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t=too
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Abstract. Let T, S and A be linear operators in a Banach space
X. In our work [1] we studied the existence of

lim #-1 SO exp (—7T) A exp («S) dr = mx (A)

fotoo

for bounded operators T, S and A. In this paper we continue our
study of the same operator limits for unbounded operators T and S.

Introduction. In [1] we were able to characterize ‘the domain,
the range and the null space of the mapping z. under suitable
assumptions on the bounded operators S and I. We then deduced
‘the existence of operator limits

(D ,hin exp (—tT)exp (¢T + A),

as a consequence of ours by setting T =S, The limits in (1) has
‘been studied by Ellis and Pinsky [2] when X is ﬁmte dlmensmnal
and T. Kato [3] when X is infinite dimensional.

Let B(X) be the algebra of all bounded linear operators in "X,

' DEFINITION 1. Let M o and ﬂ be real numbers W1th M =1
An operator T in X 'is said to belong to the class G+(M /3) if
T generates a semigroup of operators exp (tT) 0<t< oo of
class Co and if [exp (¢T)| < Me?t, for all ¢t [0, ). Similarly,
we say that T belongs to the class G_(M, «) if the operator

Received by the ‘;;editors‘ Ndvember .19, 1979.

AMS Subject Classification (1980): primary 47D05, 47B47, 47A35.
() Research supported in part by NSF grant MCS 77-02256.

401



402 S.Y. SHAW AND CHARLES S.C. LIN [ July

—T € G.(M, —x). We let G(M, o, 3) denote the intersection of
G.(M, p) and G-(M, &).

We refer the readers to Hille and Phillip [4, Chapter 10] for
precise deﬁnitions of semigroup of operators, its type, infinitesimal
generator and their properties. ‘

DEFINITION 2. Let SeG,(M, 8) and T € G_(M, ). Let
I'.={AeB(X):A: exists}, where As: denote the limits
‘limt*fotexp(—rT)Aexp(rS) dr as t— +o in the uniform
operator topology. =. denote the mappings from I's to B(X)
defined by z.:(A) = A.. It is clear that I'. are linear, subspaces
of B(X). I'+(I'-) is closed if < a(a=4g). |

Our main results in [1] are as follows.

TeEOREM. Let S G (M, 3)NB(X) and T € G_(M, ) NB(X).
Let E(t)A=exp(—tT)Aexp(tS) and Asr(A)=AS—TA for
A€ B(X). Let R(Q) and N(Q) be the range and the null space
of an operator Q, respectively. Suppose B < . Then we have
(a) Iy is a closed subspace of B(X).
(b)Y E@Q)r.cry and z. E1X) =E()zy =z in Ty for any
1=0. \ ‘ ‘
- (¢) =+ is a bounded linear projection in I'. with |z.| < M?
Moreover, R(z,)=N(As, 1) and N(z.)= R(As )", where R(As, 1)~
is the closure of R(As, 1) in B(X).

(d) I's =N(As, 1) ® R(As, 7).

Similarly, if Se€ G_-(M, &) N B(X) and T € G.(M, 8) N B(X)
with @ > 8, then the results of our theorem remain true with all
“4+” signs replaced by “—” signs.

CoroLLARY. If S, T € G(M, o, @) 0 B(X), then we have

+=TI_-= N(As,r) D R(As,7)~ and =z, ==_. Moreover, if X is
Sinite dimensional, then I'. = B(X).

The main results. When § and T are not bounded, the operator
AS —TA (A e B(X)) is not defined for all z € X, the natural
domain of AS—TA is D(S) N A Y(D(T)), and the operator
AS — TA is in general unbounded (D(S) denotes the domain of S,
etc.---). We are only interested in bounded operators which can
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be expressed in the form AS — T4, thus we shall restrict ourself
to the case that D(S)N A-Y(D(T)) is dense in X and the closure
AS — TA € B(X). This leads to the following

DeFINITION 3. Let S, 7 be densely defined closed operators.

Denote by AS,T\ the operator with maximal domain D(Ag, 7)
={AeB(X):AS—TA is  bounded with dense domain
D(S) n A-Y(D(T)) in X}, and define

As,7(A) = AS — TA € B(X).
DeFINITION 4. Let Ag 7 be the restriction of zis,T to the domain
D(As,7) = {A € D(As, 1) : AD(S) € D(T)}.

TueoreM 1. If Se€G.(M,B) and T € G_.(M, &) and if
a2 p, then R(As,r)-C N(zs); if S€G_(M, ) and T € G.(M, d)
and if «=90, then R(As,7)~ € N(z.).

COROLLARY 2. Let S, T € G(M, o, ). Then we Thave
R(As, )" @ N(As,7) C I'. N I'., and =, coincides with r_ there.

Proof. Let B e R(As,7). Then B=AS—TA for some
AeD(As, 7). Smce for each fix x € D(S), Ae’S2c AD(S) C D(T)
we see that the derivative of e~*TAe*S2 with respect to ¢ evaluated
at r =1 is equal to -

Iim(r—¢t)t{eTAeSx — e T Ae'S 2}
=t

S . pfS - —tT o p—iT )
= lim {e*’TA ¢ € 2+ & ¢ Aefsa:}
> T —1 T — 1
C =etTAS eSSy + e 'T(—T)AeSa
=e T BeSx

Thus, by integration from 0 to #, we obtain ]
%/“t e TBeSxdr= % (e—’TA eSx — Ax)
It follows that, for every x € D(S),

]]% /: e~ TBeSede g%- (M? + 1) 1Al =]l .

Now to each element ¥ € X, we cén choose a sequénce ’{.@} vin
D(S) such that [z, —y][=<1/# and [z, <2]vl. Then
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|

N ' H%— ‘/0"t e TBeSydr:
S_H% At e~*T B e™S x,dr

+ H-}—fot e T B e S(y — 24) d;

=L 12 + 1) 1Al ol + M2 1B] Iy — 2l
| s% (M2 + 1) Al lgll + M* | Bl /n
forall =1, 2,---. .By letting n—+ o, We get

“ ‘1{ fot e TBeSyde| < % (M2 + 1) 1Al -

This implies that z.(B) = u — limx 1/t /;t e TBeSdr=0. That

is ‘B e N(z:), hence R(As,7)~ € N(z.). The second part of

Theorem 1 can be proved similarly. This completes the proof of

Theorem 1. Corollary 2 follows immediately. ' : -
"Next, we shall denote by D;(As,7) the set

{(A—-=T)Y'tAL—-8)"': Ae B(X)}
S ’ for each 1€ o(S) N o(T).

k‘ It can be checked easily that D:(As,7) consists precisely of those
Q € B(X) such that R(Q) c D(T) and such that the operator
(A—T)Q(1—8) is bounded on D(S). We have

TuEOREM 3. Let S and T be densely defined closed operators
in X, and let 2 € o(S) 0 p(T). Then Di(As,7) € D(As,7) and

R(AG--ta-m-1) = R(As,7 | Di(As, 1)) .

In particular, when S and 7 are bounded, we have D;(As 1)
= D(Ag,7) = B(X), and in this case R(As 1) = R(AG-s)~La-1m"1).

ReMARK. It follows that D(Asr) contains the linear span of
the set U {D:(As,7) 2 2€ 0(S) N o(T)}. Since for any T, closed
densely defined, D(Ar) is an algebra with

Ar(AB) = AA7(B) + A;(A)B, for A, Be D(Ar).

Thus D(A7) contains the linear algebra generated by
U iDi(Ar) 1 2 & 0(S) N o(T)}. We also have

Span U {R(Au-r-ta-m-1) : 4 € p(S) N o(T)} c R(As, 1) .
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Theorem 3 is a consequence of the following

LEMMA 4. Let S and T be densely defined closed operators in
X and 1< p(S) N o(T). We have:
(i) If A B(X), then B= 1 —T) A1 —8)te D(As, 1)
with R(B)cD(T) and As,7(B) = [Au-9-a-n-1(4).
(ii) If AeD(As, 1), then As,7(B) = (2—T) ' As, 7(A)(2—8)-1,

Proof. To each 2 < D(S), we have

As,7(B)x = (2 — T)*A(1 —S)-1Sr
A —TQA—=T)Y*AL -8tz
== T)TAG—-8S)t— - T)'4] =
— [ —=T)*A(1—8)'— A1 — 8) ] =
=[AQ-8)'— QU —T)'A]lz
=[Au-9-ta-n~] (A) z.

Since D(S) is dense in X and the right hand side of the identity
is a bounded operator, we see that B € D(Ag ) and As, 7(B)
= [Au--a-m-J(A). This proves (i). Next, let A e D(As, 7).
Then AD(S)c D(T) and As,(A)=AS—TA on D(S). To each
2 € D(S), we have ‘

(A= T)*As,7(A)(2 — S)'
=Q—=T)'(AS —TAY2— Sz
=@ —=T)TAS(1—S)12

—A—=T)'TA(1—-8)1z
=QA—T)tA(1—8S)tSz
—TQ—=T)'4A(1—-S)ta
= As,7[(A — TH)-tA(1— S)-t]=
= As,7(B)z.

Again, since both sides of the identity are bounded operators and
D(S) is dense in X, the identity holds for all z€ X (ii) follows.

REFERENCES

1. Charles S. C. Lin and S. Y. Shaw, On the existence of
lim t_;ioot—l S: exp (—77T)A exp(rS)dr, Studies & Essays in commemoration of the

Golden Jubilee of Academia Sinia, June 1978, pp 119-126.
2. R.S. Ellis and M. A, Pinsky, The projection of the Navier-Stokes equations upon
the Euler equations, Jour. Math. Pures Appl. 54 (1975), 157-182.



406 S.Y. SHAW AND CHARLES S.C. LIN

3. T. Kato, On @ matrix-limit theorem, Linear and Multilinear Algebra 3 (1975),
67-71. )
- 4. E. Hille and R.S. Phillps, Functional analysis and semigroups, Amer. Math. Soc.
Collog. Publ., Vol. 31, Amer. Math. Soc., Providence, R.1, 1957. ’ : .

. NATIONAL CENTRAL UNIVERSITY, CHUNG LI, TAIWAN, R.0.C.
UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS, U.S. A.



