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1. Statement of the result. A set of points S ‘consisting of
at least # + 1 points together with a family of subsets of S,‘ named
blocks, is called a partition of type #(z > 1) if every # distinct points
of § is contained in one and only one block and every block contajns
at least # distinct points [1]. The set LP,(S) of all partitions of
type # on the same set S is known to be a‘complete, atomistic [1],
meet-continuous [2] lattice called a partition lattice. The partial
ordering Py < P; in LP,(S) for any two partitions Py, P, is defined
by the condition that every block of P; is contained in a block of
P:. Since every complete, atomistic and meet-continuous lattice is
known to be a geometric lattice [3], the partition lattice LP,(S) is
therefore a geometric lattice. That is, LP,(S) is a lattice isomorphic
to the lattice of all subspaces (flats) of the merely finitary geometry
{S’, €', where S’ is the set of all atoms of LP,(S) and C’ is the
closure operation defined by C’: X — C/(X) = {P: atom such that
D < X X (lattice sum)}, for any subset X of S, ‘

The terms involved in here are defined as follows: A merely
finitary geometry in the sense of Jonsson [4] is an ordered pair
{S, C> consisting of a set S and a closure operation € which
associates every subset X of S with another subset C(X) ‘such that
the following conditions are satisfied: _ |

(i) XCO(X)= C(C(X)) for every subset X of S,’

(i) C(lp) = p for every element p € S,

(iii) C(¢) = ¢, where ¢ is the empty set,
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(iv) for every subset X of S, C(X) is the set union of all sets
of the form C(Y) with Y a finite subset of X

A subset X of S is called a subspace (or flat) if X = C(X)
holds. 7

An atom of LP,(S) is a partition of type # on S which has
only one block consisting of exactly # -+ 1 distinct points of S, and
every other block contains only # distinct points. If {xi,---, Zas1}
is the # + 1 distinct points of the unique block of the atom P,, we
denote this atom by P, = {(&1,-* -, Zas+1)}.

On the other hand, it is also shown by Hartmanis [1]
that the partition lattice LP,(S) is isomorphic to the Ilattice
L(P,G(S’)) of all subspaces of the geometry P:G(S’) in the sense
of Hartmanis on the set S’ of atoms of LP,(S). Actually. .P.G(S’)
is a partition of type 2 on S’ whose blocks are defined in the
following way: For any two atoms X = {(@1,---, Zss0)} and

= {(y1,- -, Yxs1)} of §’, define the block (also called line in this
case) (X, Y) in P:G(S’) determined by X, Y to be the set of all
atoms of LP,(S) which are < X + Y. Obviously.

{(21,- -+, Tn, Tus1, Yn+1)}
if {210, Puy Tars) 0 YL, Y Ynaad
X+Y= = {®1,---, Za} = {Y1," -, Yn}
{(®1, -+, Ty Zusr), (Y05 Yny Yne1)}
if {@y,-°, Tny Tuea) O Y177, Yn, Ynsr}
contains less that # points.

The first case contains only one block which is non-trivial—consisting
of at least # + 1 distinct points. The second contains exactly two
nontrival blocks. |

A subset T c 8’ is called a subspace if for any two atoms
X, Y e T, the line I(X, Y) c T.

It can be easily seen (proof is similar to the proof of the fact
 that a Wille geometry of grade # is a merely finitary geometry.
[3, p. 16]1) that P:G(S’) is also a merely finitary geometry <S’, C),
where C(X) is defined to be the least subspace containing the given
~subset X of §’. |

‘Thus there are two seemingly different representations of LP.(S)
as a geometric lattice; one through the geometry <S’, C’> and the
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other through P, G(S’) =<S§’, C>. It is natural to raise the question:
How are these two geometries related? It is intended in this note
to show the following result concerning this question.

TuEOREM. The two seemingly differemt represemiations of the
partition lattice LP,(S) as a geometric laltice are actually the same.
That is, the two geometries {S’',C’> and P, G(S')=<S8’', C> are the same.

2. Blocks of the partition @ + P,. As the preparation for the
proof of this theorem, we need to study the blocks of the partition
Q@ + P,, where @ is any partition of type # on S and P, is an atom
of LP,(S) such that P, £ Q. Let P,= {(@1, -, Zu, Lus1)}, and let
B’(y1, -+, ¥s) be the block of @ determined by the # distinct points
{y1,-- -, ya}. Define

nt+1
B, = U B/ (21, -, Zi,-++, Tar1) (set union).
i=1 ’

where {21, -, &i, ~-*, Tner} = {&1, -+ Di-1, Tisz1,"**, Tusr}.  Then
define

Bivi=U B'(z1,- -, 2)

for all distinct {zi,---, 2.} € B; provided that B; is already defined.
It is obvious now that

{#y,--+, Bpu}C ByCBsC---C B; C Biya C---.
Let

B = U B; (set union).

Now, for any # distinct points {¥i, --, ¥} of S we define

-B if {?/1,"', '!/n} c B
B'('!/l,"', ?/11) if {yl:...7 y”} ¢ B-

Let P be the collection of all B(yi,---, Yn) defined this way. Then
P is a partition of lype n on S.

In fact, let {z1,---, 2s} € By, -, ¥u). Case 1. If By, -+, ¥Ya)
=B, then {z1,---, 2} € B, so B(zi, -+, 2:) = B=B(Y1, -+, Yn).
Case 2. If By, -, Yn) =B (Y, -, ¥»), then {zi,---, 2.}
c B'(y,--, ¥»), hence B’(zi,--, 2.) =B’(91,"--, ¥»). Furthermore,
{z1,---, 2z} ¢ B, sine otherwise, {2i,"--, 2} € B would imply that
there is a B;, such that {z,---, 2.} C Bj, and B’ (Y, Yu)

Blys,---, v =4
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= B'(21,++, 2,) € B;; © B. As such it contradicts the fact that
{41,---, Y=} € B. Since {z1,---, 2.} ¢ B, we have B(z, -, 2,)
= B'(21,"*, 2s) = B (y1,-**, ¥s) = B(¥1,*, ¥u). Thus P is a
partition of type 2 on S.
Now, it can be shown that P = Q + P,. Obviously, {21, -+, Zpsdl
c B; ¢ B. For any # distinct points {¥1, -, ¥s}, if {¥1,---, ¥u} C B,
then as shown above B'(¥y,--, ¥») C B(Ys, -+, ¥u) =B. If
{y1,---, Yu} & B, then B (Y1," -, ¥») = B(¥1,- -, ¥»). Thus Ps,, Q < P.
Hence P,+ Q@ < P.- On the other hand, let P,+ Q@ < R, and let
C(91, - -, ¥s) be the block of R determined by the #z distinct points
{y,,---, ¥s}. Since P, <R, C(xy,---, Zu) D {21, ,Zu, Trs1}, and
since @ < R implies = that C(ay,---, 2s) = C(®1,- -, Zi, -+, Tuer)

S B2y, Bi,r+, Zuss), we have C(ay,---, %) O B Now, if
{Zh” ) z”} c Bly then C($1,' Ty xﬂ) = C<Zly' c Ty Zﬂ) > B’(Z1,' c Ty zﬂ):
hence C(&1,- - -, 2,) D B:. In this way we can show that C(zy,---, 2,) -

DB, Bs,--+ and hence C(ay,---, ) O B. Thus, if {y1,---, ¥x} € B,
then B(yi, -, ¥») = B c C(x1,---, £,). On the other hand, if
{yy,---, ¥a} &€ B, then B(Ysy, -, ¥a) = B (Y, -+, ¥u) € C(Y1,- -+, Yn),
since @ < R. Therefore, it is shown that P < R Thus P =Q + P,.

3. Equivalency of the two geometries. For the proof of  the
theorem, we show that the two geometries <S’, C’> and P, G(S’)
=<8’, C> are the same. To show this, we need the following:

LevmMa. If S/, C> and <S', C'> are two merely finitary
geometries, then <{S', C>=<S’, C'> if and only if C(K)=C'(K)
for every finite subset K of S’. .

Proof. Let H be any subset of $’. Since <S’ , C> is a merely
finitary geometry, C(H) = U, C(K;) for all finite subsets K, of H.
But, since C(K;) = C'(K;) we have C(H) = U, C(K) = U, C'(K)
= C'(H). QE.D. '

Proof of the equivalency of <8’, C’> and P:G(S’). Let
P € LP,(S) be a lattice join of finite number of atoms P,(e=1,---, k)
such that P, £ Xici Py, s=2,---, k. Let K = {Py,---, P;} be the set
of these atoms. Obviously, C'(K) = {P,: atom such that P, < P
= Ne-1P;} 2 C(K), since C'(K) is a subspace of P, G(S’). Thus,
by the above lemma, we need only to show the proposition that
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every atom P, under P is conmtained in C(K). This can be done
by induction on the number % of ‘the atoms in K.

This proposition holds for 2= 2 by the definition of line in
P, G(S"). Assume now that it holds for k—1. Let P,£Q=Y%4 Py,
then P=Q + P,. Also, let K’ = {Pi, -, Pr-1}. Suppose that the
atom P, = {(¥1, -, Ys+1)} < P. Then there is a block B, of the
partition P which satisfies By 2 {¥1," - -, Yns1). 'As a block of P, B,
is either one of the following two types: 1) Bo= B (Y1, ", Yn),
a block of @ not contained in B, or 2) By=B= UB;. In the
case 1), {(¥1, - -, Yns1)} < Q = 221 Py, so by the induction hypothesis,
P,={(41,- ", Yn+1)} € C(K') © C(K). In the case 2), there is a
B;, such that {y1,- -, Yus1} C Bbio. Thus it suffices to show that if
(-, Unsr) C©Bi for amy i=1,2,---, then Po={(y1, -, Uns1)}
c C(K). This proposition can be shown by induction on i.

For i =1, {9, Unsr1} © Bi=Us B'(@s, -+, &1, -+, Bass). Without
loss of generality, we can assume that 2, = yl,-‘,- -, 27 = %; and that
Zi,o e, Lo, Tret, s Lart, Yirs, oo, Yser are distinct.  For a fixed j
between I +1 and #+ 1, let y; € B' (21, -+, &i,- -, o:n+1);~‘ “Then
R; = {(21, -+, &i,»++, Zus1, ¥;)} < Q hence R; € C(K') c C(K) by
the induction hypothesis on Z2—1. Since Pp= {(2y, ", Zus1)}
e C(K), the line determined by P, and R; is of the form
{(#1,--*, Zur1, ¥;)}, and is contained in C(K). Thus the atom
{(21,---, Tw, ¥;)} € C(K), where j can be any integer in between
] +1and # + 1. It then follows that the line {(x1, -, Tn, Yn+1, ¥;)}
c C(K), and hence {(21," -+, Zn-1, Yns1, ¥;)} € C(K) for j=I+1,---, 2.
By continuing similar argument, we can conclude that {(@y, - - -, @s-s,
Yurt, Unm Yo)} € C(K), =1+ 1,---1—1),- (21" ", &1, Ynsr,"" 7,
Yivs, Ym) € C(K), (m=1+ 1,1+ 2), and finally {(®1,- -, 1, Yns1," " -,
Yie1)} = {(¥r,- -, Yn, Yue1)} € C(K).

Next, assume that {¥y,---, ¥sei) C B; implies {(¥y," -, Yus0)}
c C(K). Suppose now that the # + 1 distinct points {y,---, Yns1)
c Bi+i. We assume as above that wl;—'yl,--~, 27 =% and that
(@1, %, Y141, *, Yns1} are distinct. Further, suppose that for a
fixed jinl+1<j<n+1,9;€ B (21,---, 2s) With {zy,--, 2z} C Bi.
Then, if ¥; = 2s for an & (k=1,---, #), we have {(@1,"- & ¥}
c C(K), by the induction hypothesis on 7, since {®1," -, %n, ¥j = 2}
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c B;. Suppose next that y; is distinct from zi,---, z,. Then, since
{21+, 2, ¥i} © B'(21,--, 2), a block of @, we have {(z3," -, 2w ¥;)}
< Q. Hence {(z1,"* -, 2., ¥;)} € C(K) by the inducton hypothesis
on k—1. Now assume that xy =25, Lmw =2, and that
{21, 2w, Zmrvy, *°, &u} ave distinct. Then, since these points are
contained in B;, by the induction hypothesis on 4, the atoms
{(z1,° -, Zu, Zeme) ), -+, {(20,7- -, 20, Zw)} €C(K). Also shown above
is the fact that {(z1,---, 2z, ¥:)} € C(K). By using the same
argument as above in showing {(¥1," *, Y, ¥ss1)} € C(K), we can
conclude that {(x,---, s, ¥i)} € C(K). Thus {(@1,---, 2, ¥i)}
€ C(K) for j=1I+1,--,2+1 From there, it follows that
{(Y1,"*, Yn, Yns1)} € C(K).
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