T, 9 G, M) ds.

Thus (2) implies that |%,(2)| = {H,(¢)] — oo as t— oo and, applymg
Lemma 3 to equation (L,), we conclude that |%,-1(2)| > o as ¢ — oo,
Continuing in this fashion we obtain [Hy(#)| = |k(2)| — 0o as
- t— oo, " ‘

- Next, let
qj(t) - j:si x(j+1)(s) ds ’

for j=1, 2,--+, n— vy, Integrating by parts vields
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q;(t) =t 2 P(t) - 7 f;sﬂ"ix(i’(s) ds —Tia(T)
= (=) 2PW) — j [ 591 2(s) ds — T 2P(T),
or ‘
g;(8) = 1g;(2) — jq;-1(t) = T7 2P(T).
Thus ¢;-1(2) is a solution of the equat‘ion
(L1,j) y — jly — Q;()1/t =0

where Q;(t) =— (T 2(T) + q;(t))/j and q;—1(T)=0. Fufthe;more,
notice that ' ‘

t
Grys(8) = ho(®) = [ 57" 12=1(s) ds

and hence |gn-,—1()] — 0 and |Qu—-,-1(¢)| — 0 as t— co. Applying
Lemma 3 to the equation (Li,»-,-1) we obtain [gs—, ()| — o and
|Qu—y-2(2)] >0 as ¢t—co. Continuing in this way we obtain
[go(2)] > 0 as t— 0. But qu(?) = f; z2'(s)ds =2() —2(T) so
z2(t) > oo as t— oo, \ o

It follows from the above argument that if #(#) is a solution
of (1) that is eventually positive, then as ¢ — o either () —0 or
2(t) > co. ¥ x2(¢)—0, we conclude from Lemma 2 that w:(2) =0
for =0, 1,---, #— 1 and, since each wi(?) is eventually monotonic,
we have x(t) € §°(8). For the case z(t) — oo, let N< # — 1 be the
greatest nonnegative integer such that wp(t) > o as t— oo for
E=0,1,---, N If N<n—2, then lims o oy+1(t) = C € R since
each wg(2) is monotonic. Furthermore, if N <% — 3, then Lemma
92 implies that wz(#) >0 as ¢— oo for k=N +2, N+ 3,---, n— 1.
In addition, it is easy to see that if wx(¢) —0 as t— oo, then
o) ori(t) <0 for kE=N+2 N+3,---, n—1 Thus
2(t) € S+(9).

For the case when x(2) is eventually negative, a similar argument
leads to the conclusion that x(t) € §-=(05).

To complete the proof we need only observe that by
Theorem 1 S°%(1) + @ implies 2 is odd and S°(— 1) == @ implies
is even. ’
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REMARK. Philos [6; Th. 1] and Staikos and Sficas [10: Th. 1]
also obtained results of this type. But as was pointed out in the
remark following Theorem 1, our results apply to equations not
covered by results in [6] or [10], and in this sense is a generalization
of some special cases of their work. '

“The next theorem provides additional 1nformat10n concernmg
the structure of the set S(+ 1).

THEOREM 3. Suppose that condition (2) holds and that for every
¢ >0 we have

ay [T @lan)if G co)lds=w, i »=1,

(120 [Tsifs coeNlds =0, if 1<v<n—1,
and _ : |
(13) fms,f(s, c/:(S) [1/7(e)] du)!tZs =co,  if v=n—1.
Then for n even | » |
S(+1) =8 (+1) U S (+1) U Sro(+ 1)
while for n odd ;
S(+1) =8~(+1) U S+ 1) U 8:=(+1) U S7%(+ 1)

Proof.‘ Let x(#) be a solution of (1) with 6=1, ie
z(t) € S(+ 1). We already know from Theorem 2 that for # even
S(+1)=8"(+1) US*(+1) US=(+1)

and for # odd « _ | |

S(+ 1) =8(+1) US(+1) US*(+1) US=(+1).
If 2@ e S+°°(+1)=SI'°°(+1')US;“(ﬂ-l), then (Py) implies that
(14) ’ : 2(t) — o asv t — co,

First\’assume that the integer N associated with z(¢) by the
definitions of S7®(8) and S3~(0) satisfies N >1, then (P;) also -
implies that : '
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(15) () —>co as t— oo for v<u—1
and
(16) 7()x'(t) — oo " as t—o oo y=n—1.

It is ‘easy to see from (15) that if v <<#—1, then tﬁere exist
ti > max {#, 0} -and a constant ¢, > 0 such that fort=# both 2(¢)
and x(g(t)) are positive and

(17D , Cx(9(®) Ze9(t) .

In like manner, if v =z —1 it follows from (16) that there exist
t: > max {Z, 0} and a constant ¢: >0 so that for ¢#>1# we have
2() >0, 2(g(#)) >0 and

iz

(18) 226 [ “C )] du.

For notational convenience in applying (17) and (18) we will let
T =t and c=c¢: when v<#—1 and T =4 and ¢=c: in case
v=n—1 Since § =1 we also have from (1) that

(19) f @, 2(9(2))) = — au(t) = —2(1) >0

for ¢t > T which, together with (14), implies that w._i(2) = 2~9()
is positive and bounded above. Notice also that if z =2, then
v=1=n—1 and it follows that w,-1(?) = w:(?) = #(H)2'(t) is
bounded above contradicting (15). Hence for the case N >1 we
Shave #>2 If v=1<<#—1 we multiply (19) bY/:[l/?’(%)]du. '
obtaining

(! 1u/rtur) au) £, ata) = = ( [/ /)] a) )

Integrating the right member of the last equation by parts and
using (17) leads to

(S t1/r 1 au) s, co(s)) ds < i+ 0ns(®)

for some constant L;. Then from (11) we have o,_o(¢) — o as
t — co which, in view of Lemmas 1 and 2, implies that N > » — 2.
But N < 2 — 2 since o,-1(¢) is bounded above, so we have N=#—2.
Therefore # + N is even and z(¢) € 85°(+ 1) provided » =1 and
N > 1. Furthermore, if 1<v<<#—1, multiplying (19) by ¢ and
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‘_integrating the right member by parts vields v
f;s,f(s, 2(g(8))) ds = — 129"D(t) + Ly + 0u-2(t)

where L. is a ‘é:onstant. Applying (12) and (A7) if I1<v<zm—1
and (13) and (18) if v == ~1 we again obtain N=#—2,'i.¢€.
2(t) € 8#*(+ 1). Hence Sf*(+ 1= @ in case N >1.

Now suppose that N = 0 and that =) € $§°(+ 1), then z is
odd so we have 7z = 3. Also (14) implies (19) for all sufficiently
large ¢, say ¢ > t: > max{t, 0}. Moreover, since # is odd it follows
from (Ps) that () >0 for #>1,. Notice that if » <z —1, then
either w:(2) = z/'(¢) or ws(t) = #(2) x'/(¢) so that 2’/(¢) >0 and
w1(t) = 2'(¢) is increasing. Clearly, if v =n— 1, then
wi(t) = r(t)a’'(t) is increasing. Also, observe that (14) implies that -
2'(t) is eventually positive. Therefore for the case v <z —1 there
exists #, >1¢; such that «'(¢) >2'(¢,) for ¢t >4¢, and for v=n—1
there exists #; > #; so that »(¢) z/(¢) >7(ts)x'($s) >0 for ¢+ > #5. Thus
we have that either ' : :

2@ = 2() + 2D @ —4)
or , }
2(1) 2 2t + 7(t) @' () [ [1/r ()] aw,

and we see that either (17) or (18) holds with suitable choices for
¢: and'#; or ¢; and 4. It then follows, by arguments similar to
the ones used above for the case N > 1, that w,—:(¢) — o as £ — oo,
But if #>5, then (Pi:) implies that co,,;g(t)<0 and we have a
contradiction. On the other hand if # ;3,' then  we have
wn-2(t) = 01(2) — 0 and wo(¢) — 0 as #— oo which contradicts the
assumption that N =0, Thus S} ®(+1) = @.

If 2(@)esS(+1)=8(+1) USi®(+1), then arguments
similar to those above show that S7(+ 1) = @ and the theorem is
proved, ' '

The three equations ‘ ’

(20) (tz'(£))" + x(t)/8&* =0, t>0
() Gz’ + 3z@)/16P =0, >0

and
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(22) (22" ()" + 45215(2) /328 = 0, - >0

all satisfy the hypotheses of Theorem 3 and have the solutions
21(2) = — 112, 2o(¢) = % and 25(2) = */2 respeétively. Notice that
each x.(2), x2(¢) and 23(2) belongs to S+° (+ 1) U S7®(+ 1) with
N=n-—2

It is interesting to compare -Theorem 3 with «similavr results
obtained by Philos [6; Th. 2] and Staikos and Sficas [10; Th. 3].
In [6] and [10] the authors used more restrictive integral conditions
than (2) and (11) — (13). In so doing they were able to show that
when # is odd S7®(+ 1) =87°(+ 1) = @. Notice that examples
(20) and (22) above have solutions of this type.

Furthermore, under their more restrictive integral conditions,
PhIIOS [6; Th. 3] and Staikos and Sficas [10; Th. 2] were able to
show that

S(=1) =8 (=1) US(—1) US(—1) US=(—1)
for # even, and for 7 odd that
S(—1) = S*(—1) U Sf(—1) U Sr*(—1).

- To see that conditions (2) and (11) — (13) above do not imply
this decomposition of solutions of (1) when 6 = — 1, consider the
equation

[®@)/@ + 1)1 — 1202°()/t(¢ + 1)* = 0, t>0.

Here v =1 and (2) and (11) are satisfied.  Moreover, this example
has the solution x(2) = 2°/120 which belongs to the set S3®(— 1).
Thus under our integral conditions, when ¢ = —1, Theorem 2
already gives us the best possible decomposition. ‘

REFERENCES

1. M. K. Grammatikopoulos, Oscillatory and asymptotic behavior of differential »
equations with deviating arguments, Hiroshima Math. J. 6 (1976), 31-53.

2. , On the effect of deviating arguments on the behavior of bounded
solutions of nonlinear differential equations, Ukrain. Mat. Z. 30 (1978), 462-473 (Russian).
3. , Asymptotic and oscillation criteria for nonlinear differential equations

with deviating argumenis, to appear.

4. A.G. Kartsatos, Recent results on oscillation of solutions of forced and perturbed
nonlinear differential equations of even order, in “The Stability of Dynamical Systems:
Theory and Applications (Proceedings of the NSF-CBMS Regional Conference held at



532 ‘GRAEF, GRAMMATIKOPOULOS AND SPIKES [December

Mississippi State University, Mississippi State, Mississippi, 1975),” Lecture Notes in
Pure and Applied Mathematics, Volume 28, Dekker, New York, 1977, 17-72.

5. G. Ladas, G. Ladde, and J].S. Papadakis,. Oscilletions of functional-differential
equations generated by deiays, J. Differential Equations 12 (1972), 385-395.

6. Ch, G. Philes, An oscillatory and asymptotic classification of the solutions of
differential equations with deviating arguments, Atti Accad. Naz. Lincei Rend. Cl. Sci.
Fis. Mat, Natur. (8) 3 (1977), 195-203.

7. , Oscillatory and asymptotic behavior of the bounded solutions of differ-
ential equations with deviating arguments, Hiroshima Math. J. 8 (1978), 31-48.
8. , Bounded oscillations generated by retardations for differential equations

" of arbitrary order, Utilitas Math, 15 (1979), 161-182.

9. V.A. Staikos and Ch. G. Philos, On the asymptotic behavior of nonoscillatory
solutions of dzﬁ‘erentzal equations with deviating argumenis, Hiroshima Math J. 7.(1977),
9-31.

: 10. V.A. Staikos and Y.G. Sficas, Osczllatory and asymptotic characterization: of. the
solutions of di ﬁ‘erentml equations with deviating arguments, J. London Math. Soc. (2)
10 (1975), 39-47.

11, Y.G. Sficas and 1.P. Stavroulakis, On the osciliatory and asymptotic behavior of a
class of differential equatzons with deviating arguments, SIAM J. Math. Anal. 9 (1978),
'956-966, :

DEPARTMENT OF MATHEMATICS MISSISSIPPI STATE UNIVERSITY, MISSISSIPPI
STATE, MISSIsSIPPI, 39762, U. S A,



