A THEOREM ON PARTITION LATTICE AS A GEOMETRIC LATTICE

BY

CHEN-JUNG HSU

To the memory of H.C. Wang

1. Statement of the result. A set of points S consisting of at least n+1 points together with a family of subsets of S, named blocks, is called a partition of type $n(n \ge 1)$ if every n distinct points of S is contained in one and only one block and every block contains at least n distinct points [1]. The set $LP_n(S)$ of all partitions of type n on the same set S is known to be a complete, atomistic [1], meet-continuous [2] lattice called a partition lattice. The partial ordering $P_1 \leq P_2$ in $LP_n(S)$ for any two partitions P_1 , P_2 is defined by the condition that every block of P_1 is contained in a block of P_2 . Since every complete, atomistic and meet-continuous lattice is known to be a geometric lattice [3], the partition lattice $LP_n(S)$ is therefore a geometric lattice. That is, $LP_n(S)$ is a lattice isomorphic to the lattice of all subspaces (flats) of the merely finitary geometry $\langle S', C' \rangle$, where S' is the set of all atoms of $LP_n(S)$ and C' is the closure operation defined by $C': X \rightarrow C'(X) = \{P: \text{ atom such that }$ $p \leq \sum X$ (lattice sum)}, for any subset X of S'.

The terms involved in here are defined as follows: A merely finitary geometry in the sense of Jonsson [4] is an ordered pair $\langle S, C \rangle$ consisting of a set S and a closure operation C which associates every subset X of S with another subset C(X) such that the following conditions are satisfied:

- (i) $X \subseteq C(X) = C(C(X))$ for every subset X of S,
- (ii) C(p) = p for every element $p \in S$,
- (iii) $C(\phi) = \phi$, where ϕ is the empty set,

(iv) for every subset X of S, C(X) is the set union of all sets of the form C(Y) with Y a finite subset of X.

A subset X of S is called a subspace (or flat) if X = C(X) holds.

An atom of $LP_n(S)$ is a partition of type n on S which has only one block consisting of exactly n+1 distinct points of S, and every other block contains only n distinct points. If $\{x_1, \dots, x_{n+1}\}$ is the n+1 distinct points of the unique block of the atom P_a , we denote this atom by $P_a = \{(x_1, \dots, x_{n+1})\}$.

On the other hand, it is also shown by Hartmanis [1] that the partition lattice $LP_n(S)$ is isomorphic to the lattice $L(P_2G(S'))$ of all subspaces of the geometry $P_2G(S')$ in the sense of Hartmanis on the set S' of atoms of $LP_n(S)$. Actually, $P_2G(S')$ is a partition of type 2 on S' whose blocks are defined in the following way: For any two atoms $X = \{(x_1, \dots, x_{n+1})\}$ and $Y = \{(y_1, \dots, y_{n+1})\}$ of S', define the block (also called line in this case) I(X, Y) in $P_2G(S')$ determined by X, Y to be the set of all atoms of $LP_n(S)$ which are $\leq X + Y$. Obviously.

$$X + Y = \begin{cases} \{(x_1, \dots, x_n, x_{n+1}, y_{n+1})\} \\ & \text{if } \{x_1, \dots, x_n, x_{n+1}\} \cap \{y_1, \dots, y_n, y_{n+1}\} \\ & = \{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \\ \{(x_1, \dots, x_n, x_{n+1}), (y_1, \dots, y_n, y_{n+1})\} \\ & \text{if } \{x_1, \dots, x_n, x_{n+1}\} \cap \{y_1, \dots, y_n, y_{n+1}\} \\ & \text{contains less that } n \text{ points.} \end{cases}$$

The first case contains only one block which is non-trivial—consisting of at least n+1 distinct points. The second contains exactly two nontrival blocks.

A subset $T \subset S'$ is called a subspace if for any two atoms $X, Y \in T$, the line $l(X, Y) \subset T$.

It can be easily seen (proof is similar to the proof of the fact that a Wille geometry of grade n is a merely finitary geometry. [3, p. 16]) that $P_2G(S')$ is also a merely finitary geometry $\langle S', C \rangle$, where C(X) is defined to be the least subspace containing the given subset X of S'.

Thus there are two seemingly different representations of $LP_n(S)$ as a geometric lattice; one through the geometry $\langle S', C' \rangle$ and the

other through $P_2G(S') = \langle S', C \rangle$. It is natural to raise the question: How are these two geometries related? It is intended in this note to show the following result concerning this question.

THEOREM. The two seemingly different representations of the partition lattice $LP_n(S)$ as a geometric lattice are actually the same. That is, the two geometries $\langle S', C' \rangle$ and $P_2(S') = \langle S', C \rangle$ are the same.

2. Blocks of the partition $Q + P_a$. As the preparation for the proof of this theorem, we need to study the blocks of the partition $Q + P_a$, where Q is any partition of type n on S and P_a is an atom of $LP_n(S)$ such that $P_a \nleq Q$. Let $P_a = \{(x_1, \dots, x_n, x_{n+1})\}$, and let $B'(y_1, \dots, y_n)$ be the block of Q determined by the n distinct points $\{y_1, \dots, y_n\}$. Define

$$B_1 = \bigcup_{i=1}^{n+1} B'(x_1, \dots, \hat{x}_i, \dots, x_{n+1})$$
 (set union).

where $\{x_1, \dots, \hat{x}_i, \dots, x_{n+1}\} = \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}\}.$ Then define

$$B_{i+1} = \bigcup B'(z_1, \cdots, z_n)$$

for all distinct $\{z_1, \dots, z_n\} \subset B_i$ provided that B_i is already defined. It is obvious now that

$$\{x_1, \cdots, x_{n+1}\} \subset B_1 \subset B_2 \subset \cdots \subset E_i \subset B_{i+1} \subset \cdots$$

Let

$$B = \bigcup_{i} B_{i}$$
 (set union).

Now, for any n distinct points $\{y_1, \dots, y_n\}$ of S we define

$$B(y_1,\dots, y_n) = \begin{cases} B & \text{if } \{y_1,\dots, y_n\} \subset B \\ B'(y_1,\dots, y_n) & \text{if } \{y_1,\dots, y_n\} \notin B. \end{cases}$$

Let P be the collection of all $B(y_1, \dots, y_n)$ defined this way. Then P is a partition of type n on S.

In fact, let $\{z_1, \dots, z_n\} \subset B(y_1, \dots, y_n)$. Case 1. If $B(y_1, \dots, y_n) = B$, then $\{z_1, \dots, z_n\} \subset B$, so $B(z_1, \dots, z_n) = B = B(y_1, \dots, y_n)$. Case 2. If $B(y_1, \dots, y_n) = B'(y_1, \dots, y_n)$, then $\{z_1, \dots, z_n\} \subset B'(y_1, \dots, y_n)$, hence $B'(z_1, \dots, z_n) = B'(y_1, \dots, y_n)$. Furthermore, $\{z_1, \dots, z_n\} \not\subset B$, sine otherwise, $\{z_1, \dots, z_n\} \subset B$ would imply that there is a B_{i_0} such that $\{z_1, \dots, z_n\} \subset B_{i_0}$ and $B'(y_1, \dots, y_n)$

 $=B'(z_1,\dots,z_n)\subset B_{i_0}\subset B$. As such it contradicts the fact that $\{y_1,\dots,y_n\}\not\subset B$. Since $\{z_1,\dots,z_n\}\not\subset B$, we have $B(z_1,\dots,z_n)=B'(z_1,\dots,z_n)=B'(y_1,\dots,y_n)=B(y_1,\dots,y_n)$. Thus P is a partition of type n on S.

Now, it can be shown that $P = Q + P_a$. Obviously, $\{x_1, \dots, x_{n+1}\}$ $\subset B_i \subset B$. For any *n* distinct points $\{y_1, \dots, y_n\}$, if $\{y_1, \dots, y_n\} \subset B$, above $B'(y_1, \dots, y_n) \subset B(y_1, \dots, y_n) = B$. shown $\{y_1,\dots,y_n\} \not\subset B$, then $B'(y_1,\dots,y_n) = B(y_1,\dots,y_n)$. Thus $P_a, Q \leq P$. Hence $P_a + Q \le P$. On the other hand, let $P_a + Q \le R$, and let $C(y_1, \dots, y_n)$ be the block of R determined by the n distinct points Since $P_a \leq R$, $C(x_1, \dots, x_n) \supset \{x_1, \dots, x_n, x_{n+1}\}$, $\{y_1,\cdots,y_n\}.$ since $Q \leq R$ implies that $C(x_1, \dots, x_n) = C(x_1, \dots, \hat{x}_i, \dots, x_{n+1})$ $\supset B'(x_1,\dots,\hat{x}_i,\dots,x_{n+1}),$ we have $C(x_1,\dots,x_n)\supset B_1$. $\{z_1,\dots,z_n\}\subset B_1$, then $C(x_1,\dots,x_n)=C(z_1,\dots,z_n)\supset B'(z_1,\dots,z_n)$, hence $C(x_1, \dots, x_n) \supset B_2$. In this way we can show that $C(x_1, \dots, x_n)$ $\supset B_1, B_2, \cdots$ and hence $C(x_1, \cdots, x_n) \supset B$. Thus, if $\{y_1, \cdots, y_n\} \subset B$, then $B(y_1, \dots, y_n) = B \subset C(x_1, \dots, x_n)$. On the other hand, if $\{y_1,\dots,y_n\} \not\subset B$, then $B(y_1,\dots,y_n) = B'(y_1,\dots,y_n) \subset C(y_1,\dots,y_n)$, since $Q \le R$. Therefore, it is shown that $P \le R$. Thus $P = Q + P_a$.

3. Equivalency of the two geometries. For the proof of the theorem, we show that the two geometries $\langle S', C' \rangle$ and $P_2G(S') = \langle S', C \rangle$ are the same. To show this, we need the following:

LEMMA. If $\langle S', C \rangle$ and $\langle S', C' \rangle$ are two merely finitary geometries, then $\langle S', C \rangle = \langle S', C' \rangle$ if and only if C(K) = C'(K) for every finite subset K of S'.

Proof. Let H be any subset of S'. Since $\langle S', C \rangle$ is a merely finitary geometry, $C(H) = \bigcup_{\tau} C(K_{\tau})$ for all finite subsets K_{τ} of H. But, since $C(K_{\tau}) = C'(K_{\tau})$ we have $C(H) = \bigcup_{\tau} C(K) = \bigcup_{\tau} C'(K) = C'(H)$. Q. E. D.

Proof of the equivalency of $\langle S', C' \rangle$ and $P_2G(S')$. Let $P \in LP_n(S)$ be a lattice join of finite number of atoms $P_\alpha(\alpha=1,\cdots,k)$ such that $P_s \nleq \sum_{h=1}^{s-1} P_h$, $s=2,\cdots,k$. Let $K=\{P_1,\cdots,P_k\}$ be the set of these atoms. Obviously, $C'(K)=\{P_a\colon \text{atom such that } P_a \leq P = \sum_{\alpha=1}^k P_\alpha\} \supseteq C(K)$, since C'(K) is a subspace of $P_2G(S')$. Thus, by the above lemma, we need only to show the proposition that

every atom P_a under P is contained in C(K). This can be done by induction on the number k of the atoms in K.

This proposition holds for k=2 by the definition of line in $P_2G(S')$. Assume now that it holds for k-1. Let $P_k \not \leq Q = \sum_{\beta=1}^{k-1} P_{\beta}$, then $P=Q+P_k$. Also, let $K'=\{P_1,\cdots,P_{k-1}\}$. Suppose that the atom $P_a=\{(y_1,\cdots,y_{n+1})\} \leq P$. Then there is a block B_0 of the partition P which satisfies $B_0 \supset \{y_1,\cdots,y_{n+1}\}$. As a block of P, P_0 is either one of the following two types: 1) $P_0=P'(y_1,\cdots,y_n)$, a block of $P_0=P'(y_1,\cdots,y_n)$, a block of $P_0=P'(y_1,\cdots,y_n)$, a block of $P_0=P'(y_1,\cdots,y_n)$, so by the induction hypothesis, $P_0=\{(y_1,\cdots,y_{n+1})\} \leq Q=\sum_{\beta=1}^{k-1} P_{\beta}$, so by the induction hypothesis, $P_0=\{(y_1,\cdots,y_{n+1})\} \in C(K') \subset C(K)$. In the case 2), there is a $P_0=\{(y_1,\cdots,y_{n+1})\} \subset P_0$. Thus it suffices to show that if $P_0=\{(y_1,\cdots,y_{n+1})\} \subset P_0$. Thus it suffices to show that if $P_0=\{(y_1,\cdots,y_{n+1})\} \subset P_0$. This proposition can be shown by induction on $P_0=\{(y_1,\cdots,y_{n+1})\}$

For i=1, $\{y_1,\cdots,y_{n+1}\}\subset B_1=\bigcup_i B'(x_1,\cdots,\hat{x}_i,\cdots,x_{n+1})$. Without loss of generality, we can assume that $x_1=y_1,\cdots,x_l=y_l$ and that $x_1,\cdots,x_l,x_{l+1},\cdots,x_{n+1},y_{l+1},\cdots,y_{n+1}$ are distinct. For a fixed j between l+1 and n+1, let $y_j\in B'(x_1,\cdots,\hat{x}_i,\cdots,x_{n+1})$. Then $R_j=\{(x_1,\cdots,\hat{x}_i,\cdots,x_{n+1},y_j)\}\leq Q$ hence $R_j\in C(K')\subset C(K)$ by the induction hypothesis on k-1. Since $P_k=\{(x_1,\cdots,x_{n+1})\}$ $\in C(K)$, the line determined by P_k and R_j is of the form $\{(x_1,\cdots,x_{n+1},y_j)\}$, and is contained in C(K). Thus the atom $\{(x_1,\cdots,x_n,y_j)\}\in C(K)$, where j can be any integer in between l+1 and n+1. It then follows that the line $\{(x_1,\cdots,x_n,y_{n+1},y_j)\}$ $\subset C(K)$, and hence $\{(x_1,\cdots,x_{n-1},y_{n+1},y_j)\}\in C(K)$ for $j=l+1,\cdots,n$. By continuing similar argument, we can conclude that $\{(x_1,\cdots,x_{n-2},y_{n+1},y_n,y_k)\}\in C(K)$, $(k=l+1,\cdots,n-1),\cdots,(x_1,\cdots,x_l,y_{n+1},\cdots,y_{l+3},y_m)\in C(K)$, (m=l+1,l+2), and finally $\{(x_1,\cdots,x_l,y_{n+1},\cdots,y_{l+1})\}=\{(y_1,\cdots,y_n,y_{n+1})\}\in C(K)$.

Next, assume that $\{y_1, \dots, y_{n+1}\} \subset B_i$ implies $\{(y_1, \dots, y_{n+1})\}$ $\subset C(K)$. Suppose now that the n+1 distinct points $\{y_1, \dots, y_{n+1}\}$ $\subset B_{i+1}$. We assume as above that $x_1 = y_1, \dots, x_l = y_l$ and that $\{x_1, \dots, x_n, y_{l+1}, \dots, y_{n+1}\}$ are distinct. Further, suppose that for a fixed j in $l+1 \leq j \leq n+1$, $y_j \in B'(z_1, \dots, z_n)$ with $\{z_1, \dots, z_n\} \subset B_i$. Then, if $y_j = z_h$ for an h $(h = 1, \dots, n)$, we have $\{(x_1, \dots, x_n, y_j)\}$ $\subset C(K)$, by the induction hypothesis on i, since $\{x_1, \dots, x_n, y_j = z_h\}$

 $\subset B_i$. Suppose next that y_j is distinct from z_1, \dots, z_n . Then, since $\{z_1, \dots, z_n, y_i\} \subset B'(z_1, \dots, z_n)$, a block of Q, we have $\{(z_1, \dots, z_n, y_j)\} \subseteq Q$. Hence $\{(z_1, \dots, z_n, y_j)\} \in C(K)$ by the inducton hypothesis on k-1. Now assume that $x_1 = z_1, \dots, x_m = z_m$ and that $\{z_1, \dots, z_n, x_{(m+1)'}, \dots, x_n'\}$ are distinct. Then, since these points are contained in B_i , by the induction hypothesis on i, the atoms $\{(z_1, \dots, z_n, x_{(m+1)'})\}, \dots, \{(z_1, \dots, z_n, x_n')\} \in C(K)$. Also shown above is the fact that $\{(z_1, \dots, z_n, y_i)\} \in C(K)$. By using the same argument as above in showing $\{(y_1, \dots, y_n, y_{n+1})\} \in C(K)$, we can conclude that $\{(x_1, \dots, x_n, y_i)\} \in C(K)$. Thus $\{(x_1, \dots, x_n, y_i)\} \in C(K)$ for $j = l + 1, \dots, n + 1$. From there, it follows that $\{(y_1, \dots, y_n, y_{n+1})\} \in C(K)$.

REFERENCES

- 1. J. Hartmanis, Lattice theory of generalized partitions, Canad. J. Math. 11 (1959), 97-106.
- 2. C. J. Hsu and S. W. Yang, A direct proof that a partition lattice is meet-continuous. (To appear).
- 3. C. J. Hsu, A version of Birkhoff-Frink's theorem in the abstract geometry, Yokohama Math. J. 22 (1974), 11-24.
- 4. B. Jonsson, Lattice-theoretic approach to projective and affine geometry, 188-203. The axiomatic method, edited by L. Henkin, P. Suppes, A. Tarski. Studies in Logics, Amsterdam 1959.

KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506, U.S.A.