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1. Introduction. In this paper, we are going to compute the
Fourier transforms of the invariant integrals, and derive the Plan-
cherel formula via the inversion formula for a class of Lie groups.
The same problems were studied for the Lie groups of real rank
one by Sally and Warner [9], and for the Lie groups of real rank
two by Herb [6]. In this paper, we will consider the class of Lie
groups specified as below. ;

Let G be a connected reductive Lie group with compact center.
Let g be the Lie algebra of G and g. its complexification. Let G.
be a complex analytic group with Lie algebra g.. Assume that

(1.1) The complex analytic subgroup of G. corresponding to the
derived subalgebra of g. is simply connected.

(1.2) G is the real analytic subgroup of G. corresponding to g.
(1.3) G is acceptable.
(14) G has a compact Cartan subgroup.

(1.5) G is of real type (A;)" for some positive integer #, that .
is, if a is a split Cartan subalgebra of g, then the set of -
real roots of the pair (g., a.) forms a root system of type

(A"

Let T be a compact Cartan subgroup of G and ¢€ T a regular
element. For f € CP(G), the invariant integral of f relative to
T at ¢ is denoted by @7(¢). Then the map

(1.6) A f—05(1), f e CG),
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defines a tempered invariant distribution on- &, the Fourier trans-
form of A; is a linear functional A; such that A(F) = 4,(f) for
all f in CP(G), where 7 is defined on the unitary dual of G.

In the general cases, the computation of the Fourier transform
/’1; of A; has some technical difficulties: for example, the computa-
tion of the integer comstants in the character formulas ‘of the
discrete series, the evaluation of some improper integrals or the
determination of the closed forms of some multiply infinite sums.
The Fourier inversion formulas in [6] contain certain compiicated‘
expressions involving some infinite sums which do not converge
absolutely and have no obvious closed form. Thus, they cannot be
differentiated term by term to get the Plancherel formula for G.
Professor‘ Sally suggested the idea of simplifying the problem of‘
the Fourier inversion by using the stabilized distribution F;, and it
is the method by which Chao solved the problems for Lie groups
of real rank two [1]. :

When the group G is of real type (A4:)" the explicit expression
for the Fourier transform A; can be obtained by using the techni-
ques in [1] and [9]. Moreover, the Fourier transform of the
distribution defined by the invariant integral relative to any non-
compact Cartan subgroup of G can be obtained at the same time,
these inversion formulas are proved in §8 of this paper.

" A general Plancherel theorem has been proved by Harish-
Chandra [5], but in this paper, we will derive the Plancherel
formula via the Fourier inversion formula by using the following
equation: ‘

17 f(e) = M3 lim T, feCXG).

Here, M is a constant, [T is a certain differential operator on T,
and the limit is taken through regular points in 7.

The Lie groups SU (p, g) satisfy all the five conditions (1.1)-
(15) and the Plancherel formulas for these groups have been
obtained by Hirai [8]. Since the class of Lie groups specified as
~above contains not only groups of classical type, SU(p, ¢),
' Sp (#,¢q), etc., but also certain Lie groups of exceptional type, thus



1981j | REAL TYPE (4,)" 147

the Plancherel formula obtained in this paper can be regarded as
the generalization of Hirai’s resuit. '

The contents of §2-5 are the structure and the character
theories of the group G, most of the results can be found in
Harish-Chandra [3] and [4], Herb [7], and Sugiura [10]. The two
theorems in §6 and §7 are the central parts of the computation of
the Fourier transforms, and they are combined into the inversion

formulas in §8. In §9, we obtain the Plancherel formula for G.

2. Structure of ¢ and G. A reductive Lie algebra g over E
is said to be of real type (A)" if for every split Cartan subalgebra
a of g, the root system Og(g., a.) consisting of all real roots of
the pair (g., a.) is of type (A;)®. This is equivalent to the
following statement: If 3 denotes the centralizer of the toroidal
-part of a in g, then the derived subalgebra of 3 is isomorphic to
(s1 (2, R))*. A reductive Lie group is of real type (Ay)* if its
Lie algebra is so. The real simple Lie algebras which are of such
real type are A;, A1, CU, DI, E I, E VI, and F II. All
these real simple Lie algebras have the common property: The
Cartan subalgebras of the same split dimension are conjugate [10].

From now on, we assume that G and g satisfy all assumptions
in §1.

g can be decomposed as follows: =@y + gz +---+ 4;, where
g; is a simple ideal for £=2,---, s, and g, is a reductive ideal
containing one and only one non-compact simple factor. Let #;
denote the real rank of g; for i=1, 2,---, s, then %=1 + %2+ - - -
+ ;.

Fix once and for all a Cartan involution 6 on ¢, let g=%+p
be the corresponding Cartan decomposit,ion. We fix in g a f-stable
" split Cartan subalgebra a, then the pair (4., a.) has exactly 2#
real roots. Let =+ «,, denote these real roots, ¢ =1, 2,---, #, and
" p=1,2,---,5s. For each «,, in the root system, there exist X,,,
Y,, and Hj, in ¢ such that X,, and Y,, belong to the root spaces
of @&, and —a,, respectively; [Hip Xyl =2X,, [Hie Yl
= —2Y,4q, [Xpe, Ypol = H},. Moreover, we assume that —Y,, is
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the conjugate of X,, under the conjugation of g. relative to

t+ v —1p.
For each s-tuple (Z) == (44,---, ;) of nonnegative integers such
‘that i, <%, for p=1,---, s, there corresponds a 0-stable Cartan

subalgebra {’ defined as follows:
(2.1) i =a, + Z D R(Xp = Ypo) + Z ;R H3, .

= a7, o1 =i
Then [ =qa and t={® is a compact Cartan subalgebra of g
contained in . Let (2) and (%) be s-tuples, we denote by (7) < (k)
if i,<%k, for all p=1,---,s; and denote by (i) <<(k) if the
strict inequality holds for at least cne. p. Thus () < (k) if and
only if ¥ < . ,

{{9](z) < (#,)} is a complete set of representatives of conjugacy
classes of Cartan subalgebras of g.

For each (7), we define an automorphism ¥, of g. as follows:
(22) g = Ad[;[ TT exp (_ 2V =1 (Xpq + Ypg) )]

1 q>1ﬁ
Then ¥, maps t. onto {¥. Fix a positive system ©+(4., a,) of
all the roots of the pair (g. .a.) so that it is compatible with an
ordered basis of a,+ v —1 a. defined as follows: H¥ HE---,
H%, HY, -, HY , By, -+, By, Here, {Bi, By,---, Bs} is an ordered
basis of v —1 a:.. Let 0+(g, i) be the transport of 0+(g, a.)
via ¥u Ym for each (4) < (#). Thus, for each .(2) < (%), the
complex conjugate of a non-imaginary positive root of the pair
(8., 1) is always positive.

Let A=Jw, Joo and T = J, be the Cartan subgroups of G
corresponding to the Cartan subalgebras a, [ and t, respectivels;.
Then, T is-a maximal torus of the maximal compact subgroup K
corresponding to ¥, hence, T’ is connected and compact. ” For each -
(1) = (2) > (0), let Z(0,i) =K nexp(v —1i®). Since Z(0, 7)
is an elementary 2-group, so there exists a subgroup Z(0, i) of
Z(0, ) such that Z(0, i) is equal to the direct product of Z(0, 1)
and Z(0, ) N J%., where J%. is the identity component of
Jiore =K 0 Ju. Then, the Cartan subgroup Ju has exactly
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1Z(0, i)] connected components and Ju = Z(O,v D) T4,  Jire
=20, i) J%:.

Since there exists a fundamental system of ©(g., i) confaining
all e = Ymw¥a, ¢=1,2,--+,4, and p=1,2---,s, we see
that every element of Z(0, ) is of the following form:.

s

exp (Z Zmﬁqnv -1 H;‘,‘,), My, € Z .

p=1 qgiﬁ
Note that the expression is unique if we assume that My =0 or 1.
For ¢=1,2,---, 3, and p=1, 2,---, s, let

(2.3) -~ rse=exp (zvV —1 HY).

Then Z(0, %) is the subgroup of Ju). generated by 7,, ¢g=1,---, 25,
and p=1,---,s. Thus, the order of Z(0,7) is equal to 2/®1
where |(4)] =43 +ds +---+ 4,. :

Let Py be the cuspidal parabolic subgroup of G associated to
Ja and My Jayy Ny be the Langlands decomposition of Puy. Let
MY, be the identity component of My, Then M%, is a connected
reductive Lie group which satisfies the conditions (1.1)-(1.4)
[3] (Lemma 28) and is of real type (A4A)!™-®I  where
() — (i) = (ks — 41, ++, ks —i,).  Hence, the previous discussion
about the structure of G can be applied to the group MY,
Jwye=Juw 0 MY is a compact Cartan subgroup of MY, and the
set {Jw N M| (Z) < (k) < (%)} is a complete set of representa-
tives of conjugacy classes of Cartan subgroups of MY,

All the connected components of Ju). have the same centralizer
in g which we denote as 3, 'Then,,a(” is a reductive Lie algebra
of real type (A1, similarly, all components of Ju N M, N K
have the same centralizer in m® for (&) > (¢), here m® is the
Lie algebra of M¢;. Let 3%* be the common centralizer. Then,
3" is also a reductive Lie algebra.

For each (i), let Luy = MuyJw, and LY = M%Juy,. Let [
be the Lie algebra of Ly; and the positive system of the roots of
the pair (I, ) be fixed as the intersection of @+(g., {*) and
o(I®, ¥ for (&) = (7). Let

(2.4) o(i, &) = % Sa,  acor(®, i),
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25 Aww() =&ean() [T A= &G™),

where . .

.' ce 0+(1P, {87 and j &€ Jw 0 L.
(2.6) ' eq,w(J) = sgn ]:[ 1 —¢e.0"D),

where

@ e 0519, {¥) and ] eJwmn L(z)

Here, we understand that L, = M = G, and if 2: 1(;)->C is a
linear functional, then £: denotes the corresponding analytic homo-
morphism of Ju if it exists.

The full Weyl group of 1 with respect to {$’ will be denoted
as Wy(i, ). The subgroup of Wc(i, k) generated by the reflections
relative to the real roots will be denoted as Wg(Z, k). The factor
group modulo Jay N L% of the normalizer in LY of Ju N Ly can
be embedded as a subgroup of We(Z, ) which is denoted as
 Wg(i, k). TFor all (k)= (i), we have Lu = Z(0, k) L%. Hence
Wx(i, B) is isomorphic to the factor group module Ju of the
normalizer of Ja in Ly, The groups W(0; 0) and W«(0, O)
are -also denoted as W, and Wi, respectively.

3. The characters of the discrete series. The unitary character
group of T miay be -identified with a lattice Lr in v —1 t*, the
set of all purely imaginary R-linear functionals on’ t. telLy is
said to be regular if wr s~z for all w1 in W. Let L; denote
the set of all regular elements of Lr.

For each r € Lz, let e(z) =sgnll, (H%), where « runs over
o+ (gc, t.). Then there is a tempered invariant e1gendlstr1but1on 0.
on G such that (— —1)WanG/E (1) g, is the character of a d1screte
series representatmn of G and '

31) 6. = Az Zw'det (w) . on T/,
WeWy

where T/ is the set of all regular elements of T For each (D),
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(32) J o = {exp [Z Z L pq Hm]

ﬁlqs:

.93M>‘0' for all p, q}.

LemMmA 31 If ji€Juye and j,=exp[N5 Ligsi, 30 H3ol1 € T &0,
then '

(83)  Awn(sis) 0:Geds) = >, det (w) c(wr : () Eun(feds)

meW‘k

where

(84) | &8.:(jrip) = Ew:(Gs) H Il exp [—24, | (we)(y@d HEDIT ;

b=1 qStp

1, if (— 1)'0)1]:[]:[7(?!(1,)H1*1q)>0,

=1 qsz

(85)  e(r: () = -1, if (= 1)'<’)']:[]_—_[T(?/(z> §q)<6,

=1 qsx

0, otherwise.

Proof. See [7].

4. The characters of the non—degenér'ate series. Let Jar: be
the unitary character group of Juy:, then x € Jie is said to be
regular if wy7x for all w1 in Wi, i). If y is a regular

character in Juy:, we set e(x) =sgn [II, log (x)(H%*)], where «
runs over P*(1P, {{). The unitary character group of Juy, is
identified with the dual space [P* of {® as follows: for each

2 € i9*, we define the corresponding unitary character in ja),, by
41)" Gt =exp V=T 2(logi)l,  js € Jus,.

For each regular character y in Je+, and each linear functional
2 in 9%, there is a tempered invariant eigendistribution 6%, on G-
such that (—1)W2amME/MENK () 6% is the character of a non-
degenerate series representation of G relative to J>, and the support
of 6§ is contained in the closure of the union of all conjugates of
the subgroups Ja with (B) = (2) (see [12]) The expression of the
eigendistribution 6y on Ju, is described as follows: if % is a
regular element in Ju, let Zy (resp. th) be the “M;)-component”

(resp. “Jiy,-component™) - of %, and- hy be any of the “LY -
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components” of %, (note that the element &y is unique ‘up to
Z<O: Z) n"]‘(’i)x). Then » :

‘ gD (B) = [Ac,m((wh))]
s OS2 TG, Bl Aan®)]

. q’x((Wh)M)(wh)f}/;—“ .

In particular, if 7 € Z(0, £), j: € J&, and j, € Jury, then

Z [AG, (e ds)]
weirgoiy | Wr(d, £) 11 Ac,y(Je Jp) |

- Wy (wr j)(w j,)" 714

OOA(T Jrds) =
(4.3) ’ «

Here, ¥, is a tempered invariant eigendistribution on M, such
that the restriction of ¥, to MY, is defined as 6, in §3 and

Tx(?’].k) = Z(T) 5;(1%',1)(7‘) d qfx(jk) s

4.4 ; i
(4.4) reZ0,i) and jr € Ji:.

Therefore, for any My -regular element j; in Juy:, we have
(45) 7.G) = Ao~ Y, det (w) x(wjs) .
WEWK(iJ)

For all regular z in Jire, 2 in i‘;')*, and # in Wg(0, ), we have

. (4.6) . 0%,1«); = ﬁ(aci?,\ .

5. The invariant integrals of G. To compute the Fourier
transforms and the Plancherel formula for the Lie group G, we
have to normalize various invariant measures. For each Cartan
subgroup J of G, let # — & be the canonical projection of G onto
G/J. Normalize the G-invariant measure dg,(Z) on G/J as [11],
Section 8.1. Let dr(¢) be the Haar measure on T normalized so
that the volume of 7 is one. Then the Haar measure on G is
normalized by the following relations:

[ fwas = [, [ f@t)dr)den@), feCLE).
- A Haar measure d;(j) for each Cartan subgroup J is then ﬁxed

by

©

[ s asey = [, [ f@i)ai)dar@), JCL6).
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If J=J.J, is 6-stable, let de(]-p> be the Haar measure on J,
which is the transport via the exponential map of the Haar measure
~on f, associated with the Euclidean structure derived from the
Cartan-Killing form on g. Normalize a Haar measure on J: so that
di(rjs) = @r (Gr) @ (34).

For each (Z), there is a unique positivé number ¢, such that

(5.1) . d/(;)p(jf’) =y @x1- - ATy, @xar - AT,

where j, = exp [Zj.1 Xysi, €0 H3,l. On the other hand, P9 s
_identified with R'®! as follows: if 1€ {®", then 1 is identified
with the [(Z)|-tuple (#)w = (u11,-+ -, pasy, pas,s <o, i) if

[Z Z Z pq m] Z Z Ly -'”M

p=1 qsiy =1 gsi,

Furthermore, the Haar measure on j{*

(5.2) dr=d(u)w = dpar- - -@pii, Bpay- - dpsi .

" Let £ € C2(G) and j € Ji, then the invariant integral of f
relatlve to Juy at j is defined as follows:

is normalized by

(5.3) PP(F) = e,r(4) A(o.i)(f)ﬁ;/] f(zj -”"1) deyy, )(-27)

When (i) =(0), then 0 is denoted as 9. For each (z), the func-
tion @ is integrable on Ju), € on Jw, and compactly supported.
The Fourier coefficients of 0 are defined as follows:

(54 @;‘(z);fT@;'(t)ff(ndt; ceLs.

0Pz, 1) = @) [ [ 0PGug) 2Gie) 577 G d,

.y e Ju: and ZEIU')*_”

(5.5)

The proofs of the following lemmas can be found in [1].
LemMMA 5.1.. Let feCG) and t in T', then
(5.6) 0L(t) = (—1)7 X &0 0.(F) + RK®),

TELT

where 7 is the number. of positive roots of the paz’r (8e, to) and .

67D B = TED 3 ) SCLOL S

T eI (£)>(9)
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Here, GO = {zja-tiz e G, je Jnl. |
LEMMA 52. Let f € C2(G) and jij, in Ji, them
3 ¢wy *vol (Juye) - (275)'“” c 0P (frgs)
(5.8) = (=1)r® reny ) ot 00AUF) 35

"EJ(z)r

+ Rfi)(fkjp) > ‘
where (i) is the number of positive roots of the pair (12, i) and
C RPGdp) | | ' |
= (—=1)rH+1 iy LoV TA
(5.9) =D >, "(’k)figp j7'7ada

el iy

3 [ (@) 090 ag.

(BY>(8)

For fixed ¢ in 7/ and jij, in Ji, let

(5.10) A:(f) = 05(¢), fec¥G).
(5.11) A9, =09Gejs), e CAB).
Then A; and /1?,3 i, are invariant distributions on G, and we are

going to compute the Fourier transforms of these distributions. In
the following two sections, we will compute some recurring formulas
for the functions RY by Whlch we W111 obtain the inversion formulas
for A; and A5);,.

6. Computation of R,Z(t). For every w in W;, there exist
im(w) e Al and —2<é,(w)<z, g=1,2,---,7, and p=1,2,---,s,
such that

61wt =jw@ e[ T 20100 Ko = Y0 ]

p=1 qsni5

For each (), let

(6.2) Fas(w) = jon(w) exp [Z >, ¢pq(w)(XM qu)] .

b=1 q>’p
Then jury(w) € J%: and
(6.3) wt = jur(w) exp [Z > pa(w)(Xpg — qu)]-
p=1 qsz

This decomposmon is unique up to Z(0, Z) N ](,), For each (),
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we will denote the element (wt)[juy(w)1~! by Jju(w).
Throughout this paper, we will use the éonvergence over Lr

and j(z')i very often. For this, we must give the explicit form to

the type of convergence which we use relative to Lr and .7 (i

Fix a basis B in the center of ¢ so that an element H in the
center of g satisfies exp (H) = e if and only if H is an integral
linear combination of elements in 2zv —1 B.

For any fundamental system S of ©0(g, t.). “ Let S* be the
dual basis of BU {H%|« e 8}. Then Lr is the set of all integral
linear combinations of elements in S*. )

For any positive integer m;, we define a subset L? of Lr as
follows: an element r & Lp is in L7 if there is a fundamental
system S of ©(g., t.) such that r = 2 @: 2, where 2 runs over S*
and ]a:] <m for each 2. Then we define the convergence over
L by

(6.4) Si=1lim Y, .

) Tely relp
Since any two fundamental systems of ®(g., t.) are W,
conjugate, thus L7 is invariant under W.. |
If J is a Cartan subgroup of G and Lj is the lattice in v =1 it
which is identified with the unitary character group of J%. Define
the subset L? as above, and let jm ‘be the subset of f . consisting
of the elements y € J: such that log(y) is in L»  Then the
convergence over J: is defined by
(6.5) > =lim y,
ret, o reFm
Consider the following series

(6.6) R, (1)) = (=D 2 E® [, F(0) 0.(9) dg.

tel,

T
By using the Weyl integral formula and considering the trans-

formations s on Juy, for all s in Wx(0, i), it is easy to see that
J s £ (9D 0:(0) dg

R N
6.7 _ (=1 2D o )
( A ) , - 1 Wk(0, 9] .[r(,.)!_/:r(i); D Jris

e Z det (w) e(wr : (2)) f;,f(jk}p) djr djp .

we Wy
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Let % be a function on an open dense subset of J, such that
(6.8) The complement of the domain of % in Ju, is of measure
Zero. |
(6.9) & is integrable on Ju).
(610) % is C* on its domain.
(6.11) % vanishes off a compact set.
For a function % as above, define T(G; t; (i); k) as follows:

-—i;l){jjf S T(G; t; (3); k)

(6.12) =3 > det (w)&.(wi)

TEI weWk

)L BGeis e(e s (D) €5 s) dis dis

Wt Y I

Throughout this paper, the notation “y” € Z(z, £)” will mean

s

(6.13) =11 II G.0™,

b=1 iy<gsky

My =0 or 1 for all p, q

PROPOSITION 6.1. Retain the above notations, we have
(=1)r»

(2z) Dl ey vol (Jiye)

(6.14) = > > det(w)

™ez,n YW

) [n- (™ jay(w) ) « SG™ jo(w); §,) dis,
oY) '

T(G; t; (4); h)

where, if j, corresponds to the [ (@) | -tuple (x)uy, them
SG™ jw(w); j,)
S
Ci) =1 gsiy
«[—2V =1 (—2,,) sin (¢40(w) + my, )] :
[ [1—2exp (—@50) cos (§p(w) & My, 7) + exp (—224,)],

(6.15)

the signs + are chosen so that 16selw) £ mpyn] <z forall p,q

Proof. Let S be any fundamental system of @(g,, t.) containing
the roots af), g=1,2,---,4, and p=1, 2,---, s. Let S* be the
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dual “basis of B U {H | e« S}, where B is defined as -above.
Let 7,, be the element in S* with ,,(X,,— Y, =—v —1,
q=17 27”'9 iﬁ and p:17 2;"" S, Let

L ={r€Lr | 1(Xpg— Y3,) =0, g=1,---, 45, p=1,--, s}.

L%I)— ZZZqu

=1 gsi,

Then Lr= L7+ L{® and this is a direct sum. Furthermore, if <
is an element of L{, then 2¢ is an integral linear combination of .
the roots of (g., t.), then &.=1 on Ju . Let

(6.16) B (e G ©) = D, EG™ i) B i)

™ez@d -
where jr € Jirs, j» € Jry and r € Lr. For any fixed j, and 7,
the function j.— %2*(js, j5 7) can be regarded as a function on the
connected compact abelian Lie group Juy:/Z(0, ¢). Since the
function is piecewise smooth, integrable, and compactly supported,
the following equation follows from the elementary Fourier analysis

on Jur/Z(0, 7).

Z Erre (D) f Eore(Gs) B 55) K

(;)!
(6.17)
= Vol (Jwe) PINACOV TN

1 (i1
2 Mez0,d

for all ji € Jure, j» € Jeys, © € Lr. Moreover, the series on the
left-hand side of (6.17) converges absolutely and uniformly with
respect to ji and the sum has compact support relative to Ju),.
Note also that the sum on the left-hand side of (6.17) is constant
on the cosets of L relative to the sublattice L¥ + 2L%.

If oelf and r= LY, we have ¢(o + 7: (2)) =¢(r: (i)) and
Eoic(fs) =E5.(jp). TFor we W, and byy=00r1, g=1,---, i
p=1,---, s, let

S(w : (by))
(6.18) 1y

E(Gw(w)) e(r 2 (8)) &.(J,) .
Ci TEZL;I?)+ZP,équTﬁq :
When j, lies in  J{y,, the series (6.18) converges absolutely. By

using the inequality |1 —exp(z + vV —1 %) =1~ lcos(y)| for
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yeER and 2 <0, it is easy -to see that the partial sums are
uniformly  bounded in J{.,.  Since the series . (6.17) ‘converges
absolutely and uniformly with respect to jz, and the sum has
compact support relative to Ju»y,, the following result follows from

the bounded convergence theorem.

(2z)1 DL ey vol (Jeiye)
(6.19) = > > det(w)

(=1)rP CT(G; t; (); k)

ez, YWk
- L BGm i) §5) S fio(w); 3s) dis,
@
where
SO jw(w); 5s)
(6.20)

= 1 S G i) ele : () 6.3, -

€@ ot

It is easy to express the sum S(r” ju(w); j,) in the form | (6.15)
and the proof is completed. »

THEOREM 6.2. For each (i), we have

Ri(t, (3))

(_l)l(i)l+1 . )
@ o, ] R

(6.21) _ N Vjicin(_l?rﬂ
21D [ Wk(0, 2)|

X [ ) B ),

2e¥
where , , '
Kiir(z, (1)) ‘

(6.22) = > 3 det ) :GTw(w)
T eZ0,i) k

. f_[ ]:[ sinh #p0[850(w) £+ (1 — m4,) «] -

Pt 453, sinh (#p4 7)

The signs + are chosen so that |¢y(w) £ (1 —my) z]l <=z for all
b, q.: 'And ‘ ‘
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Rir(f)= 3 3 det(w)

(6.23) ™z, TV ,
o [ SGT din(w); 35 RPG jar(w) 55) dis
@) .

Proof. By (6.6), (6.7) and (6.12), we have

T Ny (=1)r+t . e g (Y. D
62) Rt (D) = oSt 7G5 1 G 0P).

Hence, the first term of (6.21) follows from Lemma 5.2 and Pro-
position 6.1.- The second term of (6.21) follows from (4.6), the
absolute convergence of the first series on the right-hand side of
(5:8), and also the following improper integral [2]:

f°° z/-ta dr — = sinh (ut)
o 1+ 2xcos () + x? sin (¢) sinh (pz) ’
o< ltl<m. -

7.- Computation of Ry, iy(f). TFor (B)>(i), 6€2(0,7), jr< Jo%:
and j, € Juy,, let '

REG judn (B)
_—-_’(—-1,)1(i?+41 Z 20078

ZE;

(7.1)

()t

+ [T 0 S (@) 002(0) d.

By using the Weyl integral formula, the expression (4.2) and
considering the transformations s on Ju, for all s in Wz(0, &),
we have ‘

T (@) 00a(0) dg

(7.2) _ (—1)7® :
Wi, BT, 22, "7

- f
0,07,

et (B) OP(nh) K, (B) Cr(ha) By 75 .
(" () - ;
Here, we have used the fact that every element of Ju can be
expressed uniquely as 7k, 7 € Z(0,4%) and € L% N Ju. For an

element of the form, the following relation is always true:
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73 ey (1) Ao, (k) _ oy . ca.n(h) A(i,k)‘<h) )
7% N C A V3]

By the orthogonality relations for finite groups, we have

(=1t RP(6 jr G (R))

_ (=1)®1Z(0, 9] )
(7.4) | W )] ELZJ( E.Gr)
oo BTN [ GG di
where '
(75)  1(j» =f o . ean(la) P58 b o) A, w(hy) Cx(har) Gl .

oa
" Since the function { is compactly supported, and C* on an open
dense set whose complement in Ju), is of measure zero, by the
elementary Fourier analysis on Euclidean spaces, we see that the
following equation is true for almost all 7, in Jay»:

St 55T an [, 166G T s

(7.6) = (2ﬂ)l(i)l c(i)f \ €(i,k)(hM) m;k)(a ko .71?)

@"

« A, (hy) U (hy) @ hy .

Compare (7.6) with (6.7), it is easy to see that the integral on
the right-hand side of (7.6) is a constant multiple of T (M%); jr;
(k); ) with % equal to the translate of o by 6, For each
ue< Wk(i, i), we write #j:=ju,m(%) jun(u) as (6.3), where
Jja.w(u) € Ji and

s

fan@ =exp[ X X v (X Y0,

b=1 il,<qs.kp

(1.7)
l%pq(”)|_< .
PRrROPOSITION 7.1. Retain the above notations, ther Sfor almost all

s we have

(_1)1(1)——(i)l.+1]WK<i’ l)] = ot o
T(2e) DT e vol (Juns) R (8 jefsr (D)

(78) = >, > det(w)

Me 7, ¥V RGO

o L. _/‘;{@9)(6 ij(i,l)(u) hpjp) * S(Tm jZi,l)<u); hp_) dhp.,' _
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where X =M% N Jw)i and SG™ jun(u); hy) is defined as
(6.15).

Proof. It follows immediately from Proposition 6.1 and the pre-
vious remark. Note also that vol (Juy:) = 1Z(0, i) vol (M% 0 Jay:).

THEOREM 7.2. For each (i) > (0), we have

Ri,ir(f)

o (DI (G, i)
T & @) - Wk, D] Rea (/)
(20O (=1 O | WG, D]
t 2 (o SO W, D]

X 3 [ ()« Kran(z, () d(@)as.

et

Proof. It follows immediately from (6.22), (6.23), Theorem 6.2,
and Proposition 7.1. : '

- (7.9)

8. The Fourier transforms of the invariant integrals. Using
the results of Theorem 6.2 and Theorem 7.2, we can compute the "
Fourier transform of the distribution A; by an induction process.

TuEOREM 8.1. (Fourier inversiom of A;) Let t be a regular
element of T. Then for f e CX(G), '

05(t) = (—1) 3 E@) 0.(f)

tel,

| (V=1/2)! P (=1
(8.1 + (,.;3) [Wk(0, )]
: Z ./Rl(m 09w (f) Keoiy(x, (2)) d(e) ey
Tely | '

Proof. By Theorem 6.2 and Theorem 7.2, we see that
0%(t) = (—1)” Z E.()0.(1)

TELT

+ > a0, 9)

)>(

C Y e B - Euaz, (2) d(way,

¥y

where; for (&) > (4),
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. _ (=1)r® (/T Y H =)
ai, k) = G

(82) (—=1)? IT | WxGm, im)|
x m=1 -

5 ,
IR N N ym—1 gm
D= GD<esilyoe) ml=|1 | Wg(im=1, im)]

To complete the proof, we have to show tha.t »

(8.3) Z (“l)ﬁgIIWK(im, i) _ (—1)IB-I
D=smzit=y 1T | We(mt, im)| Wk(i, k)|
m=1

1=52=1(R)—(DI

Let C(, &) denote the. product of |Wxk(Z, B)| and the left-

hand side of (83), we need two lemmas to prove that C(, %)
= (=1)i®-w1,

LEMMA 82. For (m) = (k) > (i), we have

(8.4) AWk, m)) _ g, i e T )} |
| Wik, m)| 1i Gy — bt

Proof. Note that the group Wx(i, ) is equal to the direct
product of its subgroups corresponding to the simple factqrs of g
or G. Hence, it suffices to prove this lemma for the case that g
is simple. Recall that the real simple Lie algebras of real type
(A1)" are the following: A; I, AIIl, C II, DI, E 1II, E VII,
and F II. These real Lie algebras have a common rroperty [10]:
the full Weyl group of the pair (4., a.) contains a subset consisting
of elements which stabilize a,, and the restrictions to a, of this
subset is the symmetric group of the set {e,- - -, &,}. We have to
show that for any one-to-one mapping ¢ of the set {1,---, B} into
the set {1,---, m} with o(¢) =g for g=1,---, 4, there exists
s € Wg(, m) such that s, = %,y for all g=1,---, k. ‘Thus,
| Wk(i, m)|/| Wk(k, m)| is equal to the product of 2/®-1 gznd
the number of the mappings ¢ with the previous property. Here,
the factor 2!®-®! comes from the sign changes of the roots of
the pair (I¥, {™). Now, let ¢ be any mapping of {1,---, £} into
{1,---, m} which is one-to-one and o(q) =¢q for q=1,---,4i. By
the previous remark on the full Weyl group of “(ge» 0c), We see
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that there exists w in W¢(g, a) such that w(a,) = a,, w(i™) =™,
and we, = &, for gq=1,---, k. Since w(a,) = a, implies that
w(a¢) = a¢, by a theorem of Satake [11] (Proposition 1.1.3.3), there
exists # € G such that w = Ad(x) on a,. Thus, Ad (x)(j?™) is
a compact Cartan subalgebra of the reductive Lie algebra m™, and
hence there exists y € K 0N MY, such that Ad (yz)(j®™) = ™.
Obviously, %2 normalizes Ju», and defines an element s in
Wx(0, m) which has the same action as w on {™. Moreover,
since s is the identity on {{?, it belongs, in fact, to Wxk(Z, m).

LEMMA 83. C(Z, k) = (=1)!®=-D1 for all (k) > (i).

Proof. For (7)) = ‘(i°) < (@) <---< (é?) = (k), we have

| Wi(im, im)]  _ 1
(85) | Wg(gm=1, im)| 21G™ =G T (3™ — §71)1
: T

for m=1,---, p;

(8.6) | Wk(s, R)I o1G?™h-wi , g1(kq — 2!
. T : .
s 201 11 (35 — 57!

Thus, we have

CG, k) = S (=D
O=6H< e <Py=

(8.7) Y PO RO T

. z (g — i)~
I a—mem a—aor)

For each 1< p < |(B) — (4)], the term in C(4, k) corresponding
to p is the coefficient of xf‘“‘.‘ x:fiz- . -wis-is in the power
series of the analytic function (B — i1)! (ke — o)1 -+~ (Bs — i5)!
e [1—exp (s + &2 +---+ 2)]2.  Therefore, C(i, k) is equ'al to.

. B —q kE_—i k —i . .
the coefficient of 2! '&,* %---2° ° in the power series of the

following analytic function

F(zy, 22,0+, 25) .
= (b —i)! (ke — i)~ (ks — E)!
‘exp(—x—---— @)
c[1— (1 —exp(® +- -4 2,))B-OI]
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Thus, it is easy to show that C(Z, k) = (—1)I®-®1 by differentia-
tion. o

~ Now, we turn to the Fourler transform of the distribution
A3,

THEOREM 8.4. (Fourier imversiom of A%‘}k, Y For o< Z(0, i),

Je € T, and j, € Jay, such that the .inversion formula (7.6) holds,
we have - :

¢y + vol (Juye) « (2z) IOV« @P(8 4, 7,)
= (D@ 3 2G5 [ g 0200 - 37T an

7eF ,

. 1/ —71 \1O=n (—=1)r®

+ ® e~ L 0 0000
u;f ( 2 ) |Wk(E, 1)]

Z /(L)* 0% ("')(f) K(’kap ), (l)()( (ﬂ)) dlu)aw s

1ed gy

(8.8)

where, if j, correspowds to the |(i)|-tuple (2,), ther
Ksjyipar o, (1))
Z : Z det (u) 2(0 ™ ji.nn(u))

™enin “SWEdH

(8.9) s -
. ;[__[ [H exp (—v —1 upqxgq)] ‘
=1 bgs<iy
R sinh ﬂpq(w.ﬁq(u) + (1— mﬁq) 77:)
[ pgjs:.zi, Smh (#pqm) ]

Proof. For each (/) > (i), we define D%),;,.0 and R ;.4 as
follow:

¢ vol (Jye) » (2)!D0« D§ ;o (f)

=2/ o 020 ()« Bogyg (s (w)) ddar .

ZEJ'(D :

Ca) * vol (](z)i) (275)[0” ° RMka (D(f)

Z Z det (%)

(8.11) e g0, ¥R
menJ SGr™ jen(u); hy)

@’ 17

c RS 7™ ja,n(u) khyjy) dhy .

(8.10)
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By (5.8), (7.1), (7.8), and using the techniques which we were
employed in the proof of Theorem 6.2, we have the following
‘ recurring formulas:
RP(8 jrjs (B)) ,
T\ =D —1)rt+1
:(1/ 1) °"( 1)— (i):p(k)(f)

(8.12)

2 Wk, B)|
(_1)l(k)—,(i)l+1 )
| @)= WG, ] @)
RS,5, ()
‘ — (zn)l(k)—(i)l(_l)r(k)ﬂIWK(k’ k)l . §i) ) I(f)
(8.13) @y (=20 =11 [Wi(k, D] Ty ®
‘ (=D'O-B1+1 [ Wk, B)] |, po .
* 2 T s, D el

Using the recurring formulas (8.12) and (8.13), we see that
cay » vol (Jaye) = (2a)191 « OP(5 ji )
814) = (DO X GG [ 000 - 5T

7ef(;y

+ > a(i, 1) - DH,i ().

H>@

"Thus, the Theorem follows immediately from (8.2) and (8.3).

9. Plancherel formula for G. TFor f € C2(G), we have
(9.1) f(e) = M3 lim (1T 07)(2)

- tel?
where Mg = (—=1)WPIRC/BO . (2z)" and T =11, H,;, &« 0+(g,, £).
Thus, we apply 7T to the function O} at a point € T’ and
compute the limit of (T ®%)(¢) as ¢ approaches e through the

regular elements in 7.

THEOREM 9.1. (Plancherel formula) If f € CXG), then
- f(e)
= Z[ I G «x)]ef(f)

?
cenp bae0Ta LD

(9.2)

v —1 \11 [ Wx(0, 0)]
+ o et o
(z)>Z<o> ( 2 ) | Wx(0, )]

5 [ () Pz () Qe () ),

ref iy
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where
Piy(x, (#))
(9.3) = H 11 [— 1+ Z(qu)) coth (l wM)
iz,
+ 5 (1— 2(r5,)) tanh (% WM)]_
Quix(x, (#))
(9.4)

Z D e ), ,,].

=1 g=i,

= 11 [Iog(x) +
aeotis, i
Proof. The contribution of the discrete series representations
of G to the Plancherel formula for & is the first term on the
right-hand side of (9.2) (see [91). _
For each r™ e Z(0,7) and each [(7)|-tuple (ezg), €30 =1 or
—1 for all », q, let ~ '

Sm,et = - _‘T‘z_—‘—“ \
(9.5) ® ng(]( (W) « ey

« XD [epq t2pg(Bpg(w) £ (1 — m5y) z)].

Then it is easy to see that

(9.6) [g ql;l;’sinh (71' ﬂpq)]Kt,(,-)(}(’ (/J))

= 271D 3" S S det () 2(7™) S, o(2) .

TPeze, ¢ Y%
Thus, we have to compute the differentiation of S,,. under T,

Let ¢ be a positive number less than z/2 such that the only
element in J{). which can be expressed in the form

€xp [Z Z Z po(Xpq — qu)] [£54] <2¢ for all p,q,
=1 qsz
is the identity element. Then, let. '

U =i X T X = Vo)

ﬁquZ

. [}
Jr € Jloe

|25, <c for all p, q}.

Then U is an open neighborhood of J tye and it is easy to see that
every element of U is uniquely expressed in the above form. Since
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we are interested in # in a small neighborhood of e, we assume
that wt belongs to U for all w in W, Extending » to U by
2Ue 70) = 2(Ge), where jiji € U with ji as its “J%.-component”,
let log(x) be the differential of this extension. Let ¢, be the
transport to t of «,, via Yu for all p an_d g, then we have

Sm,e(2) = T1 1T es0 2(w2)

(9.7 ' b=t gsiy :
cexp [*epq 1p0(1 — myg) ] [Ea;q(wt)]"-_lfzwqﬂpq’ .
If o= 0*(g, t.), then
(Hy Sn,)(@)

(9.8)
= |- 1oz () +

Z Z €pa Lpq Copg, W H, J Su, (1) .

=1 qszp
This implies that
(T S,,.)(e)
= (—1)"® det (w) Qi (x, (2))

H TT [exp (& epg pa(1 = 1) 7)] -

=1 qszp

(9.9

Therefore,

”T[K-,(n(x, (#))](6)
= (=1)"D [ Wi| Qi (x, (2))

. Z [—_[ ]:[ cosh (pq(1 — ms,) o) ]

- ) ez, 1 g<i, sinh (75 /,lpq)
(9.10) - = (=1 | Wl Qx(2, ()
« TI I1 [coth (m 210) + 2(75q) esch (z 110)]
p=1 QSip

= (=1 D | Wil Qx(x, (#)) Pz, (1)) .

Thus,; the Theorem follows from Theorem 8.1.
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