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1. Introduction. The purpose- of this note is to study the
holomorphic line subbundles and holomorphic rank #— 1 subbundles
of the tangent bundle of a smooth hypersurface M of degree € in
the complex projective # + 1-space P**' (#>2).

For d = 1, Roan [4] has shown that there is no line subbundle
for all #, and no rank # — 1 subbundle except odd #, in which
case, there exists an unique one (up to the action of automorphisms

group). Hence in this work, we mainly devote ourselves to the
case for d > 2.

So far the result we have is:

MAIN THEOREM. For the tangent of smooth hypersurface M

defined by a homogeneous polynomial of degree d =2 in P*+!'
(== 2), ’

(1) There is no line subbundle and holomorphic rank 72— 1
subbundle for all # = 3. '

(2) In the case =2, ‘
‘d=2, M=>~P'x P!, there are exactly two line subbundles.
d = 3, there is no line subbundle.
d >4, there is no line subbundle for generic hypersurface.

The remaining case is still unknown. )
We shall prove the result in section 2. Now we give an outline
of the method.  First we examine the relation of the Chern classes
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112 ' SO-CHIN CHEN [March
between the tangent bundle 7T of M and its subbundle E so that
we can exclude all the cases for # > 3. except

7. odd

E=H or T/E=H, H: hyperplane bundle over P!, and for
7 =2, both E= H* and T/E = H* are impossible for all 2 € Z.
Next, we examine the bundle homomorphism from 7 to H and
bundle homomorphism from H to T. We find that '(M, T*Q H)
=0=I(M, H-*® T), thus gives (1). For (2) = =2, we discuss
it case by case. ' :

2. Preliminaries. In this section we list some theorems we
need in the sequel and the following notations are used.

M: a complex manifold, all bundles are holomorphic.
z’' : L—> M, a line bundle over M.

X : L — {zero section}. v

T == mes : X — M, the C*-bundle associated to L.

0: X xC*> X oz, o) =ax

ox (B € Z): the C*.linearization of X x C

(XxC)xC*r-—UfeXxC’
Q
e =i
defined by ¢.((x, 8), &) = (ax, a*p).
For a vector bundle p: E— M over M, let

*E={(», e) € X x E| z(x) = p(e)}, the pullback of E via =.
Zg: the C*-linearization of »*E ‘

2g
*E X C¥* — z* E

' Q
I
XxC* — X
defined by Je((z, €), &) = (am, ).

If V is a vector bundle over X and ¥ is a C*.linearization of
14 ' '
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X
Vx C* — VvV

L9
XxC* — X

then V/3— X/o =M is a vector bundle over4 M whose fibre over
apoint p of M is

(V/2)p = T'(z=(P), Vle=tp)*

=[5 € rai(p), V1S @) = 26, @) }

for (2, @) € n—i(jg) x. C*

whose sections over an open subset U of M are

F(U, V/Z) = F(”_I(U)’ Vln:—l(U))Z

def.

— {s e I'(z=YT), V|.-1p) s(o(z, &) = 2(s(x), a) } |

for (z, &) €z~ YW (U) x C*

In particular, for 2 Z

(X x C/c1),
= {(id,, 1) : 2= Y(p) — =~ Y(p) x C| flaz) = a* f ()}

r(U, X x C/s)
={@d, f) : 2 (U) — =z (U) x C| f(ax) = a* f ()}

where p & M and U is an open subset of M.

For a vector bundle E over M, we have a bundle isomorphism
between E and =z* E/Xg under which an element e of E, cor-
responds to the element (id,, /) in (z*E/3g), with f(z) =e for
all € z7'(p), and we shall identify them E = z*E/Zg via this
isomorphism. ' '

For each k2 € Z, thus we can define the natural isomorphism
of line bundles ¢ : X x C/5, ~ L%,

If p: E—>M is a vector bundle over M and o¢g: (k€ Z) is
the C*-linearization of z*E

OE.k ,
a*E X C*— *E

|2
G ¥
XxC* — X

defined by og,:((x, ¢), @) = (azx, a*e).
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Then z* E/6g,: is isomorphic to EQ L~* as vector bundles over
M. TFor details, see Roan [4].

3. Proof of the result. Let MC!P*' be a smooth hyper-
surface of complex projective # + 1-space defined by a homogeneous
polynomial of degree d =1 Wlth tangent bundle T.

By Lefschetz’s theorem, we know that Hi(P"+, Z) ——>H (M, Z)
is  isomorphic for i<n—1, ~ injective for j==#= and
H*(M, Z)/i* H*(P*', Z) has no torsion.

NOW if we have a short exact sequence of holomorphic vector
bundles over M, i.e,

0—L—T —Q—0 L: line subbundle of T
Q: quotient bundle
then the total Chern classes of 7, L and @ satisfy the relation
C(T)=C(L)-CQ), ie, '

1+ (1 +dt)?

. ,
()‘;_ =0 +at)l+xs+x2+-+ Zp-1) for =2

where & =i*(ci(H)) € H*(M, Z) is the pullback of first Chern
class of hyperplane bundle QVE:I‘: Pt oand x;€ H¥(M, Z). (In the

case # = 2, we also assume that L =i{*H* a € Z).

| ; _y
LEMMA. <*) holds only if n is odd and {— 2 or {3-1-

" Proof. Rewrite (*) as
@A —dt e+ (@A —at e+ (—a)n)
| =1+2+-+ B

A+cet+- -+ et —at +---+ (—a)* %)
| ‘ =1+4+x 4+ To1

zi=[lei—acia+--+ (—a)-te+ (—a)lt,
1 Si_<_nf— 1

and

(%) Cn— A Cy-1 + @ Cizz ++ ot (—a)~tey + ( a)y' =

" where
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7w+ 2 %+ 2
Cr = '—d( >+"'+ —dks 1—<—k-<—n
* ( k ) E—1 (=)
substitute ¢, into (%), we have

__ 1 1 g — gy Na—1
0=t fLa-are+m+2a-1]

- ta-artrmena-1)  for axa

(##)=0=d{l—a)**—a(l—d)"**—d+a=0
&Edl+b)2+b(1—d)*—d—b=0,
« , a=—-b, b>0.
() ax0. If a=0,
7%+ 2 /9 4+ 2 7+ 2
0=(", )+ Co( 1Y)+ car(" )
=d[—1+ (m+2)d + (1 — d)]

—1+®+2)d +(1—-d)***=0, (d=1)
# must be odd and d 1, 2.
It is also clear that —1 + (+2)d <(d—1)* for d = 3.
(ID) e>0. If a<0.
For # is even, &(1— d)"+* =0, , ‘
A+ (n+2)b+---+b*)—d—b+b(1—d)?*>0,

hence (%) = 0.
For # isodd, set #+2=2k+ 1, =2,
(1) d=1, (A +b)*1'—p—-1>0,
(2) d=2, 201 +b)*1—20—2>0,
(8) d>2, (#¢) =20 if and only if

[A+8)2 4.+ (1 +0) +1]
—[1—-d)*+---+(1—-d)+1]1=0.

Thus the proof c;f (II) will be completed if we prove the
following sublemma.

SUBLEMMA. ¢:R—R, zbglz)=a2**+4+---4+2+1, k=22, ke N,
then o(m) > g(—p) for all M, pe N, m>2, p=>2.
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Proof. g(x>‘=x—”fl——“—1~, x#l.‘
) z—1
@m“ p2k+1+1.
g(m) > 9(— D) p—1 =¥ P 1
(1) m=p+h =0, hEZ
. pgk+1+1 _ 2k=1__p2k<0
p+1 b 1+ p

mt =1 e — 1

>0
m—1 m—1

mit—1 _ (p+ )1 + J)2E > 2k>&_‘:_1_
m—1 (prm—1 ~ BTRTEIE T

(2) m=p+H, <0, ie, p=m+h, h>0, k, ¥ €Z Let

zeR, 220.

_ (m+ )+ 1
: @) m+x+1

PP (m + ) [(2B)m +2+1) +1]—1 R
fi(2) = CETE >0, x=20

f(x) is strictly increasing on 2£.=0.

Hence _ ,
(me + B)2E+t + 1 2 (me + 1)+t + 1  for RZ=>1,
m+ h+1 m -+ 2 :
From (1), we have
ikt — 1 mPFt + 1
m—1 m+ 1
In order to show
(mARM 41 w1 1

m+hr+1  — m—1
it suffices to show

(‘m + 1)2k+1 + 1 - m2k+1 — 1
m+2 m—1

which is equivalent to A > B, where

A= (m+ D141 ml 41
m + 2 o om+1
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B : m2k+1 — 1 —, m2k+1 + 1

m—1 m+ 1 )
_ 2m(m = 1) oD L g2 4 1)
m? — 1
A—B 1 {(m + D[(m + 1)+ + 1]

- (me + 1)(me + 2)
— (m + 2)(m2 1 + 1) _
— (2m® + 688 + dm) (1P 4+ oo o + 1))
1

= - -+ T {m[m2k+1 + (2k + 1) m2*

_I_(Zkz-l-l)mzk—i+...+(2k+1)h+1]

+ (e + 1P 4 g+ 1 — k2 — g — 22kt — 2
— [2m* " + 6(m® + m®*t -+ m?) + 4m]}

B 1 B L |
Tt D+ 2) {mk 2) mitrt =11

+[(2k2-|- 1) n (2k;- 1);6]m24k+,“
B 0 ) o
+[1+2k+1~4]m+1}, 2<j<o

k=2, 2+2k—42>20

and

(2?+1)+(2’“1)—6:(2"”?“2)—629 for 2<j <2,
J—1 J J ‘

Hence A— B>0, i.e, A> B. This completes the proof of the
sublemma. ’

(III) a>0.

case 1. e=d

Then (#x) can be written as

0= ("F2)n+ D0=ay) + (P T ) n(—ary

+ (3 E e+ (717).
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Consider

h(x)=(”;2)x"+1‘+ (”—1‘_2)#4_”'_'—(”;2)'”

=%[(1+a:)”+2—(%+2)33“1]

R (z) = % [+ (r+Dax—1) +1].

If e N and B'(—a) =0, ie, A—a) ((n+Da+1)=1,
1= [d—a) ™ ((r+Da+1)>7,
which gives the contradiction. |

case 2. a=xd
From (#+) =0, we have d(1—a)"*? —a(l—d)**—d +a=0,

[A—a)y 4+ (1—a)y ++(—a)+1]
| —[1=a)**+.---+(1—-d)+1]1=0.
Consider

e |

gz)=x""1+2"+---+tx+1=
r—1

set u=d—1, v=a—1, =0, v=>0, #u=>v. Suppose that #>0
and v>0. 9g(—u) = g(—v) implies :

(0 —o)[1+ (=) (w10 +---
+uvtt +utt Furo 4+ uyt + o)) =0
1+ (=12 [utto +---
+uvtt ottt Futy -+ uv" + o] =0,
But the absolute value of left hand side is no less than 8, this is
. absurd,
u=0 or v=0,
If u=0,

(=p)"*2—1
c—v—1

b

9(0) =1=9(—v) =

then 7 -
(=o)((—v)**'—1) = 0.
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So # must be odd and v=1, hence d =1 and @=2. Same
argument for v =0, we get d =2 and a = 1. Thus the proof of

the lemma is completed. Q.E.D.

Roan [4] has ruled out the case ¢ =2, d =1. For the other -
case ¢a=1 and d =2, we may assume that M < P»+! is defined
by the equation f =2+ 2+ --+ 24 + 28, =0 for %> 3. ,

In order to examine Hom (H, T)~Ir(M, H-*Q T) v
~7r(M, T ® H-') we are going to compute I'(M, T @ H~").

The following notations are used in the computation.

~

X = C? — {0}. ,
X =CMD — {0}, COMD={z= (2", 2e1) € C**| f(2) — 0}

z:X— M, (20, z,,+1)—7—t—>[zo,---, Zns1] |

X 5 X, ' inclusion map.

First we have T®H*1:n* T/67,-1 and the map T(X) L T.
In terms of local coordinates, =« can be describe as follows: For
2030, 21,"-, Zze1 are local coordinates of X and wi= 21/2, -,
Was1 = Zu+1/% are local coordinates of P! Hence we may take
Ws,* - -, War1 as local coordinates of M, if w;=<0.

0 Bwe . W 0
[ 0z ] [ 021 ’ ’ 02y ‘“V OWwe ]
[ 0 } [ ows . 6wn+1j[ 2 J
. 0 Zys1 : 0Zp41 ’ ’ 0Zp+r1 JL OWys1

- N - a -
2122 , Z1Z3 , ", ZBi1Zp+1
ows
2y .3 0
2o+ 2, 2223 , *+, Z2Zp41
_ 1 .
2 2223 , 2o+ 25, -, Z3Zni ——
) oWy
2, .2 0
22 Zp+1 9 ZSZM+1, "',.20 + An4l
L . - L 0wyt

Define a map a¢: X x C—»T(X) =

e cz',,;l—a——) '
02y 0Zpp1 / (Zoreem®ynyd

if Z() é'r‘ O" ((Zo,' "ty ’2”‘4;1), c) I-—> (CZI
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« is well-defined. For 20 and 20, we have local coordinates

(21,7 -, 2ur1) and (2o, 23, -, 2Z441) respectively, and

‘ ((z09."; zn+1)7 C)

0
— | ¢z + ¢z +-ot ez )
I. ( "oz * oz T et | Goreens 20 )
if 20, and
((Zo,‘ "y Zﬂ+1)y C) .
9 .
— \C2 +cz +--tez )
l ( 0 20 2 022 il 8Z”+1 (zo,...,z”_H)

if 21 AF 0. .
But the transition matrix of T (X) {for these two local triviali-
zations is ‘

-0 T z o 1T -9
0z Zo T 02,
o) 29 0
022 = Zo ’ 0zs
; L
a ___v Zn+1 a
- 0241 - - 20 ’ . AL 9z, A
Hence '
[ — & 0
-4
‘ — R
(21, 22,0, 2n+1) Zo ’ = (Zo, Zo,n e, 2n+1)
. H In .
— Bar1
- Zo ’ .

Zt+A -+ +2a=0.

This shows that & is well-defined. And we have a short exact

sequence of holomorphic vector bundles over X
0—>X X Co T(X) "5 z* T —0.

The exactness of this sequence is easily to check.

Consider the C*.linearization, the following diagram is com-
mutative .
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(5, id.) (ms, id.) o
(X x C) % C*———-——aT(X) X C¥*————>g* T x C*
Q P Q
A
X xC > T(x) —_— a* T

where op*™, k€ Z, is defined as follows: _
For each point p € X, we have a local trivialization near p,
i.e., there exists a neighborhood U of p such that

T(X)y=U x C**+',
Under the identification, define
ot (U x C*1) x C*— U x C*+!
(B, (Lum oy Cara), @) | = (@b, (& -, 0 Cavi))

Tt is easy to see that op*!

is well-defined.
So we have an exact sequence of holomorphic vector bundles

over M-
0— X xClo_1— T(X)/a§"' — z*T for,-1—0
X x Cloo1~H"' and #»*T/or,.1=T QH"*
0—H ' —>T(X) o' —>T QH*—0.

From the long exact sequence

00— I'(M, H-') — I'(M, T(X)/&3*")
—I'(M, T @ H-')— H'(M, O(H"Y))

and by Kodaira vanishing‘ theorem r(M, H-')=H(M, O(H-'))=0
S I(M, T(X)/ar) =I'(M, T QH™).

~ For 2,0, the map T(X)-i—*> T(X)ix can be described as

0 9 & 0 -2 1
621’ ) P4 - . 02,
9 _z 0
Zx 022 = 2o L1 02z
é _ Zn+1“§ T )

S 0zur1 T 5 2 i T 0Zpyr "
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Define #: T(X)ix— X x C by

#o(og).+ oo (52).)

= (2, €2+ + Cps12Znr1)  for z= (2% 2 € X,

Clearly there is a short exact sequence
0— T(X) -5 T(X)ix—= X x C—0.

Consider the C*-linearization, the following diagram is commutative.

(i, 1)) _ (8, id.)
T(X) x C* ——5 T(X)ix x C*——5> (X x C) x C*
a9 a0 5
l 0 i* \L [ l 1
T(X) —> T(X)x —> X xC

0—> T(X)/a3" — T(X)ix/5** — X % C/31—0
~is exact over M and X x C/ 31:1‘1. “The long exact sequence is

0 —> I'(M, T(X)/ae*) —> T'(M, T(X)ix/58") —> I'(M, X % C/s1)

9@ h
, 7
Cr+2 — C[?]l
where o
7. C"+2_’ C[Z]l ’ (CO;' "ty cn+1) 1—9 Co‘zo SRR o TR »

z= (20, ", Zns1),
C[z]; = {hémogeneous polynomials of degree 1},
r(M, TQHY)~I(M, T(X)/a:*) ~Kery=0.
Therefore', we cannot have a short exact sequence |
00— H—T—Q—0 ovér M.
Next, we examine Hom (T, HY~I'(M, T*QH). We have a
short exact sequence of holomorphic vector bundles over X
0— =* T* 25 T*(X) 2 X x.C—0.
If 20, #: T*(X)> X x C, defined by

B((crdzy + -+ + Cusx dzn+1)(zo,..e,zn+l))

o= .((Zo,' ., Zn+1'), €121+ - +'Cn+1vzn+1) .
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The following diagram commutes,

(=*, id.) (8, id.)
z*T* x C* —> T*(X) x C* —> (X x C) x C*
. i -
lO'T*,l © lwg“ (29) ltn

75*

T — T*(X)  —> X xC

Since T* QH~n*T*/67*1,
0—T*QH—T*X)/ag"' — X x C/5:—0
exact over M. We have
00— I(M, T* @ H) — I'(M, T*(X)/&5*")—T(M, X x C/5).
Again; we have a short exact sequence over X o
0— X x C- T*(E)ix— T*H(X) —0
| @: X x C— T*(X)ix
defined by: \A

((207' "%y zﬂ+1)7 C) I_—) (CZO dZO e CZp11 dzn+l)(;:o ,,,,, z v

and the following diagram is commutative,

(@) &*, id.)
(X x €) x C*——5 T*(E)ix x C* —— T*(X) x C*
lin O a9 | @
XxC —> T*(Xix — T*X)

0—> H-1— T*(X)x/53" — T*(X) /& — 0

is exact over M.

0— I'(M, H-') — (M, T*(X)1x/5*)
—s (M, T*(X)/a**)y — H' (M, O(H™))

(M, H-Y) = H(M, @(H-)) =0
(M, T*(Xhx/53*%) =T (M, T*(X)/av*Y) -
0—> (M, T* ® H) —> I'(M, T*(X)/3%") —> (M, X x C/31)
' Q
? b¢

7
r(M, T*(X)ix/5%*) . = €% . — . Clz]
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7:C"*?—Clz]i, (o, s Cust) 7> €020 -+ + Cax12ns1,
z = (20,"**, Zu+1)
r(M, T*QH)~Kery=0
Again, we cannot have a short exact sequence
0—FE— T —H—0 over M for = 3.

Hence we get the result (1) of our main theorem.
Now consider the case # = 2.

(1) d=2, M~P' x P!

Let z;: P! x Pt—> P' be the projection onto ith factor, i ==-1, 2.
H*(M, Z) ~Z® Z with generators afa and =z¥a, a=c(H)
e H(PYL, Z), zfa Uzfa=0 for i=1,2 and {(zfa U zfa, ppixp
=1. In this case, ¢: HY(M, ©*)— H*(M, Z) is an isomorphism
and the restriction of hyperplane bundle H on M is = H @z H.
The tangent bundle of P! x P! is isomorphic to ¥ T @=F T,
where T is the tangent bundle of P

#) 00—t T — 2} T @i T —af T —0

is exact over M, for (4, 7) = (1, 2) or (2, 1).
If we have a short exact sequence over M

0—L—T(M)— L —0,
L, L': line bundles over M.
22— 2t + 20 =0,
2 =c(L) = m(z a) + n(zFa),
t=ci(sl HQui H) € HYM, Z),
me—m—n+2=0, (@m—-1x-1)+1=0,
(m, ) = (2, 0) or (0, 2).
Thatis L= T, L'=xiT or L=nf T, L' = T.

Now, if we have a short exact sequence

@) 00— T T@®aT o T—0 over M
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' We want to describe « and B. Since. I'(M, M x C)=C and
(M, z* H-2 @z} H?) = 0, we have

Hom (z¥ T, o} T @ =¥ T)
=TI'(M, (M x C)® (zf H? Q= H?))
~I(M, M x C) QI'(M, =¥ H®* Q=3 H?)
=I'(M, M x C)=C.

Hom (2} T @3 T, o} T) E
=T(M, of H2 Qnf H*) @ T'(M, M % C)
~Ir(M, M x C)=C,

Hence «: (2, m) > (z, (am, 0)) and B : (x, (m, n)) > (2, bn) for
some a, b € C — {0}.

Hom (T'(M), T(M))
=T'(M, (zf H?> @z H™?) Q (zf H* © =3 H?))
=I'(M, M x C)DI(M, =¥ H*> Q= H?)
Or(M, «f H2Qni H*) @I'(M, M x C)
=C@C. ’
Thus a bundle isomorphism of T(M) =zH*®@zF H? is given
by ¢
o:af H*@ nf H* — zf H> @D =¥ H?
(x; (m, %)) |— (2, (Om, r#)) for some 4, r € C*,
So (H##) is obtained from (#) by composing a bundle isomorphism
of zf H*® =3 H2.
Hence there are exactly two line subbundles of T(M).
(2) d=3
M is biholomorphic to the blow up of P? at six points pi,- -, De
satisfying 1) not all lying on a conic curve, 2) no three of them
lying on a line. Let = : M — P? be the monoidal transformation.
Let E,,---, Es be exceptional divisors, then ¢ ([Ei]), -,
ci([Es]) and ¢i(z* H) are generators of H*M, Z)~Z® ---®Z
| S ————

with the following properties: !

(Edl-[El=-1, i=1,---,6
[Ei].[E]']::Oy i*]‘
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[E]l-n*H=0, i=1-"6
a*Hen*H=1.

In this case, ¢: HY (M, ©*)— H*(M, Z) is also an isomorphism
and the restriction of hyperplane bundle H on M is

z* H®* [—E1] ®---Q[—FEs].

If we have a short exact sequence of holomorphic vector
bundles over M ‘

0—L—T(M)— L —0,
L, I’: line bundles over M. Then the following relation holds
x»—at+32=0,
v CI(L)., :
t=c(r* H*Q[-E] ®---Q[—Eel) € HXM, Z),
> = oy (z* H) + freu(LE]) + -+ + Bsci([Ec])
A &, B+, Be € Z,
t=3c(z*H) + (—=1) co([E:]) —- -+ — e([Ee]) .
o — fi—-— B — Bar+ fr+--+8) +9=0,
(@ —3) +9=p(Br + 1)+ + Bo(fs + 1),
odd = even,

which is a contradiction.
Hence there is no line subbundles in this case.

(3) For the generic hypersurface of degree d = 4, we know
that the restriction map 7: HYP? ©*)— HY (M, ©*) is an
isomorphism, i.e., each line bundle of M is of the form ¢*H™ for
some me Z

If we have a short exact sequence over M

00— L— T(M)——>L’-—->O, L, L’: line bundles over M. -

So L=i*H" and L' =i*H" for some m, # € Z, which contradicts
our lemma. Hence there is no line subbundles of T (M) for the
generic hypersurface M.

Therefore, we complete the proof of our main theorem.
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