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Abstract. A C-surface is a surface in an Euclidean m-space E™
which is the image of a flat surface under a conformal mapping on
Em, 1In this paper, we prove that the total mean curvature of any
compact C-surface is >2n2. Some related problems are also studied.

1. Introduction. In the classical -theory of surfaces in an
Euclidean m-space E™, the two most important curvatures are the
so-called Gauss curvature G and the mean curvature «. It is well-
known that the Gauss curvature is intrinsic and its integral gives
the beautiful Gauss-Bonnet formula. For the mean curvature of a
compact surface M in E™, the total mean curvature satisfies [2I, 9]

11y fMoade24n.

The equality holds when and only when M is an ordinary 2-sphere
in an affine 3-space. It is known that the total mean curvature is
invariant under conformal mappings on E™ [3,8]. Moreover, it
is closely related to the eigenvalues of Laplacian [1, 2IV, 7] and the
self-intersection number of M [10]. In [2IV], it is shown that if
’ M is a compact flat surface in FE* then the total mean curvature
is > 2z% It is interesting to know the answer to tﬁe following.

Problem. Is it true that every compact flat surface in E™
m > 4, has total mean curvature = 2z%?

It has been proved that the answer to this problem is affirmative
if one of the following conditions hold; (a) M is pseudoumbilical
[4], (b) M has flat normal connection, or (¢) M is isometric to the
product of two plane circles of the same radius,
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In the following, we call a surface M in E™ to be a C-surface
if it is the image of a compact flat surface in E” under a conformal
mapping on E™. By a conformal Clifford torus we mean a compact
surface in E™ which is the image of the Clifford torus
7%= S%a) x SYa) c E* c E” under a conformal mapping on E™
[5] (S'(a) is a plane circle of radius ).

The main purpose of this paper is to prove the following
theorem which gives a complete answer to the proposed problem.

THEOREM 1. If M is a compact C-surface in E™, then we have
(1.2) , j atdV = 2z°.

Tke quality sign of (1.2) holds when and only when M is a conformal
Clifford toms

In view of Theorm 1 it is interesting to know when two
‘compact flat surfaces are related by a conformal mapping on E™,
In this respect, we prove the following.

THEOREM 2. If there is a conformal mapping on E™ which
carries a compact flat surface M inio another compact flat suvface
M, then there exists a similarily tmnsformatwn on E™ whzch carries
M into M.

By similarity transformations on E” we mean motions and

homothetics on E™,

2. Preliminaries. Let M be a surface in an Euclidean m-space
E™ We choose a local field of orthonormal frames ey, e, ey, - -, Cm
in E” such that, restricted to M, the vectors e;, e: are tangent to
M and es---, e, are normal to M. Let o', o2 @3- -, 0™ be the
field of dual frames: Then the structure equations of E™ are given
by . ,

(2.1) dof=—3 0hNob, ob+oi=0,

(2.2) da)ﬁ:—Zco‘é/\cog, 4, B, C=1,2 3,
We restrict these forms to M, Then w®=+--= 0" =0, Since

(2-3) G=dwr=i—'z@:/\wi’ 7, S, t=3""’ m; i7j, k=1, 2,‘



1981 C-SURFACES IN EUCLIDEAN m-SPACE 511
kby Cartan’s lemma, we may write

(24) | of =Y, Kyl  Hy=h.

We call &= Zhg,- o’ a)f;er the second fundamental form M. The
mean curvature vector H is given by ‘ o

T3 i + B e

The Gauss curvature G and the mean curvature o are given
respectively by

25 G =" (Wl — W l),
(26) o= %[}: - my | .

For a normal vector e = Y., a,e, at £ € M, the second fundamental
tensor A(z, e) at (x, e) is given by (Xrsa,hy). The Lipschitz-
Killing curvature K (zx, e) is defined by

2.7) - K(z, e)=det(A(x, e)).

3. Proof of Theorem 1. Since every compact C-surface in E”
is the image of a compact flat surface in E™ under a conformal
mapping on E™ and the total mean curvature of a compact surface
in E™ is invariant under the conformal mappings on E™, we may
assume that M itself is a compact flat surface in E”.

For each x € M, we denote by Tf the normal space of M at
2. Let A(e) denote the second fundamental tensor at (z, e) (for
any normal vector e at x). We define a linear mapping r from
Ti into the space of all symmetric matrices of order 2 by '

Gy 7 (Z a, er) = Z a» Ale,) .

Let O: denote the kernel of 7. Then we have dim O:>m —5.
We define N: to be the subspace of the normal space given by

Ty =N.®0.» N:10..

Then we have A(¢) = 0 for any € € O.. We choose es,---, e» at =
in such a way that e@s,---, eém € O.. Then for any unit normal
vector e at x,
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(3.2) e= Z cos 0, e, )
the Lipschitz-Killing curvature K(z, e) at (x, e) is given by

(33) K(z, €)= (Z cos 0, lzﬁ) <Z cos 0; h;z) — (Z cos 0; h{2>2.
r=3 $=3 t=3

The right-hand side of (3.3) is a quadratic form on cosd,. Hence,
by choosing a suitable unit orthogonal normal vectors e, e, es at
2, we may write

(34) K(?C', e) = 21(x) cos? 03 + 2a(x) cos? 6, + 2s(x) cos? b5,
M=l s.

Moreover, since M is a flat surface, we have
(85) A+ de+2=0, ia=KAE4nEt— (B34, A=1,2 3
In particular, we have 21 >0 and 23 < 0. Now, we consider the
cases 1z > 0 and 1; < 0 separately. ‘
Case 1: i, 22> 0. From (3.5), we have

(3.6) K(x, e) = 2:(cos® 63 — cos® 05) + 2:(cos®f, — cos? f;) -

Hence
ﬁle($, e)ldo = Axlxl(,cosz 03 — cos? fs)
4 22(cos? 0, — cos? ;) |do
(3"7) < u(z) fs [cos? 03 — cos? 05| do

+ () /; [cos? 0, — cos? 85 |do,

where 8. is the unit hypersphere of Ti' and do is the volume
element of S.. By a formula on spherical integration, we have

(3.8) j;x [cos? 8, — cos? 6;]do = 2€,-1/7%, 7 7S,

where ¢u.-1 denotes the area of the unit (m — 1)-sphere. Hence if
we denote the left hand side of (3.7) by K*(p), then we have

- (39) a(x) + 2(x) ZK*(2)r/20m-1 .
On the other hand, (2.6) gives ‘
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4o = (B + B5)? + (Bh + k) + (B + B)?

= (Fn)® + (Ba)® + 220 + 2(K5)° + (B1)® + (F)®

(3.10) : + 222 + 2(ht)?
> A(2y + 22) + A(KL)? + 4(Kh)?
> 4@ + 22).

Combining (3.9) and (3.10) we obtain
(311) o = K*(2)r"/ 2m1.
Case 2: 12, 23<<0. From (3.5) we have
K(z, e) = 2:(cos? 0, — cos? 03) + 2s(cos? 85 — cos? 03)

Hence (3.5) and (3.8) we have

f |K(x, e)|do < — 2 f icos? g, — cos? 03.[do
Sx Se

(312) — 2 fs |cos? 65 — cos? 03] do
- 221 Cm—»l/n-z .
From which we find

(3.13) ) 1= K*(x)nZ/Z(:m_l .
7 On the other hand, we have

4o = (hgl -+ hg:;)Z -+ (hﬁ + h§2)2 -+ (h‘{l + hgz)z
(3.14) = (Bh)? + (B%)* + 220 + 2(B)2
> 41, + 4<h?2>2 > 425,

Hence, by (3.13), we get
o> > K*(2)n*/2m-1 .

. Consequently, we always have the following inequality:

(3.15) - fM 2 dV > 7° jMK*dV/Zcm_l;
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On the other hand, since M is compact and flat, a well-known

inequality of Chern-Lashof gives
(3.16) [ KAV = dep.

Therefore, from (3.15) and (3.16), we obtain (1.2).

If the equality sign of (1.2) holds, the inequalities in (3.7) and
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(8.12) become equalities. Hence at least one of 1; and 2, is zero

for case 1) and at least one of 2. and 25 is zero for case 2). The

second case is impossible by our assumption. Thus we have 2, =0

on M. TFurthermore, since the inequalities of (3.10) are  actually

equalities in this case, we have 7 =k, 7 = lia= 0, Ih = ke and
% + #a = 0. Consequently, by 2: = 0 we obtain

(3.17) ?1 = gz, a fz = 0, ‘ h;j = 0, fl + hgz =0.

This shows that M is a compact, pseudo-umbilical, flat surface in
E™ with flat normal connection and whose total mean curvature is
2z%, From these we may conclude that M is a Clifford torus in an
affine 4-space E* (cf. Theorem 2 of [4]). This proves Theorem 1.

4. Proof of Theorem 2. A conformal mapping on an Euclidean
m-space E™ can be decomposed into a. product of similarity
transformations and inversions. It is obvious that similarity
transformations always carry a compact flat surface into a compact
flat surface, Thus it suffices to study the problem for inversions.
Let ¢ be an inversion on E™ such that the center of ¢ does not lie
on the surface M. We choose the origin to be the center of the
inversion ¢. Let x and Z be the position vectors of the original
surface M and the inverse surface M, respectively and ¢ the
radius of the inversion ¢. Then we have

z = (¢¥r¥)x, 72 =22,

where “+” denotes the inner product on E”. From this we obtain

(41 di = (¢¥/rt)dz — (2¢%/7%) (@r)z,
(4.2) dzdi = (¢*/r*)(dz-dz) .

Let es,- - -, e, be any orthonormal normal frame on M. ‘Then
(4.3) € = - 2(.7:;@"_) r—e, t=3;--,m

form an orthonormal normal frame on M. From (4.1) and (4.3)
we obtain ‘ \

s azede = (2L Ydpedw) — (£ ) (dw-der).
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Thus, by (4.2) and (4.4), we find that the principal curvatures
k:(e;) of M in the direction e; satisfy

45 R =— () ke — 2wy, i=12,

where %:;(¢;) denote the correspondiné principal curvatures of M.
Therefore, the Gauss curvatures G and G of M and M satisfy

(4.6) 6@ =1 G) + 2 (o) + A (wae),
[4 [4 (4

where H and 2, denote the mean curvature vector and the normal
component of &£ on M, respectively.
If M and M are both flat, then (4.6) reduces to

(4.7) . —x.H:.Lf”.
: 7

Consequently, we have

(4.8) - fM (2+H)dV = fM (M)dv.

1,.2
On the other hand, since M is compact, a well-known formula
of Minkowski-Hsiung (cf. [6] for instance) gives

(4.9) fM (z-H)dV + fM av =0.

Combining (4.8) and (4.9) we find

Sy (A= EEav = 0.

Since Zycx, < 7%, this implies that x# = x,. That is, the positioh
vector & on M is always normal to M. Consequently, M must lie
in a hypersphere of E™ centered at the origin. Thus the conformal
mapping ¢ on E™, restricted to M, gives a homothetic transformation
on M. This proves Theorem 2.

5. Remarks..

1. In view of Theorem 1 and known results on total mean
curvature, the author would like to make the following conjecture.

Conjecture. Every compact surface M of genus =1 in E™

satisfies
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2 2
(1.3) [ erav =2z

And the equality holds when and Oﬂly when M zs a. conformal
Clifford torus.

2. From the proof of Theorem 2, we also have the following.

COROLLARY. A compact flat surface in E™ is spherical if and
only if there exists an inversion on E™ which carries it into a compact
flat surface. '
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