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BOUNDARY VALUE PROBLEMS FOR HIGHER
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Abstract. Inequalities obtained 'in the first part of this _paper
entitled ‘Error estimates in polynomial interpolation’ are used to-prove
“the existence and uniqueness for the nonlinear boundary value problems
of higher orders, some lower estimates for the iterative scheme
quasilinearization to converge are also given.

1. Intreduction.  In this paper we shall consider the following
#nth order differential equation

™ =f( x, 2, 2P)  (0<g<n—1 (1D

with several different boundary conditions. The function f we
shall assume confinuous on [dl, a,] x R1+' throughout the paper
without mention.

In the second section, Schauder’s fixed point theorem is employed
to obtain the conditions on the length of the interval to prove the
existence of solutions for a given boundary value problem. For the
Lipschitz class of equations contraction mapping theorem is used
which provides the condition on the length of the interval in terms
of the Lipschitz constants. ,

In the third section, for the iterative scheme: quasilinearization
a lower bound on the length of the interval is given so that it
converges to the solution of the original problem. This will have
a great advantage in solving the problems using this method.

The importance of this paper is that, not only the known results
for some particular cases are extended to zth order differential
equations but also the proofs are new. The Green’s function
technique is used without knowing the explicit form of it, and
hencte we do not require the estimates
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a

max r
a; < e <i<a, < aTL
1

which plays a major role in the proof of the previous known
results.

A particular equation (e.f) of the paper [1] will be refered
here as (1.«.8) also we shall follow the same notations.

2. Existence and uniqueness. Here we shall consider the

following boundary value problems: equation (1.1) and the boundary
conditions '

x(a:) =Asi, 2'(a:;) = Asiy -+, 2%7(as) = A

itt,i

1<i<») (@21
GQ<ar<---<d, 0Zk, Zk,-+r=n

which are Séme as (1.1.1.) with non-zero conditions. Similarly we
shall consider equation (1.1) with other conditions considered in
[1] taking them to be not necessarily zero.

We shall dnote £Lu.q.,n(#) as (#— 1)th degree polynomial
satisfying the boundary conditions (l.@.8). The Green’s function
of the boundary value problem: ™ =0, zero boundary conditions
(1.ee.p), we shall represent as ¢a.qa.pn (2, S). ‘

- THEOREM 2.1. Suppose that
(i) let K;>0,2=0, 1, -+, q be giver real ‘numbers and let Q
be the maximum of |f (¢, w, us,- -+, u,)| on the compact set
{(t7 Ug, U1,--", uq): t:E -I; luzi S ZKi; i= 0’ 17“', q}
() maxser| fay) IS K;, i=0,1,---, ¢

where I'is the interval on which the boundary conditions (1..p) are

defined, for example [ai, a,] for (21) and [a: as] for (1.2.17).
Then, if ' ‘

(1) . (ar — al) S (Ki/QC::“;)I/””i’ i = Oy 1,' ct, q (2.2)
the boundary value problem (1.1), (2.1) has a solutioz.
(2) ’ (a] - al) S (K;/Q w”’i)lln—i’ i = O’ 17' * q (2.3)

the boundary value problem (1.1), (1.2.8) or (1.2.10) kas a solution if
Jj =2, also the problem (1.1), (1.2.14) has a solution if j = 3.
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(3) (@501 — a;) < (Ki/Q B )*%,  i=0,1--, ¢ (2.4)
the boundary value problem (1.1), (1.2.16) has a solution if j = 1 also
the problem (1.1), (1.217) hkas a solution if j = 2.

(4) (aj+1 - aj) S (K/Q Tn;l')iln_i, i = O’ 17' 5 q (2.5)
the boundary value problem (1.1), (1.2.20) has a solution if j =1,
also the problem (1.1), (1.2.21) has a solution if j = 2.

(5) (aj+1 - aj) < (Ki/Q 6n,i)1/n—i, i= 07 17' . q (2-6)
the boundary value problem (1.1), (1.2.24) has a solutior if j = 1 also
the problem (1.1), (1.2.25) has a solution if j = 2.

Proof. We shall prove (1) and for other cases it will follow
analogously.
The set

Blai, a,]1 ={z() € C9[ay, a,]: |2P|<2K;, j=0,1,--, q}
where

2P = max [2D(8)]

is a closed convex subset of the Banach space C“[ai, @,]. The
mapping T': C?@ [ay, a,]— C® [a, a,] defined by

T@®) = Lan® + [ ganlt, HF(s 265, 29(s))ds (27)

is completely continuous. Also, (Tx)({#) — Le.1y (1) satisfies
conditions (1.1.1) and (T2)™ () — €& (&) = f (&, z(8),- -, z"=D(2)),
hence [[(Tx)™ — LEL] = [(T2) ™| < @, over Bla, a,]. Now, using
theorem 2.1 [1], for #(#) € B [ay, a,] we find

[(Tz)® () — 8@ | < Q CX% (ay — ar)™*
and hence

T DO < max 28y D] + Q CLY (g, — an)*—

@, <i<a,

i=07 1,"'; q.
Thus, (ii) and (2.2) implies that 7 maps B [ai, a,] into itself.
It then follows from the Schauder’s fixed point theorem that 7T

has a fixed point in Blai, @,]. The fixed point is a solution of
(1.1, (2.1).
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Several particular cases of theorem 2.1 have been given . in

[2] — [9].

COROLLARY 2.2. Assume that the function f(, o, ts," "+, #g)
satisfies the following condition

lf(t7 Ugy U1,° ", ”q){ -<—- CO + Z Cj+1‘ ujld(j) (2-8)
j=0 . .

where 0<a(j) <1 for j=0,1,---, q. Then each of the boundary
value problems considered in theorem 2.1 has a solution.

Theorem 2.1 is a local existence theorem Whereas corollary 2.2
does not require any condition on the length of the interval or the
boundary conditions. The question: What happens if a(j)y=1
(j =0, 1,---, q)? is considered in the next theorem. We shall state
and prove only for the boundary value problem (1.1), (2.1) and for
all other problems discussed in theorem 2.1 the result follows
analogously.

THEOREM 2.3. Let (¢, uo, w1, -, ;) satisfy the condition

q
‘f(t7 %o, U1, ", uq)l < L+ ZLi (ujl (2-9)
j=0
for all (&, wo, 1,+-, 4,) € [a1, @,] x R+, where L is any number,

and let L; (j =0, 1,---, q) satisfy the inequality
q
o=, C:Li(a,—a)" <1 - (210)
i=0

Then, the boundary value problem (1.1), (2.1) has at least one solution
for any A;.

Proof. Let

2= max }:L 128 (D)1

e, <St<e¢, -

Define M as the set of functions #z times continuously differentiable
on [a, a,] and satisfying the boundary cond1t10ns (21). It we
introduce in M the metric ‘

o(x, ¥y) = max ™ (@) —y™ (@) |

a;<i=a,

for all &, yM, then M becomes a complete metric space. Define the
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mapping T : M —> M as in (2.7). We shall show that the mapping
T maps a sphere of radius (L+£)/(1—0) of the space M into itself.
Indeed, if x € M and p(x, Le.n) < (L + £2)/(1 — ), then

p(T-%‘ 3(2 ») £ max [f({E z@), 2'(@),---, 22 Nt

e, <t<a,

<L+ max Z L; [(x(t) —Lan (D) + 28, @)

e, =t<a, j_

<L+ £+ max ZL [(2(t) — Lo ()P

e <f<a, ¢

<L+ 2+6 max |2™()]

aIStSa,
’SL+£+6L+‘Q L+l
1—¢6 1—46

Then, it follows by Schauder’s fixed point theorem that 7' has at
least one fixed point. The problem (1.1), (2.1) has therefore at
least one solution x(t) satisfying the condition

(2™ (#) | < ’i—j—f—«a <t<a).

Hence, from theorem 2.1 [1], we obtain the inequalities

a® (&) — 285 ()| < CIX Ii + f (@ — )i

£=0,1,-,2—1 (@m<t<La,).

- DEFINITION.  ‘The function f(Z, #,, %1, -, #,) is said to be of
Lipschitz class, if for all (Z, uo, #1,- - -, u,), (&, Vo, v1,- -+, v,) € T x R+,
the following is satisfied

[f(t, Uo, U1, ", uq) _f(t,v()yvly'.'yvq)l S Z Li{uiu—— vi{ (2.11)

where I is defined in (ii) of theorem 2.1.

THEOREM 2.4. Let f(2, uo, 41, - -, u,;) satisfy the Lipschitz condition
(2.11). Then, if '

(1) 0<1, where 6 is defined in (2.10) the boundary value
problem (11), (21) has a unique solution for any A,:.

. q9
- (2) ;= Z &y, Li(a; — a)*1 <1 (212)
, P

the boundary value problem (1.1), (1.2.8) or (1.2.10) has a unique
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solution if § =2, also the problem (1.1), (1.2.14) has a unique solution
if j =3.

(3) B =2 BniLi(ajn—a)** <1 (2.18)

the boundary value problem (1.1), (1.2.16) has a unique solution if
j =1, also the problem (11), (1.2.17) has a unique solution if j =2

(4) Ti= Z 7ai Li(@j1 —a)" 7 <1 (2.14)

the boundary value problem (1.1), (1.2.20) has a unique solulion if
j =1, also the_problem (1.1), (1.2.21) has a unique solution if =2

(5 8y =2 dwiLi(aja— e <1 (2.15)

 the boundary value problem (1.1), (1.2.24) has a wunique solution if
j =1, also the problem (1.1), (1.2.25) has a unique solution if j=2

(6) forn=3,q9g=2
%Lo(dﬁr— a;)® + %Ll(aj+1 —a;)* + Le(aj— a;)<1 (2.16)

the boundary. value problem (1.1), (1.2.28) kas a unique solution if
j =1, also the problem (1.1), (1.2.29) has a unique solution if j =2
‘ (7) for n=3,q=2

%Lo(djﬂ —a;)® + % Li(aju1 — a;) + Ly(@js1 — a;)<1 217

the boundary value problem (11), (1.2.31) has a unique solution if
j =1, also the problem (1.1), (1.2.32) has a unique solution if j=2
(8) forn=3,q9g=2

1273 Lo(ajs1 — @;)® + %Ll(a,-ﬂ —4))" + La(@je1 — a;) <1 (218)

the boundary value problem (1.1), (1.2.34) hkas a umnique solution if
j =1, also the problem (1.1), (1.2.35) has a unique solution if j = 2.

Proof. We shall prove (1) and for other cases it will follow
analogously. We shall show that the mapping 7 defined on the
metric space M in theorem 2.3 is contracting. Indeed, we find that
for x4, 22 € M '
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o(Tzy, Tx:) = max [f (2, 2 (), 21 (@), -, 257 (1))
al_ _ar
— (@, x @), 22 (), -, 2 (D) ]

< max S Lila® (1) — 2 (1)

@ =i<e, joo .

<60 max |x™ (@) — a2 @)

o, <i<a,

< 0p (21, 22) .

Thus, the mapping T in M, has one fixed point, and this is
equivalent to the existence and uniqueness of the solution for the
problem (1.1), (2.1).

The fact that 7 is in M a contraction mapping means, among
other things, that under the conditions of theorem 2.4 for the
existence of a unique solution of the boundary value problem under
consideration, the method of successive approximations can be
applied. The rate of convergence of the solution will be not less
than the rate of convergence of geometric progression with common

multiplier, for example ¢ for (1.1), (2.1).
' The results of theorem 2.4 can be used to prove the existence
and uniqueness results for several other boundary value problems
on using ‘matching’ technique, see [10], [11].

THEOREM 2.5. Let (i) f(&, wo, t1, -, ttn1) (@ =mn—1) satisfy
the Lipschitz condition (2.11) (ii) f satisfies the following monotonicity
condition

Uy < Ung, (—1)"9"1(; —0;) 20 (=0, 1,---, % — 3)

implies
_ F (2, tho, ta,-++, Un-s, Un1) <[ (L, Vo, V1,"* " Vn-sz, Un-1), 1 E (a1, @:]
and
Upz <Up-s, 4; <0; (j=0,1,--+, —3)
implies
FQ, o, t,7 -~ Un—s, un—l) < [, vo, V1, , Vn-s, Un-1), & E [as, as)

(i) 0;<1 (j=1,2). Then there exists a unique solution lo
the boundary value problem: (1.1) (¢ = n — 1), satisfying

x(a) = 21, " P(az) = Au-1, x(as) =2s, #=3

2.19
2P (az) = 2j42 (G=0, 1,---,n—4), >3. ( )
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TuROREM 2.6. Let the conditions (i) and (ii) of theorem 25 are
satisfied. Then there exists a unique solution to the bam‘dary value
problem: (11) (¢@ == — 1), satisfying

2 (ay) = 24, 2P (az) =242 (G =0,1,---, #—3);
x(f) (a3) = '{n; U, T € {07 1}

provided p; <1 (j=1,2) for (n=0,7=0) and r;<1(j=1,2)
for other cases. B . ;

The proof of these‘ theorems follows from our theorem 2.4 and
theorems 3.2 and 3.3 of [11] and generalizes their results theorem
41—48. In fact for a particular case #=3, g =2 even the
condition (ii) in theorems 2.5 and 2.6 is not necessary and we obtain

(2.20)

the following result.

THEOREM 2.7. Let f (¢, uo, 41, tz) satisfy the Lipschitz condition
(2.11). Tkhewn the boundary value problem (i), (1.1) (2 =3, ¢ = 2),
satisfying (2.19) (2 = 3) has a unique solution provided the inequality
(2.17) is satisfied for j =1 and 2. (ii) (1.1) (= = 3, q¢ = 2), satisfying
(2.20) (2 = 3) has a unique solution for n =1,y =1lor pn=1, r=0
or n =20, r =1 provided the inequality (2.17) is satisfied for j =1
ard 2. (iii), (1.1) (& =38, q =2), satisfying (220) (% =23) has a
unique soluiion for p=0=71 provided the inequality (2.18) is
satisfied for j =1 and 2.

The proof of this theorem follows from our theorem 2.4 and:
theorem 2.1 and 2.2 of [11]. In [12] we have shown that not only
condition (ii) required in their theorems 4.6 — 4.8 can be dispensed
for pn=0=7¢ in (2, 20) (= 3) but also the inequality (2. 18) can
be improved to

ﬁLO(aiH —a;)® + %Ll(ﬂj-{-l —a;)? + %Lz(dj.].]_ —a;)<l1.
One can use the same technique as in [12] to improve the results
- for other cases also. It will be interesting to find whether condition
(ii) m theorems 2.5 and 2.6 can be weakened as it is not required
for # =3 to find the estimates on the length of the interval.

In general, if the function f, z, 2',---, 29) satisfies the
Lipschitz condition over a compact region, then the boundary value
problem under consideration may. not have a wunique solution.
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For example, z'/ + exp(x) =0, 2(0) =0 ==x(1) has exactly two
- solutions [2]. In the next result we shall show that the function
f need not satisfy Lipschitz condition on I x R*! but it is sufficient
if it satisfies over a proper compact set (defined in the result).
For this, we shall need the following:

LEMMA 28. Let T map a ball B={w:|lw—y <z} of a
complete normed linear space (Bawack space) S into S. If there is
‘ar ¢ € (0, 1) such that for all u, ve B

(Tu — Tv| < ofjlu — v| (2.21)
and if
1T —woll <0 A —) | (2.22)

ther T has a unique fixed point y in B. If T maps the Ball B
into itself, then the condition (2.22) can be omilled.

In the following theorem, without loss of generality we shall
onsider only the zero boundary conditions i.e. all the constants
A;, appearing in (2.1) are zero. We shall prove the result only
for the boundary value problem (1.1), (2.1) and for other problems
it follows analogously.

THEOREM 2.9. Let the function f(t, #y, w1, -+, u,) satisfy Lipschitz
- condition (2.11) on

Cxx
CZ:)S (ar - al)i i

D ={(t, Uo, Ur,--+, Ug): @1 <t< a,, lu;| <N

(2.23)
i=01", 4}
uhere N salisfies either
m(a, — ar)" Ci¥ < N(1—0) (2.24)
if m =max |f(, 0,0,---, 0)| for a1 <t < a, or merely - '
M(a, — a)"Cis < N (225)

if M = maxp |f (&, #o, t1,---, #g) [, 0 is defined in (2.10). Then, the
boundary value problem (11), (2.1) has ome and only one solulion
x(2) € D. ‘ '
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Proof. Let the space § consist of ¢ times continuously
differentiable functions on [ai, @,] with the norm

Cai (@, — a))?
Gl

]l = m_ax{ max |2 (&) [}.

0sj<g a1§t$ar
We shall show that the mapping 7T : S — C™ [ai, a,] satisfies the
conditions of lemma 2.8, where

(TD) D) = [ ganlt, $) 1G5, 2(5), 2/(s),+, aP(s)) ds. (2.26)

Let x0(¢) =0 and B be the ball {we S: [|w]| £ N}. Then, if
z1(2), 2:(t) € B, we have on using theorem 2.1 [1]

A T2)P () — (Tz)P @)
< CGli(ar —a)™ 7 x max |f(¢, 2:(1), 21(8),- -+, 2{"())

e, <i<a,
= F@ 2(8), (@), -+, (@)

< C¥ (@, — a7 max > Lil2f® () — 2 (#) |

e, St=a

x LG Cr ,
< Cyila, — ay) Z:o: L; C¥t (a, — ay)’ |21 — s
and hence '
L33 - ; ) . .

q
<D LiCi (@, —a) i@ —ml, =01, ¢
i=0

from which it follows that
”TJH —_ T.T/'z” <6 ”371 ol .'172”

- To apply lemma 2.8, we need to show that (2.22) holds. Let (2.24)
hold, then we have

[(Tz)? @) < CFF (@, — a)"7 max [f(2, 0, 0,---, 0)]

e <it<a,

<C¥ila,— a)*"im
or

*% — i .
Cn,o (d;* 611)-7 I(Txo)(]) (t)‘ < (ar — al)” mc:}", ] J— 0, 1’. . q,

n,§

Hence, we have
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[To — 20|l < N(1—9).
Next, let (2.25) hold, then for any z(¢) € B, we have

ERIOT R
Cit (ar — a)?

hence, by the hypothesis M = maxplf (¢, (@), -+, 22())]| and it
follows that

(T2)? @) < C35 (@r —a)*i M
or

Cai (@, — ar)7 |
*x
.7

(Tz)D )< (@, —a)*"M CE5,  j=0,1---, 4.

Thus B
| Tz || < N.
This completes the proof of theorem 2.9.

For several particular cases of theorem 29 and its analogous

see [21, [71, [9].

3. Quasilinarization. This is a practical method to construct
the solution of the nonlinear problems in an iterative way, the
nonlinear problem is being reduced to solving a sequence of linear
problems. This method has attracted considerable attention in
recent years, for example see Bellman et. a/. [13], Lee [14]. Bernfeld
et. al. [4], Kalaba [15], also for the systems and component-wise '
analysis see Agarwal [16], [17].

Here, for the equation (2.1), we define an iterative scheme as
follows

2o @) = f(@, 20 @),---, 22 (@)
+C i (2 (1) — 2L (@) p;(D), @31

m:—_O, 1’...

where

oy O Ea(D) e, 2D ()
258 = IO

and C is any constant. ;



b8 RAVI P. AGARWAL ; - [March

In (3.1), 2(2) is any function at least ¢ times continuously
differentiable and satisfy the boundary conditions (2.1) (we shall
consider only this and for other boundary conditions it follows
analogously). For each m the equation (3.1) is solved with the
conditions that a1 (¢) satisfy (2.1). Thus, the problem (1.1), (2.1)
is being reduced to solving the sequence of problems (3.1), satisfying
(2.1), we shall denote this as {x, (¢)}.

It has been proved- that the sequence {x. (¢)} (even for more
general boundary conditions) under certain conditions on f will
actually exist and converge in a suitable space provided the length
of the interval @, — @, is sufficiently small. Here we shall give
some lower bound on a, — ai. 4

We shall denote B ‘as the Banach space C?[ai, a,] with the

norm ;
2l = > Li max [a% ()] (3.2)
i—0 e, <t<a,
and consider the closed, bounded subset B; of B such that

le — Zenll <1. In (3.2) the constants L;(j=0,1,---, g) are
defined as follows: for ¢ € [ay, a,], © () € B,

of G m @y P @) | =7 i q... |

a$(j) (t) l — LJ j 0) 17 ’ CI- (33)
The maximum of | f{¢, (@), ---, 2@ @))| over [ai, a,] x R?*! we
shall denote as L, also we shall define L* = max (L, 1).

THEOREM 3.1. Lel us assume )

G) 1¢&, =@, -+, 29(@t)) be continuous over [ai, a,] X By, and
hence bounded by L.

) (af/ox P (), (@), -+, 29 (8)) exist and are continuous
for all j=0,1,---,q on [ai, a,] x By and hence bounded by L;.
Then, if k= L*+C)0/(1—C0) <1, (1>C8) where 0 is defined
i (2.10) the sequence gemerated by (31) with |20 — Lol <1
converges uniformly in t to the umique solutiom of (1.1), (2.1) say
z(2). ‘

-

"A bound on the error is given by

lom — 2l < &" (1 — B)~ s — 2ol .
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Proof. First we shall show that the sequence {Z,(2)} exists in
Bi. We define an implicit operator T

To @) = Lan® + [ dan & 9|1 26,00, 20 ()
o [ R (34-
CHCX (TP () — 2D () 8; () | s :

whose form is patterned on the integral equation representation of
(3.1). ' .

Since x(¢) € B, it is sufficient to show that, if x(#) € B; then
Tx(t) € By, i.e. T 1is a mapping of B; into By From (3.4) and
theorem 2.1 [1], we have

[(Tz)® () — L8y )| < CF (ar — ar)*
x max [If@ @@, -, 2@ )]

e, <i<a,

. (35)
+CX(TDD @)~ 2P @) [8; @) I]

< Ciilar —a)* [L* + C{|Tr — Leol
+”$"——8(2,1)”}], kzO) 17”'7 q.

Multiplying (35) by L; and summing over from 2= 0 to k2 =¢q, we
obtain ’

1Tz — on| <0 [L*+ C+ C| Tx — Lanl]

and hence

T’—"e Swzk_
| T2 ol 1 —"Cﬂ

Thus, the sequence {z. ()} exists in B;, provided 2 < 1.
Now, we shall show that {x, ()} converges: For this, we
have

Tuis () = 2 ® = [ gy (6, [ F(s, @m ()0, 22 ()

FCY (3% (s) — 2 () ()
- f(s) Lm—1 (s)’. "y x'sg-)-l (S))

—CY @) — 284 (5) a,(s) | ds
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where ¢;(s) is same as p;(s) replacing m by m — 1.
Thus using theorem 2.1 [1], we obtain
(&) e (&) ¥ % — n—Fk
(203 (@) — 2@ (D) 1< Ci% (ar — 1) alrélfgir Lf (@, 2w (@), -,

23 @) — @ w1 (8),- -, 232 (D)

3 {120 (1) — 22D || 5, ()]
2 e o (36)

12 (1) = 22 (O] 1 D1}

< 2 (@, — 4" [|@n — Tuil + C [Tmes — 2al
+C ”xm - xm—l”] -

Multiplying (3.6) by L; and summing over from k=0 to &2 = q‘ we
obtain ‘

"xm+1 - mm” S 0 [”a}m _ xm,—ln (L* + C) + C ”xm+1 - wm”] o
Hence, we find |

| < Bl @ — Tl

[Tms1 — 2w
or
li e Zull < ™ || 21 — 20 .
"Since, £ <<1 the sequence {x, (¢)} converges to the solution of (1.1),

(2.1), say «(?).
The error bound follows from the following triangular inequality

1Zme s — Tl < 1Zmsp = Tmapm1ll + [Bmspms — Bomspoal] + -+
+ “xm+1 — xm”
< (Brp=t 4 pmar-? oL g pm)|
< EB"(1 — B)-Y o, — 2|

21 — ol

and taking p — co,
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