.BULLETIN OF THE - .
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
Volume 8, Number 2/3, Part I, July 1980

HYPERSURFACES OF SYMMETRIC SPACES

BY
BANG-YEN CHEN AND LEOPOLD VERSTRAELEN

To the Memory of Hsien-Chung Wang -

"Abstract. Let M be an irreducible symmetric space. If we assume
that M admits a single submanifold with a particular property, how
much can we say about the ambient space AM? This is the general
problem this paper bemg interested on. Several results will be obtained - -
in this respect.. In particular, we will prove that if an irreducible
symmetric space M admits a hypersurface N with a constant principal
curvature of multiplicity = dim N —1, then M must be a sphere, a
real projective space, a complex projective space or one of their non-
compact duals, - - A

: 1 Intrdduction. For a long period, many differential geometers
have been interested in and studied the theory of submanifolds in
the followmg manner. Namely, they first assume that the
submanifolds he in a fixed model space, (e. g. a real- or complex—
space—form, a conformally flat space, etc.. ) and then they try to
investigate or- c1a531fy such submanifolds with imposed conditions.
Many interesting and beautiful results have been obtained in th1s
direction.

In this paper, we would like to propose the following general
problem in a “reversed” way as follows. “Let M be a Riemannian
(or Kaehlerian, or symmetric, etc...) space. If we assume that M
admits a single submanifold with a particular property, how much
~can we say about the ambient space?” In other words, “we want
to know the implications on the ambient space from the existence of
a single submanifold.” To quote just one example, we recall that
if a Riemannian manifold admits an extrinsic #z-sphere, then it
admits..a totally geodesic submanifold of dimension 7 -+ 1[3]. It
seems to the authors that problems in this direction are not yet
Well-studied, However, they believe that many interesting results
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in this direction can be done.
In this paper, we shall treat this general problem among the

class of (locally) symmetric spaces. In particular, we would like
to ask and study the following problem.

PrOBLEM. How many irreducible symmetric spaces admit a
quasiumbilical hypersurface? ,

By a quasiumbilical hypersurface N we mean a hypersurface
which has a principal curvature of multiplicity = dimN — 1. Our
method in this paper works as follows. First, suppose that M is a
symmetric space which admits a particular hypersurface. Then,
we try to obtain some algebraic or geometric restrictions on the
ambient space. Finally, we shall use these restrictions to find out
all possible ambient spaces. ’

In §2, we shall state basic facts on symmetric spaces for later
use and fix our notations.

In §3, we give some lemmas and state -three main problems.
Among them, Lemma 3.3 generalizes several results of various
authors. ' ' '

In §4, we shall prove that spheres, real projective spaces and
their noncompact duals are the only irreducible symmetric spaces
in which we can find hypercylinders. By a hypercylinder we mean
a hypersurface N with 0 as its' principal curvature with multiplicity
>n—1, #=dimN

In §5, we prove that spheres, real and complex projective spaces,
and their noncompact duals are the only irreducible symmetric
spaces in which we can find quasihyperspheres. By a quasihypersphere
we mean a hypersurface with a constant principal curvature of
- multiplicity Z # — 1.

In §6, we shall classify irreducible Hermitian symmetric spaces
which admit Jé-quasiumbilical hypersurfaces.

In §7, §8 §9, we shall classify irreducible symmetric spaces which
admit locally symmetric, conformally flat, or Einstein quasiumbillical
hypersurfaces. Several remarks will be given in the last section.

2. Symmetric Spaces. In this section we shall state basic facts
on symmetric spaces for later use and fix our notations. Most of
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these facts can be found in Helgason’s book [9], (see also [5, 6, 11]).

An isometry s of a Riemannian manifold is called involutive if
its iterate s> =sos is the identity map. A connected Riemannian
manifold M is called a symmetric space if, for each point p of M,
there exists an involutive isometry s, of M such that p is an
isolated fixed point of s,. We call such s, the symmetry of M at
p. In the following we shall denote by G the closure of the group
of isometries generated by {s,:p < M} in the compact-bpen
topology. Then G acts transitively on the symmetric space M ;
hence the typical isotropy subgroup H, say at o, is compact and
M = G/H. We state some basic facts in the folowing lemmas
without proof.

LeMMA 2.1. sy induces — 1 on the tangent space ToM of M at o.

LeMMA 2.2. s gives rise to an involutive automorphism ¢ of G
by o(9) =sogos. Moreover, o induces an involutive automorphism
of the Lie algebra & of G which we denote by the same leller.

Since ¢ is involutive on @, its eigenvalues are 1 and — 1. It-is
clear that the Lie algebra § of H is the eigenspace for + 1. Let
I be the eigenspace for — 1. Then we have

LEMMA 23. G =H + M, and H = [, W].

We call such decomposition the Cartan decomposition. It is clear
that the members of § vanish at 0 as vector fields on M,

LeMMA 24. The space I consists of the Killing vector fields X
whose covariant derivative vanisk at o; in particular, the evaluation
map at 0 gives a linear isomorphism of M onto ToM : X > X(0).

From Lemma 24 follows immediately the next formula for the
curvature tensor R at 0.

Lemma 25, R(X, Y)Z =—[[X, Y1, Z], for X, Y, Z € M.
The famous criterion of E. Cartan is given by the following.

LEMMA 2.6. A linear subspace L of the tangent space ToM to a
symmetric space M is the tamgent space to some itotally geodesic
submanifold N of M if and only if L salisfies the condition [[R, N],
N1 N, where '
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={XeM:X(0) eL}.

A symmetric space M = G/H is irreducible (referring to the
restricted linear holonomy groub) if and only if the identity
component - of the (linear) isotropy group H is irredgcible, or
equivalently, if and only if its Lie algebra § is irreducible on .

LEMMA 2.7. If M is an irreducible symmelric ‘s;bace, t_hen the
sectional curvature. K(X,Y) for orthonormal vectors X, Y € M is
- given by :

K(X YV)==x¢([X Y] [X'Y]),

where + or — is laken according as M is compact or not, and ¢ is
the metric tensor induced from the Kzllmg—Cartan form. Moreover
M is Einsteinian.

The following result follows easily from the (M,; M.)-theory
of [6].

LEMMA 28. The only ivreducible symmelric spaces which admit
totally geodesic hypersurfaces are spkeres, real projective spaces and
their noncompact duals.

Theorem 1 of [4] and a result of the first author give the
following.

LEMMA 2.9. The only irreducible Hermitian symmelric space
whick admits a totally umbilical hypersurface is the complex projeglivé
line. And the only irreducible symmetric spaces which admit totally ’
umbilical hypersurfaces are spheres, real pm]ectwe spaces and their
noncompact duals.

The following lemma is well-known.

LemMMA 3.10. Every symmetric space is locally symmetric that is,
its curvature tensor is parallel.
We need also the following result [3] for later use.

LEMMA 2.11. Let M be e symmelric space. If M admils an
extrinsic n-sphere N, then M admits an (n + 1)-dimensional totally
geodesic submanifold N of constant sectional curvature such that N
is contained in N as an extrinsic hypersphere. ' ‘

By an extrimsic sphere we mean a totally umbilical submanifold



1980] HYPERSURFACES OF SYMMETRIC SPACES ' ‘ 205

with nonzero parallel mean curvature vector. A hypersurface is an

~ extrinsic sphere if and. only 1f it is totally ‘umbilical W1th nonzero

constant mean curvature. . o B )
The maximal dimensions of totally geodesic submanifolds of

constant sectional curvatire in symmetric spaces have been obtained
in Table VI of [6].

3. Lemmas and Problems. ~ Let N be an #-dimensional
submanifold of an m-dimensional Riemannian manifold M. And let
V and V’ be the covariant dlfferentlatmns on N and M, respectwely
Then the second fudamental form o of the immersion is given by ‘

(3.1) o(X, Y)=V:Y —-VxY

for vector fields X, Y tangent to N, where o is a normal-bundle-

valued syfnmetric 2-form on N. For a vector field & normal to N,
we write

(3.2) . VxE—"AgX*!‘DxE

where — AE X and Dy & denote the tangential and normal components
of V% ¢&, respectively. For the second fundamental form ¢ we define
the covariant derivative, denoted by Vxo, to be ‘

(33)  (Vx0)(¥, Z) = Dx(o(¥, 2)) — o(Vx Y, Z) — o(Y, Vx2Z),

for vector fields X, Y, Z tangent to N. The equations of Gauss
and Codazzi are then given respectively by [2],

R(X,Y; ZW)=R(X,Y; Z W)

-+ 9(e(X, W), o(Y, Z)) — 9(a(X, Z), o(Y, W)),
(35)  R(X, Y; 7 &) = ¢((Vxo)(¥, Z), &) = 9((Fro)(X, 2), ),
for vector fields X, Y, Z, W tangent to N and & normal to N, where

R’ and R are the curvature tensors of N and M, respectively, and

RX Y; Z W) =g¢(R(X, Y)Z, W). For orthonormal vectors X Y
in M, the sectional curvature K (X, Y) of the plane section. spanned
by X, Y is given by

(36) K(X, Y)=R(X, Y; ¥, X).

(34)

We give the following general lemma for Iaterkuse. ;

LemMMmA 31. Let N be a Riemannian manifold and 7 a wunit
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1-form on N. We put |
37 . Q=[{XeTN[n(X)=0}.
Then the distribution () is integrable if and only if
(Vx)(Y) = (Vya)(X) for all X, Y € ().
If () is integrable, then the second fundamental form G of any
maximal integral submanifold N in N is given by
(38) HX, Y) = — (Vxn)(1)7,
where 71(X) = g(X, 7), that is, 71 is the unit vector associated with
the unit 1-form 7 on N.
Proof. For any vector fields X, Y in (J, we have
0=Xn(Y)=(Vxn)(Y) +72(VxY),
from which we see that [X, Y]l e & if and only if (Vx2)(Y)

= (Vy7)(Y). This proves the first part of the lemma.

If () is integrable, let ]\7 be a maximal integral submanifeld of
(J. Then we have ,

(W (X) = = 2(Vx ¥) = — 1(3(X, ¥)) = — (X, V),
where ¢(X,-Y) = ﬁ(X, Y)7. This shows (3.8). (QE.D.)

If the codimension of a submanifold N in an (2 + 1)-dimensional
Riemannian manifold M is one, then the second fundamental form o
can be written as )

(3.9) o(X, Y) =h(X, Y)¢

where £ is a unit vector field normal to N. In this case % is a
scalar-valued symmetric 2-form on N. We shall also call it the
's'econd‘ fundamental form for simplicity. Let U = {pe N|A, has
at least two distinct eigenvalues‘at Pp}. Then U is an open subset
of N. If there exist, on U, two functions «, # and a unit I-form
such that

(3.10) k=oag+ po®@ o,

on U, then N is called a quasiumbilical hypersurface [2, 7, 8l. In

particular, if & = 0 identically, N is called a cylindrical hypersurface,
or simply, a hypercylinder. 1f « = p =0 identically, N is called a
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totally geodeszc hypersurface. 1f p =0 identically, N is called a ;

umbilical hypersurface. A umbilical hypersurface with constant. a

is called an extrinsic hypersphere. Finally, a quasiumbilical

hypersurface with constant & is called an extrinsic quasthypersphere,

which will simply be called by quaszhyﬁersphere or tube
The following lemma is well-known.

LEMMA 32. If M is an (n + 1)-sphere S*™' g real projective
(n + 1)-space RP"™', or one of their noncompact duals, then for each
P € M and each hyperplane V in Ty, M, there exist a hypercylinder
and a quaszhypersphere in M through P such that their tangent
spaces at p are V.
' Let @ be the unit vector associated with the unit 1-form o. We
call o the distinguished direction of the quasiumbilical hypersurface

N (With the second fundamental form given by (3.10)). Sometimes

~ we call a quasiumbilical hypersurface with distinguished d1rect1on
Z as a Z-quasiumbilical hypersurface.

Let (M, g, J) be a Kaehler manifold with complex structuré
J. For any unit vector X, the holomorphic sectional curvature
K(X, JX) is the sectional curvature of the holomorphic section
X ANJX A Kaehler manifold of constant holomorphic sectional
curvature is called a complex-space form Complex projective spaces
and their noncompact duals are compleX -space-forms. It is proved
in Theorem 6.1 that every Je- quasmmblhcal hypersurface N in any
irreducible Hermitian symmetric space of dimension >2 is a
quasihypersphere, where ¢ is a unit normal vector field- of N. The
following lemma generalizes main results of [12, 13, 14].

} LEMMA 33 If M is a complex space-form, then Jor any pomt
P € M and any hyperplane V of T, M, there exists a Jé-quasiumbilical
kypersurface N through p with T'yN =YV. Conversely,if M is a
- 2n-dimensional (> 3) Kaehler manifold such that, for any p M
and any hyperplane V. of T, M, there exists a J&-quasiumbilical
hypersurface through p with V as its tangent space al p, then M is
a complex-space-form.

Proof. The existence was proved in [13]. Now suppose that
M is a Kaehler manifold such that for each P €M and each . unit
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vector € in T, M, there exists a Je-quasiumbilical hypersurface N
with & as its normal at » and whose second fundam‘entalfdfin k
satisfies S B T s
(3.11) » o ‘”h—-odg+ﬁco®a> |
with o = JE. Thus equation (3.5) of Codazzl reduces to.
R(X, Y; Z &) = (Xe)9(Y, Z) + (XB)o(Y)w(Z)
+ 8(Vx0)(Y)o(Z) + po(Y)(Vx0)(Z).
— (\‘Yw)g(X, Z)— (¥YB)o(X)ao(Z) . .
— B(Vy o)(X)o(Z) — ,Ba)(X)(VY w)(Z).

Hence, for vectors X, Y, Z perpendlcular to & and J& with g(X Z)
= ¢(Y, Z) =0, we have :

(313) . RX Y; Z 5)—0

In ,pvarticular, if {X Z} is totally real that is, g(X Z) = g(]X Z)
= (0, we have

(3.14) R(X, JX; Z, é) =0.

(3.12)

Since this is true for any &€ € T, M, (3.14) implies
(315) R(X, JX; €+ 2 Jc —J2) =0,

from which. we find that the bisectional curvature B (X &)
= R(X, JX; & J&) satisfies

(3.16) ' R(X, JX; ¢ J&) = R(X, ]X; z,JZ),

for totally real sections X A€ and X AZ. Sir;ce the cofniﬂex-
~ dimension of M is = 3, (3.16) implies that the totally real bisectional
curvatures of totally real sections are independent of the choice of
totally real sections at each point. Thus, by a theorem of Houh
[10], we know that M is a complex-space-form. (Q.E.D.) '

From Lemmas 3.2 and 3.3 we know that spheres, real and
complex projective spaces, and their noncompact duals are irreducible.
symmetric spaces which admit many quasiumbilical hypersurfaces:
Therefore it seems to be natural and interesting to ask the following
problems. o

PrOBLEM 1. How many irreducible symmetric spaces contain
hypercylinders? ‘ ‘
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"PROBLEM 2. How many irreducible symmetric spaces contain
quasihyperspheres? :

PrROBLEM 3. How many irreducible symmetrzc spaces contam
quasiumbilical hypersurfaces? ‘

In §4 and §5 we shall give complete answers to Problems 1 and
2. At this moment we cannot solve Problem 3. However we believe
that the following conjecture is true.

CONJECTURE. Spheres, real brojective spaces, complex projective
spaces. and their noncompact. duals are the only irreducible symmetric
spaces in whick we can find quasiumbilical hypersurfaces.

In §36, 7, 8 and 9 we shall give many supports to this conjecture.
For the later use we shall also -give the following intrinsic
characterization of hypercylinder.

LeMMA 34. Let N be a kypersurface in a Riemannian manifold
N. Then N is a kypercylinder in N if and only if the curvature
tensors R and R of N and N satisfy R=R on TN that is
RX,Y; Z W)=R(ZX, Y; Z W) for all vectors X, Y, Z, W tangent
to N. , '

This lemma follows trivially from equation (84) of Gauss.

4. Amnswer to Problem 1. The main purpose of this section is

to prove the following classification theorem Wthh gives a complete
answer to Problem 1.

THEOREM 4.1. Spheres, real projective spaces and their honcompact
duals are the only irreducible sy'mmetric spaces in whick we can find
hypercylinders.

Let M be a symmetric space. Suppose that N is a hypercylinder
in M. Then either N is totally geodesic in M or there exists a
nenempty subset U such that the second fundamental form h of N
in M is given by ‘

(4.1) EF=poRo

where 540 on U and o is a unit 1-form. If the first >casev0ccurs
and M is irreducible, then Lemma 2.8 says that M isa sphere or a
real projective space or one of their noncompact duals. Consequently,
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we may consider only the second case. Since our study is local,
we may also assume that U =N and g is nowhere zero. The
equations (3.4) and (3.5) then reduce respectively to

(4.2) R(X,Y;ZW)=RXY; Z W),
R(X, Y; Z &) = (XB)o(Y)o(Z) + #(Vx o) (V)a(Z)
(4.3) + B (Y)Y (Vxo)(Z) — (YR)o(X)o(Z)

- /?(VY o) X)o(Z) — Bo(X)(Vy 0)(Z),

f,or‘ vector fields X, ‘(Y, Z, W tangent to N and ¢ normal to N.
Now, let () be the distribution which annihilates o, that is,

(44 . @ ={XeTINlo(X)=0}.
Then for vector fields X, Y, Z in (), (4.3) gives
(4.5) : RXY; Z £)=0.

Since M is symmetric, for any vector W tangent to N Lemma 27
(4 1) and (4.5) give

Rivyw X, Y; Z, f)+R(X VwY; Z, f)

It XY, ZW are in 4, (4.1), (4.3) and (4.6) 1mp1y

» w(VWX)(Vy o)(Z) — o(Vw Y)(cho)(Z)
4.7 + (Vy 0)(X)o(Vw Z)
— (Vxo)(X)o(VwZ) =0.

Since Q= W@(X) = a)(VwX)’ + (VW ®)(X), (4.7) gives

(Vx 0)(¥) (Vi 0)(Z)+ (Vx 0)(Z) (Vi 0)(¥) |
= (Vy o)(X)(Vw o)(Z) + (Vy o)(Z)(Vw 0)(X).

Let Y =Z =W. (48) shows that
(49) (Vy ) (M[(Vx0)(¥) — (Vy 0)(X)] =0.

If there exists X, ¥ in @ with (Vx)(¥) # (Vy 0)(X), then (49)
gives ”

(410) | (Vr @)(¥) =0.
Thus by puttmg X Wand Y =2 in (4. 8) we have
(411). . . (Vxo)(Y)[2(Vxe)(Y) — (Vy0)(X)] = 0.

“8)

(4.8)
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Similarly, we also have
(4 12) (Vy 0)(XD[2(Vy 0)(X) — (Vxo)(Y)] = 0.

Combining (4.11) and (4.12) we have (Vxo)(Y) = (Vy co)(X) = ().
Thus we have (Vxo)(Y)= (Vye)(X) for all X Y e .
Consequently, Lemma 3.1 implies the following.

LeMMmA 4.2, Let N be a hypercylinder in a symmetric space M -
with B 70. Then the distribution ) (given by (44)) is integrable.
Moreover, the second fundamental form h of any maximal integral
submanifold N in N satisfies

(4.13) X Y)=— (Vxo)(¥) = = (Vy 0)(X)
for all X, Y tangent to N. ™ '
From (4.8) and (4.13), we h;lVé
| WX DWW, Y) = h(Y, Z)i(X, W)

for all vector fields X, Y, Z, W tangent to the maximal 1ntegra1
submanifold N Hence from (34) and Lemma 34 we see that N
is a hypercylinder in N. Consequently we have the following.

LeMMA 4.3. Under the hypotheses of Lemma A2, every ma)cimdl :
integral submanifold N of O is a hypercylinder in N.

Let X, Y, Z W, T be vectors tangent to the hypercylinder N
in M. Then from (4.2) we obtain

(VrR' XX, Y; Z W) .
= Bo(T ) o(X)o(Z)[(Vy 0)(W) + (Vi 0)(Y)]
(4.14) —o(Y)o(Z)[(Vx 0)(W) + (Vw 0)(X)]
| + o(Y)o(W)[(Vx0)(Z) + (Vz0)(X)]
— o(X)o(W)[(Vy 0)(Z) + (Vz0)(¥)]}.

If N is locally symmetric, V2 R’ = 0. By choosing X = W,k Y =2
such that X, ¥ are in ) and o(T)+#0, we find (Vxo)(X) = 0.
Conversely, if we have (Vxw)(X) =0 for all X in (), then by
linearization, we find (Vx)(Y) + (Vy 0)(X) =0 for all X, Y in
(J. Thus, (4.14) gives (VrR')(X, Y; Z W) =0 not only for
XY, Z W, T in () but also for X, Y, Z, W, T in TN. This shows
that the hypercylmder N is locally symmetric if and only if we
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have (Vxo)(X) =0 for all X in (J. On the other hand, Lemma
42 shows that the later condition is equivalent to that every
maximal integral submanifold is totally geodesic in N. Consequently,

we have the followmg

LEMMA 44. Under the hypotkeszs of Lemma 42, N. is locally
symmetric if and only if maximal integral submanifolds of () are
totally geodesz'c in N (and hence in M). ‘

Now we shall give ‘the followmg obstmctzon for a symmetrlc
space to admit a hypercylinder.

TuEOREM 45. Let M be any symmeltric space (not nééeSsaiy
irreducible). If M- admits a hypercylinder N, them M adwmits a
totally geodesic submanifold of codimension < 3. :

Proof. If N is totally. geodesic, then nothing needs to be
proved. If N is not totally geodesic, without loss of generality, we
may assume that the second fundamental form % is nonzero
everywhere, Use the same notations as before. For vectors X, Y Z
in (), we have -

(415)‘ ‘ ' R(X, Y; Z, £)=0.

Let N be a maxunal 1ntegra1 submanifold of @. If ],\7 is totally
geodesic in N, then it is totally geodesic in M. Thus M admits a
totally geodesic submanifold of codimension 2. - 'If N is not totally
geodesic in N, then Lemma 4.3 says that N isa hypercylinder in
N. Therefore, there exist a unit 1-form 7 (at least on a- nonempty
subset of N ) and a monzero function 2 on N such that the second
fundamental form 7iof Nin N is given by -

i) k=wm®u

Let 7 be the unit vector tangent to N associated with . the unit
l-form 7) Then we have

(417) - . (Vx a))(Y) — %(X Y)=— K’i(X)ﬂ(Y> o

for X Y tangent to N, We put
(418) o .' ' {XETNM(X)—O}

From (4. 6) we have
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(419) R(VaX Y; Z )+ R(XV5Y; Z &)+ R(X, Y; V3Z, &) -
=pR(X, Y; Z, o)

for X, Y, Z in {J. By using (4.3) we have _

\ CR(VaXY; Z, &) = — po(Vi X)(Vy 0)(2).

Thus, for ¥, Z in (J, (417) implies R(Vi X, Y3 Z &) — 0. Similar

arguments give R(X, V5 Y; Z, &§) =R(XY; V:Z é)=0for XY, Z

in 0. Consequently, (4.19) implies

(4.20) RXY; Z w)=0"

forall X, Y, Z in aQ. Taking differentiation of (4.20) ‘with respect

to 7, we find

(421) R(V;X Y; Z o)+ R(X, V;Y; Z &)
+R(X,Y; V;Z, (o)—l—R(X Y; Z, V;0)=0

for X, Y, Z in (J. On the other hand, (4.1), (4.16) and (4 20) tell
us that

R(ViX,Y;Z3) =R(X,V;Y;Z3) = RX,Y;V; Z &) =0.
Thus we have R(X Y; Z V; ) =0. Since (4.16) gives V*lco = /177,
we have
(4.22) RXY; Z 7)=0
for any point p in N with 1(p) ¢ 0. From (4.15), (4.20) and (4.22),
we see that
; (4.23) : R(@p, @p)@p < @.b
for any point p with 1(p)+0. Since M = G/H is a symmetric
space and G acts on M transitiveiy, we may assume p is the origin
o (fixed by H). From (4.23) and Lemma 2.5, we have

| [[Ds Dsl, Dpl < Dy
Consequently, Lemma 2.6 implies ‘that M admits a totally geodesic

submanifold B of codimension 3 whose tangent space at p is @[,;
This completes the proof of the theorem.

Proof of Theorem 4.1. We assume that M is an irreducible
symmetric space which admits a hypercylinder N. By Lemma 2.7,
M is Einsteinian. Let S be the Ricci tensor of M. Then we have
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(4.24) ’ S(X,&)=0

for all X in TN. ,

In N is totally geodesic, Lemma 2.8 shows that M is a sphere,
a real projective space or one of their noncompact duals.

If N is not totally geodesic, we have from (4.3) that

(4.25) R(X,Y; Z £)=0

for X, Y, Z in (J. For orthonormal basis Xi,---, Xnﬂ in T, M with
X1 =&, X, = », we have

nti

(426) 0=S(X &) =3 R(X, Xi; Xi, £) = R(X, 3; o, £)

for X in . From Lemma 4.2 and equation (4.3) of Codazzi we
obtain

427y ’R(X, Y, 0,8)=0
for all X, Y in (J. By (4.3) we also have
(4.28) R(X, @; Z, ¢)=p(Vxo)(Z) = B(Vzo)(X).

Since M “is Einsteinian, S(w, €) =0. Thtjs from Lemma 4.2 and
(4.28), we find '

n+y

- (4.29) 0=> R(a, Xi; X, £) = — § trace k,

where % is the second fundamental form of a maximal integral
submanifold N of (). Since N isa hypercylinder in N (Lemma 4.3),
(4.29) is equivalent to say that N is totally geodesic in N, from -
which we have (Vxw)(Y) =0 for all X, Y in (. Substituting this
into (4.28), we obtain

(4.30) R(X, @; Z &) =0
for all X, Z in (J. Consequently, (4.25), (4.26), (4.27) and (4.30)
give ‘
(4.31) | RX Y; Z £ =0
for all X, Y, Z in TN. Therefore we have

R(TN, TN)TN c TN.

By a similar argument as the last part of the proof of Theorem 4.5
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we see that M admits a totally geodesic hypersurface. Theorem
4.1 then follows from Lemma 28. (Q.E.D.)

5. Answer to Problem 2. The main purpose of this section is
to prove the following classification theorem which gives a complete
answer to Problem 2.

THEOREM 5.1. Spheres, real projective spaces, complex Dprojective
spaces and their noncompact duals are the only irreducible symmetric
spaces in which we can find quasihyperspheres. '

Let M be a symmetric space (not necessary irreducible) and
let N be a quasihypersphere in M. Then N isa hypersurface whose
second fundamental form % in M satisfies

(5.1) ’ k=g + foQR @

where « is a constant. If o = 0 identically, N is a hypercylinder.
This case has been considered in §4. If g = 0 identically, N is an
extrinsic hypersphere. ‘Lemma 211 says that the ambient space
then must have constant sectional curvature. Thus M is either a
sphere, a real projective space or one of their concompact duals if
M is not Euclidean. Since our study is local, we may assume in
. the remaining part of this section that both « and B are nonzero
everywhere, As before, we put (J = {XeTITN|w(X) =0}. Since «
is constant, equation (3.3) of Codazzi gives R
R(X Y; Z &) = (XBo(Y)o(Z) + B(Vxe)(Y)e(Z)
(5.2) -+ (YN (Vx0)(Z) — (YB)o(X)e(Z)
— B(Vy o)(X)o(Z) — po(X)(Vy 0)(Z),

for X, Y, Z in TN. In particular, if X, Y, Z are vector fields in
(), we have

(5.3) . RX,Y:Z &) =0.

Let W be a vector field in (). Then, by taking differentiation of
(5.3) with respect to W and by applying (5.2), we obtain

al{g(W, X)R(¢, Y; Z, &)
—g(W, Y)R(¢, X; Z, 6) —R(X, Y; Z, W)
= B{(Vx0)(Y)(Vw o)(Z) — (Vy 0)(X)(Vw 0)(Z)
+ (Ve o) (Y)(Vx0)(Z) = (Vw o) (X)(Vy 0)(Z)},

(5.4)
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for X, Y, Zin (J. Let X=Z =W and Y be orthonormal.. Then
(5.4) gives

(55) " @R(£,Y; X 6) =28(Vxo)(X){(Vxo)(Y) — (Vr0)(X)}.
Since R(¢, Y; X, €) = R(§, X; Y, £), (55) implies
566) [(Vxo)(X)+ (Vryo)(MI(Vxe)(Y) — (Vye)(X)] =
for orthonormal vectors X, Y in (J. If weput X =W and Y=2
and assume X, Y are orthonormal, then (54) gives
%[K(E, Y)— K(X, Y)]
= B{2(Vxo)(Y)* — (Vxo)(Y)(Vy w)(X)
— (Vx0)(X)(Vyo)(Y)}, ,

where K(X, Y) denotes the sectional curvature of the section
XAY in M. Since K(X, Y) = K(Y, X), this implies

(5.7)  alK(, Y) — K X)1=20[(Vxo)(Y)? — (Vy ®)(X)?]
for orthonormal vectors X, Y in (). ;
LEMMA 5.2. If (Vxo)(¥) = (Vy0)(X) for all X, Y in O, then
the sectiomal curvature K(&, X) is independent of the choice of X in
Dy, P €M, and R(§, Y; Z, £) =0 for orthogonal vectors Y, Z~ in
Q.
This lemma follows immediately from equations (5.5) and (5.7).

LeMMA 5.3. If there exist orthonormal vectors X, ¥ in (', such
that

(5.8) ' (Vxo)(X) + (Vyo)(Y) %0,
then there exist orthomormal vectors Xu,0, Xy in Dy such that
(5.9) (Vx, 0)(X:) + (Vx; 0)(X;) 40, ij.

Proof. We shall prove this lemma by induction. Let Z be a
unit vector in (J) perpendicular to X and Y. If we have -

(5.10) | (Vxo)(X) + (Vzo)(Z) =0
or
(5.11) (Vyo)(Y) + (Vzo)(Z) =0,

then without loss of generality we may assume (5.10) holds. We -
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put , |
X=X Y=a¥+bzZ Z=0bY—aZ,

where @ = cos 6, b = sin 0. Then we have, by using (5.10),

(Vz 0)(X) + (V5 0)(7)
(5.12) =a’[(Vxo)(X) + (Vy 0)(Y)]
+ abl(Vy 0)(Z) + (Vz0)(Y)],

: (Vz 0)(X) + (Vz 0)(Z)
(5.13) =bP[(Vxo)(X) + (Vy 0)(¥)]
: ‘ —ab[(Vyo)(Z) + (Vze)(Y)],

(5.14) (Vs o)(¥) + (Vzo)(Z) = (Vy o)(¥) + (Vy w)(Z).

Thus by choosing 6 such that tané and coté are not equal to
IVre)(Z) + (Vzo)(V)V/[(Vxe)(X) + (Vro)(Y)],

We have v
(Vzo)(X) + (Ve o)(T) 0, (Vi) (X) + (Vz0)(2) £0.
If (Vzo)(Y) +(Vz0)(Z) =0, we put
Xi=cos¢g X +sing¥, Xi=sin¢X—coso¥, X=2Z;
then by a similar argﬁment as above, we have
(Vx, @)(X:) + (Vx; 0)(X;) #0

foris*j,4,j=1,2 3 By applying this argument sufficiently many
times, we have (5.9) for a suitable orthonormal basis X, -, X

of @p. (Q. E. D)

Lemma 54. If Xi,---, Xo-1 give an orthomormal basis of D
such that (5.9) holds, then K(&, X) is independent of the choice of
X in D, and R, X; Y, £) = 0 for orthogonal vectors XY in (.

Pfoof. From (5.6) we have
(Vx, 0)(X;) = (Vx, 0)(X), 4,j=1,2---,n—1.

Since every two vectors X, Y in (J are linear combinations of
X, ++, Xp-1, we have (Vxo)(Y) = (Vyv)(X). Consequently, this
lemma follows from Lemma 52. (Q.E.D.)

LEMMA 5.5. If dimM =5 and if (Vxo)(X)+ (Vye)(Y) =0
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for all orthonormal vectors X, Y in (), then K(¢, X) is independent
of the choice of X in (I, »<€ M, and R(§ X; Y, £) =0 for
orthogonal vectors X, Y in (.

Proof. Let X, Y, Z be orthonormal vectors in @ then we have
(Vxo)(X) =— (Vro)(¥) = (Vzao)(Z) = — (Vxo)(X) .

Thus we have (Vxo) (X) =0 for any X € (J), from which we may
conclude that (Vxo)(Y) = — (Vyo)(X) for any X, Y in (.
Substituting this into (5.7) we see that K(&, X) is independent of
the choice of X in (J,. The second part of the lemma follows
from (55). (Q.E.D.) |

Combining the results above, we obtain the following necessary
conditions for a symmetric space to admit a quasihypersphere.

THEOREM 5.6. Let M be a (not mecessary irreducible) symmelric
space of dimension =5. If M admits a quasikypersphere N, then
M admits a unit vector ¢ and a codimension 2 subspace V in T,M
such that (a) the sectional curvatures of M satisfy K(&,X) = K(£,Y)
- for any two unit vectors X, Y in V, (b) R(X, Y; Z E)=20 for X, Y,
ZinV and (c) R(§,X; Y, 8) =0 for orthogomzl vectors X, Y in V.

If N isa quasihypersphere in M with & as the unit normal
vector at p, then there exists a geodesic ¢ through p with & as its
tangent vector at p. Let B be a maximal flat totally geodesic
submanifold of M which contains the geodesic ¢ (and hence p).
Then the rank of M is equal to the dimension of B. Thus in
particular, if & M = 3, then the intersection T, B N {J, is nonempty.
For any unit vector X in T,B N (), we have K(& X)=0.
Consequently, from Theorem 5.6 we have the following. ’ '

THEOREM 5.7. Let M be a (wot necessary yz'rreducibl‘e) symmetric
space of dimension =5. If M admils a quasihypersphere and if
rank of M is = 3, then the Ricci tensor S of M satisfies

(5.15) S(X, X) =KX Y)

fbrAsome orthonormal vectors X, Y tangent to M.
Now, we give the proof of Theorem 51. If M is an irreducible
symmetric space of dimension =4, then M is one of the spaces
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mentioned in Theorem 5.1. So we may assume that the dimension
of M is =25. From Theorem 5.7, we see that the rank of M is
=2

If M is of rank 1, then M is one of the spaces mentioned in
Theorem 5.1 or M is a quaternion projective space, the Cayley plane
or one of their noncompact duals. If M is a quaternion projéctive
space (or its noncompact dual) with real dimension 47 = 8, then the
sectional curvature of any quaternion plane section is 4 times that
of totally real plane sections. Since the quaternion section spanned
by a unit vector is 4-dimensional, it is clear that there exist no unit
vector ¢ and a (47 — 2)-dimensional linear subspace V with K (£, X)
= K(¢, Y) for any unit vectors in V. The same argument applies
for the Cayley plane and its noncompact dual. Therefore, if M is
of rank 1 and M admits a quasihypersphere, M is a sphere, a real
projective space, a complex projective space or one of their
noncompact duals. Consequently, it suffices to prove that irreducible
symmetric spaces of rank 2 admit no quasihyperspheres.

We propose the following property (*): }

There is a unit vector & and a codimension 2 linear subspace V. of
the tangent space at some point such that (3) the sectional curvature
of the plane section & N X is independent of the choice of unit vector
XinV, (b)) RXY; Z &)=0 for all X,Y,Z in V, and (c)
R(¢, X; Y, €) =0 for orthogomal vectors XY in V.

We give the following lemmas.

LEMMA 58. Let B be a complete totally geodesic submanifold of
a symmetric space M withvk M =#kB. If M satisfies property (%),
then B also satisfies the same property.

Proof. Since B is totally geodesic in M, the curvature tensoré
"R and R of B and M satisfy R'(X, Y; Z W) =R(X,Y; Z W) for
all X, Y, Z W tangent to B. In particular, the sectional curvatures
of B and M for every plane section in TB are equal, - Without loss
of generality we may assume that » isva point in B and B is a
maximal flat totally geddesic submanifold in M with & in T,B.
Since B and M have the same rank there is an isometry of M
which carries B into B and which fixes p. Thus the intersecion
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T,B n V has codimension <2 in T, B. Let V be a codimension
2 subspace of TI,B' NV. Then & and V satisfy (a) of property
(). (b) and (c) of property (*) hold too for & and V since R = R
for vectors tangent to B. (Q.E.D.) |

Now, if M is an irreducible symmetric space of rank 2, then
M is one of the following spaces or one of their noncompact duals:

, AI(3), AII(3), G°(2, p)(p=3), GR(2, p) (p=3),
GH(2, p)(p=2), DIII(5), EIII, EIV, GI, G, SU(3), $p(2).

From Table VIII of [6] we see that GC(2, p) (p=3), GR(2, $) 4
(p=3), GE(2, p) (p=3), DIII(5) and EIII all contain GR(2, 3) as
totally geodesic submanifold.” Moreover, since G#(2, 2) contains
GC(2, 2) as a totally geodesic submanifold and G°(2, 2) is G®(2, 4),
by Theorem 5.6 and Lemma 5.4, we have the following. ' ”

LeMMA 59. If GR(2, 3) does not satisfy property (%), then
GS(2, p) (p=3), GR(2, p) (p=3), GU(2, p) (p=2), DII5) and
EIIT all contain no quasikyperspheres. The same result holds for the
corresponding noncompact duals. ‘

By similar arguments we have

LEMMA 5.10. (a) If AI(3) does not salisfy property (*), then
AI(3), AII(3) and EIV contain no quasikyperspheres, and (b) if GI
does not satisfy = property (*); then G: and GI contain no
quasihyperspheres. Similar results hold for the corresponding
noncompact duals.

Consequently, Theorem 5.1 follows immediately from the
following.

LemMma 511, GR(2, 3), AI(3), GI, SU(3), Sp(2) and their
noncompact duals do not satisfy property (*). ‘

The detailed proof of Lemma 5.11 would be too long to give
here. We would like to give the detailed proof for a typical one,
namely M = GR(2, 3), and give only outlines of the proofs for
other cases. The proof reads as follows, ,

Let G be the group of isometries of M, 0 a point in M and H
its isotropy subgroup at 0. We have G =SO(5) and H =S0(2)
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X 80(3). Let ® and $ be the Lie algebras of G and H, respectively,
and & = H + M the Cartan decomposition at 0. Then we have

=X < g[(5 B)|X + *X = 0} = so(5),

o= {(64 2) [{1 e so(2), B e 30(3)},

M= {( 7 O>’Z real (2 X 3)- matrlx}

. Z
For simplicity, we shall identify the matrix ( 0} with Z.  Let

~

0
— iz

1 S ;0 0 0
Geoe) w(00)
0 0 0 . 1/‘5
1 0 0 0
0 —= 0
wo(0F) we(U 40}
0 0 o0 v 2
1 0 0 0
0 0 ——
() (0 05)
0 0 0 | V2

Then Ei,---, Es form an orthonormal basis for M = Ty M and
A =RE, + RE4 is a maximal abelian subspace of . In particular,
we may assume that £ has the following form

(5.16) £ = cos 0 E; + sin 6 E,

for some 6. Since V is 4-dimensional and it is perpendlcular to E
there exist vectors X; and X: in V' of the following forms

(5.17) X;——coswsm0E1+sm1ﬁE3+cosxbcosﬁE,_,,,
(518) Xz—-—-cos7731n0E1+sm77E2+cosncosﬁE4,H--

for some ¥ and 7. It is easy to see that
(B19) K X) = tr(le, X116, XD = Lowmey,
(5.20) ' K, X)) = %sing 7.

Thus we obtain
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(5.21) N sin®? ¢ =sin®7. A
Moreover, from R(X;, Xz; Xz, &) =0, we get
(5.22) sin 27 cos 2 siny = 0.
- Similarly, from R(Xi, Xz; Xi, £) = 0, we obtain

(5.23) sin 2y cos 26 sin = 0.

Case 1. sin 7 =0 or siny = 0. In this case, (5.19), (5.20) and
(5.21) show that K(¢, X) =0forall X in V. Thus S(&, &) =K(& 0)
for some vector ». This is a contradiction. :

Case 2. sin 7 sin ¥ =0 and either cosz = 0 or cosy =0. In
this case, (5.21) shows that sin?7 = sin’y =1 and cos7 = cos ¥ = (.
Thus, we may put

(524) X1 = E3 and Xz = Ez N

from which we obtain
(5.25) K& X) = K&, Xo) = —%

On the other hand, there exists a unit vector X; in V of the
following form

(5.26)' g k X; = cos § Es; + sin S Es.

It is easy to verify that
(5.27) K, X3) = -21—- (cos? 6 cos® 0 + sin? 8 sin® 9).

Thus, we obtain _ , o
(5.28)  costdcos*o +sin*fsin®d=1.
Since we have cos® 6 cos® 5 + sin® § sin? d = 1 — cos? 6 sin® & — sin® 4.
cos? 8, from (5.28) we conclude cos@sind = sinfcosd = 0. Hence
either cos 6§ = 0 or sin 6 = 0, and it is thus reduced to the remaining
case, case (3).

Case 3. cosf =0 or sinf =0. In this case, we have either
g =E, or £ = E. Since the two cases are similar to each other,

we only consider the first one. Thus we have

(5.29) &= FEy, cosf =1, sinf =0.
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In this case, there is a unit vector in V of the following form:

Xi=cosr E, +sinr E;.

It is easy to verify that K(¢&, E,) = 0. Thus we obtain K(¢, X) =0
for all unit vectors X in V. Consequently, we have S(¢, &)
= K (&, @) for some unit vector @. This gives a contradiction,

This shows that GR(2, 3) does not satisfy property (). The
other cases can be proved in the following way. Since GI, SU(3)
and Sp(2) all contain the product of two 2-spheres §% x S? as totally
geodesic submanifold [6] and they all have rank 2, we may. first
assume that &= cos¢ E; + sin6 E; for some 6 and unit vectors
E; and E; tangent to the correspondent components. Since 8% x §?
must satisfy property (x), we may prove that either £ is tangent to
one of the components of S% X $? or cosf = sin § — 1/v/2. In the
first case, K(& X) =0 for any unit vector X in V, Wthh is
impossible by the curvature condition of irreducible symmetrlc
spaces of dimension >2. In the second case, £ having a very
special form, similar arguments as given in case G%(2, 3) may prove
that GI, SU(3) and Sp(2) do not satisfy property (*). AI(3) can
be treated by the same method as given for GE(2, 3).

Jé-quasiumbilical hypersurfaces. Let N be a quasiumbilical
hypersurface in a Kaehler manifold (M, ¢, J) and £ a unit normal
vector field of N in M. If J¢ is the distinguished direction, that
is, o(X)=g(¢ X), for X tangent to N, then, as in §3, we call
N a Jé-quasiumbilical hypersurface. ‘

The main purpose of this section is to prove the following,

THEOREM 6.1, The prmczpal curvatures of every Jé-quasiumbilical
hypersurface N in any irreducible Hermitian symmietric space M of
dimension > 2 are constants. In particular, we have (a) N isa
quasihypersphere, (b) the mearn curvature of N is constant, and (c)
M is either a complex projective space or its noncompact dual.

Proof By the ‘assumption, we have
6D h=ag+ @ olX) =g X).
Let X, Y be two vector fields tangent to N. We have .
- Yo(X) = (Vy 0)(X) + o(Vy X).
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On the other hand, (6.1) implies

Yo(X) = ¢(Vs JE, X) + gUE, Vy X) = 0(A, ¥, JX) + o(Vr X).
Thus we have )
(62)  (Vro)(X) = 9(4, Y, JX),

forall X, Yin TN. Let @ = {X € TN|o(X) =0} as before. “Then
A X —oaX for X in (. Thus (6.2) g1ves o

(6.3) - (Vxo)(Y) = ag(X JY)

for X, Y in {J. In particular, we have

64 - (Vxe)(JE) =0.

Similarly, since 4.(J&) = (e + 8)(J¢), (6.2) also gives
(65) S Vieo)(X) =0

for X in (). Substituting (6.3), (6 4) and (6.5) into equatlon (3.12)
of Codazzi, we find

66)  R(X JX; J&, &) = K(X &) + K(]X, §) =—2af
for X in (). Similarly, we may also prove that |
(6.7) ‘ RX Y; Y, 8=

for orthonormal vectors X, Y in (), and

(6.8) R(X, Je; J&, &) = X(a + B)

for X in (. Since M is Einsteinian, the Ricci tensor S of M thus
satisfies.

69 0=8(X &) = X[(n— Det + ]

for X in @ where # = d1m N. Similarly, by S(¢, ]E) = 0, we find
(6.10) T Ue)e) =0.

By usmg (6 3) and (6.10), equat1on (3. 12) of Codazz1 glves

(6.11) R(]E, Y; Y,6)=0

for any vector field Y in @; By taking | differentiatiori of (6.11)
with respect to j&, we find ' =
0=R(A:(Je), JY; Y, &) + RUE, VvV, Y; Y, E)
+ R(Jf’ Y, V]E Y’ E) R(J’f’ Y7 Y7 AE(]E))
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for Y in (J. Hence, by (6.1), we obtain

(e + BK(E, JY) — K(&, V)
=R, Ve Y; Y, 8+ RUEY; V5 Y, &)

On the other hand, (3.11), (6.2), (6.5) and (6.10) give

R(Je, Ve Y; Y, 6)=—B8(Vo, vy o)(¥Y)=—pg(A; (V. Y),JY)
: =—=89(Vy Y, A:(JY)) =~ Bacg(V; ¥,]Y)

v(6.12)'

(6.13)

and

R(JE, Y; Vy Y, &) A
== (Ya)g(JE, Ve Y) — (YB)o(Vy ¥)
SRRy ' — A(Vyo)(VY)
(6.14) == (Ya)9Ue, Vie Y) + (YB) (Ve 0)(Y)
, —B9(A. Y, JV Y)
= (Yo)g(JVi: &, Y) —apg(Y, JVy Y)
=apg(JY, V; Y)

for Y in (. Combining (6.12), (6.13) and (6.14) we obtain
(6.15) (e + BIK(E, JX) — K(&, X)} =0
for X in ().

Case 1. o+ B =0 identically. From (6.9) and (6.10), we see
that ¢ = — g is a constant.

Case 2. « + 50 for some point p = N. In this case « -+ B
is nowhere zero on a nonempty open subset of N. On this subset,
(6.15) implies

(6.16) K¢, X) = K(, JX)
for X in (J. Thus from (6.6) we have »
(6.17) K5, X) = —af

for all unit vectors X in (J. This shows that the sectional curvature
K(&, X) of the totally real section £ A X is independent of the
choice of X. If M is a Hermitian symmetric space of rank>> 2,
then there exists a totally real section £ A X such that K(¢, X) = 0.
Thus from (6.17) we have «f =0. This shows that M admits
either a hypercylinder or a umbilical hypersurface. Both cases are
impossible (Lemma 2.9 and Theorem 4.1). Thus, M must be a
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rank 1 Hermitian symmetric space. Consequently, M is either a
complex projective space or its noncompact dual. In both cases, M
has constant holomorphic sectional curvature, say c. Thus, M has
constant totally real sectional curvature ¢/4. So (6.17) implies
af = — ¢/4. Combining this with (6.9) and (6.10), we see that both
« and B are constant. This proves the theorem.

From the last part of the proof of Theorem 6.1, we have
immediately the following

COROLLARY 6.2. Let N be a Je-quasiumbilical hypersurface in a .
complex-space-form of constant holomorphic sectional curvature c.
Then o and B are constants satisfying «pf = — c¢/4, where o and B
are given by (6.7). :

7. Lecally symmetric hypersurfaces. The main purpose of
this section is to prove the following.

THEOREM 7.1. Every mn-dimensional (n=3) locally symmetric
quasiumbiiical hypersurface N in a symmelvic space is a quasihyper-
sphere. ’

THEOREM 7.2. The only irreducible symmetric spaces which admit
locally symmetvic quasiumbilical hypersurfaces are - spherves, real
projective spaces and theiv noncompact duals.

Proof of Theorem 7.1. Let NN be a quasiumbilical hypersurface
in a symmetric{kspace M. Then the second fundamental form 7%
takes the form (3.10). So by equation (3.4) of Gauss, we have

R(X, Y; Z W)
=RX Y; Z W)
(7.1) + e {g(X, WHg(Y, Z) — (X, Z)9(Y, W)}
+ ap{g(X, W)o(Y)o(Z) + 9(Y, Z)o(X)o(W)
— 9(Y, Wo(X)o(Z) — 9(X, Z)o(Y)a(W)}.

In particular for X, Y, Z, W in (), we have

R(X, Y; Z W)
(7.2) =R(X, Y; Z W)
+ & {g(X, W)9(Y, Z) — 9(X, Z)9(Y, W)} .

From equation (3.5) of Codazzi and (3.10) we also find
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(73)  R(X, Y; Z &)= (Xa)g(Y, Z) — (Ya)g(X, Z) |

for X, Y, Z in 0.

Let T be any vector tangent to N, By taking differentiation
of (7.2) with respect to T and by using (7. 1), (7.2) and (7.3), and.
by a straightforward computation, we may find

(VR)X, Y Z, W) o
= (Te?)(0(X, W)(Y, Z) — (X, Z)(Y, W))
+ o Xex) (9(Y, 2)9(T, W) — o(¥, W)g(T, 2))
+ e Yer) (X, W)g(T, Z) — 9(X, Z)g(T, W))
+ o Ze) ((X, W)g(T,Y) — 9(X, T)g(Y, W)
+ el(We) (9(Y, Z2)9(T, X) — 9(Y, T)o(X, Z)} .

(74)

Since dim N>=3 and N is locally symmetric, (7,4) implies that
To =0 for all T tangent to N. This shows that N is a
quasihypersphere.

Proof of Theorem 7.2. Let M be an irreducible symmetric
space and N a locally symmetric quasiumbilical hypersurface in. M.
If dim N<3, M is one of the rank 1 symmetric spaces given in
the theorem. So we may assume that dim N 24 In this case,
Theorem 7.1 shows that N is a quasihypersphere in M, that is, o
is constant. If ¢ =0 identically, then N is a hypercylinder and
Theorem 7.2 follows from Theorem 41. If « is a nonzero constant,
Theorem 5.1 shows that M is a sphere, a real projective space, a
complex projective space or one of their noncompact duals. Theorem
7.2 follows immediately from the following,

LemMMA 7.3. Complex projective spaces and their noncompact duals
admit no locally symmetric quasiumbilical hypersurfaces of dimension
= 3.

Proof. Let M be either a complex projective space or its
noncompact dual. If M admits a locally symmetric quasiumbilical
hypersurface N, then N is a quasihypersphere in M (Theorm 7.1).
Moreover, from Lemma 2.8, we see that N is not totally geodesic
in M on a dense open subset of N. Let & be a unit vector normal
to N and J ={X € TN|w(X) =0} as before. Then Theorem 5.2
tells us that the sectional curvature of M satisfies K (6, X) =K(,Y)
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for all unit vectors X, Y in (J. Since M is a complex-space-form
and it is non-flat, the totally real sectional curvatures are equal and
they are different from the Sectional curvatures of non-totally real
plane sections. Thus, by the assumption that dim M = 5, the above
mentioned property of (J implies that () is a holomorphic
distribution, that is, JO < (.

On the other hand, let X, Y, Z, T be vector ﬁelds in (J and
put W =o. Then (72) holds. By taking differentiation of (7.2)
with respect to T, we may find, by using VrR’ =0 and R(X,Y; Z, &)
= 0, that

g(Y,Z)(V% 0)(X) — 00X, Z) (V7 0)(¥) + 9(T, ¥)(Vz0)(X)
— 9(X, T)(Vz0)(Y) + 9(T, Z)[(Vy 0)(X)
— (Vx w)(Y)] =0.

Choosing Y =T, X, Z as orthogonal vectors in (), we find
(75) (Vzo)(X)=0.

From this we see that for vectors X, Y in (), we have (Vxo)(Y)
= 0. In particular, this shows that (J) is integrable and that maximal
integral submanifolds are totally geodesic in N (Lemma 3.1). Since
() is a holomorphic distribution, every maximal integral submanifold
N in. M is a complex submanifold of M. Since M is Kaehlerian,
N is minimal in M, On the other hand, since N is totally geodesic
in N, (3.10) shows that the second fundamental form o of Nin M
is given by o(X, Y) = ag(X, Y)¢ for X, Y tangent to N. Therefore,
by the minimality of N in M, we have « = 0. This contradicts to
the assumption. (Q.E.D.)

- REMARK 7.1. We may also prove that a .quasiumbiliéal
hypersurface N in a (locally) symmetric space M is locally
symmetric if and only if « is constant and 4, o satisfy the
following first order differential equation:

w(XB)o(Y) = 2aprg(X, ¥) + 28 ro(X)o(¥) — 2068(Vx 0)(¥)

for some function 7 on N and for vectors X, Y tangent to N, where
o, B, o are given as before. /

8. Conformally flat hypersurfaces. It is well-known that an
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n-dimensional (2= 4) hypersurface N in a sphere, a real projective
space and their noncompact duals is conformally flat if and only‘ if
it is quasiumbilical (see [2] for instance). So it seems natural to
ask the following. -

PROBLEM 4. When a quasiumbilical hypersurface of dimension
=4 in an irreducible symmetric space is conformally flat?

The main purpose of this section is to give the following answer
to this problem. '

THEOREM 8.1. Let M be an irreducible symmetric space of
dimension n + 1=5. Then a quasiumbilical hypersurface N in M
is conformally flat if and only if M is a sphere, a real projective
space, or one of their noncompact duals. '

Proof. If M is one of the spaces mentioned above, then every
quasiumbilical hypersurface is conformally flat.

Conversely, suppose M is an irreducible symmetric space of
dimension =5 which admits a conformally flat quasiumbilical
hypersurface N. If § =0, then N is totally umbilical and Lemma
2.9 shows that N is a space mentioned in the theorem. If ¢ =0,
then N is a hypercylinder and the theorem follows from Theorem
4.1, Thus, in the remaining part of the proof, we may assume
that both « and B are nonzero. From the assumption, we see that
the curvature tensor R’ of N satisfies (7.1) for all vectors
X, Y, Z W tanget to N. Let Ey,---, E, be an orthonormal basis of
T,N, p € N, with E,=o. Then the Ricci tensor S’ of N satisfies

S"Y,Z) =Y ,R(E, Y; Z E)
(8.1 i=1
=8(Y, Z) —R(§,Y; Z,&) + (m— 1)a? g(Y, Z)
+ apg(Y,Z) + (#— 2)apo(Y)o(Z),
where S denotes the Ricci tensor of M. Thus the scalar curvatureé
o' and p of N and M satisfy

o' =3 §'(Ei, E)
(8.2) =p — 28(&,¢8) + n(n— 1a? + 2n(n — Dap

—n—1 {o + n(n+ a® + 2(n + DB},
7+ 1
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where the last equality holds since M is Einsteinian. Now, by the
assumption that N is conformally flat, the Weyl conformal curvature
tensor of N vanishes. Thus by (8.1) and (8.2), we see that the
curvature tensor R of M satisfies
(n—2)RX, Y; Z, W)
=g(Y,WHR(£,X; Z,&) — 9( X WIR(E, Y Z, &)
(8.3)  + X Z)RE Y, W, E) — 9(Y,2)R(E, X; W, §)

+ P (X W)Y,Z) — 9(X, Z)(Y, W)},
7+ 1 _

for X, Y, Z, W tangent to N.
On the other hand, from equation (3.5) of Codazzi, we have

R(X, Y; Z 6) | .
— (X)(Y, Z) + (XB)o(V)o(Z) + A(Vx @) (V)a(Z)
(8.4) + fo(Y)(Vx0)(Z) — (Ya)g(X, Z)
— (¥8)o(X)o(Z)

— B(Vy 0)(X)o(Z) — Bo(X)(Vy 0)(Z) .

Let X, Y, Z W and T be vector fields tangent to N. By
differentiation of (8.3) with respect to T, we may obtain, after a
traightforward computation, that

(9 — 2){[ag(T, X) + Bo(T)w(X)IR(E, Y5 Z, W)
+ [ag(T,Y) + o(T)o( Y)IR(X, &; Z, W)
+ [ag(T, Z) + Bo(T)(Z)IR(XY; & W)
+ [eg(T, W) + fo(T)o(W)IR(X, Y; Z, &)}

= — (X WR(A: T, Y; Z¢) + R(E,Y; Z A T)]

+ g(Y,W)IR(A, T,X; Z,&) + R(£, X; ZA: T)]
— (Y, Z)[R(A: T, X; W, &) + R(&,X; W, A: T)]
+ (X Z)R(A: T, Y; W, &) + R(&,Y; W, A: T)1.

(8.5)

In particular, for vectors X, Y, Z tangent to N, if we choose
T =W in @ to be orthogonal to X, Y, Z, then, from (85), we
have
9T, TYR(X, Y; Z, ¢)

=¢(X, Z)R(T, Y; T, &) —9(Y, Z)R(T, X; T, &).
If X, Y, Z, W are vectors in (JJ such that X =W, ¥Y=Z and X, Y
are orthonormal, then by (8.4) and (85) we find

(8.6)
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(= 2)a{(Xe)g(T, X) + (Ye)g(T, Y)}
= 2a(Ta) —a(Ya)g(T, V) — a(Xet)g(T, X)
= (& + B)Bo(T)H[(Vxe)(X) + (Vy 0)(Y)]
+ 28(ox)o(T) .

(8.7)

In particular, for a vecter 7' in (J and orthonormal vectors X, ¥
in (J) which are perpendicular to 7, (8.7) implies

(8.8) Xt = 0

for X in (. Substituting (8.8) into (8.7) we get

206(Tes) + 28(wct)w(T)

(89) = (& + A)Pa(TH(Vx0)(X) + (Vy 0)(¥)]

for T tangent to N and orthonormal vectors X, ¥ in (.
If &« + =0, then (8.9) gives
(8.10) T = () o(T) .

If ¢+ 0, then (8.9) shows that (Vxw)(X) + (Vyo)(Y) is
independent of the choice of orthonormal vectors X, Y in (). Since
dim N is greater than 3, we thus have

(8.11) (Vxo)(X) = (Vy o)(Y)

for unit vectors X, Y in (). Put 7 =&. Then, from (8.9) and
(8.10), we have ' :

(8.12) o = f(Vx ) (X)

for unit X in (). Substituting (8.12) into (89), we obtain
T = (ox)o(T). Consequently, we have the following.

LEMMA 8.2. "For any vecior tangent to N, we have
(8.13) To = (wes)o(T) .

By using (8.4) and Lemma 8.2, we have, for unit 7 in @),
(8.14) R(T,Y; T &)=80(Y)Vr 0)(T) - Ye.
In particular, we have
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Combining (8.6) and (8.15) we find
R(X, v; X, &) =R(T, o; T, &)

for unit vectors X, T in (). Therefore (8.15) implies (Vxw)(X)
= (Vro)(T). Conséquently, by (8.9) and (8.10) we obtain

(8.16) Yo = po(Y)(Vro)(T)

for all Y in T'N. Thus, (8.6) and (8.14) imply
(8.16) ; RXY; Z &=0

for all vectors X, Y, Z tangent to N. By an argument given as
before, we may conclude that A admits a totally geodesic
hypersurface. Therefore, by Lemma 2.8, we conclude that A is
either a sphere, a real projective space, or one of their noncompact
duals. This completes the proof of Theorem 8.1.

9. Einstein hypersurfaces. The main purpose of this section
is to prove the following.

THEOREM 9.1. If N is an Einstein quasiumbilical hypérsmface
in an irreducible symmetric space of dimension = 4, them either N
kas constant principal curvatures or N is a hypercylinder in M.
Morveover, M is either a sphere, a real projective space or one of their
noncompact duals.

Proof. Suppose that N is a quasiumbilical hypersurface in an
irreducible symmetric space M of dimension =>4. Then we have
from (8.1) that

R, Y; Z, &)

— — 2 - P
(9.1) {(n Da? + 05,3 + p
+ (7 — 2)apo(Y)o(Z),

-2 }o(v, 2)

where p and p’ denote the scalar curvatures of M and N,
respectively, and # =dim N. By taking differentiation of (9.1)

with respect to a tangent vector of N, say 7T, we have after a
straightforward computation, that
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(Y, 2){280(T ) (o) — [2(n — 2)e + B1(Ts) — ex(TH))
+ o(Y)o(Z)(260(T)(55)
— (= D)a(T8)—(n— 2)p(Te)}
— (2= Dap{(Vr 0)(Y)o(Z) + o(V) (V7 0)(2))
+ 2820(T){(Va 0)(Y)a(Z) + o(Y) (V3 0)(Z)})
9.2) — al(Ya))(T, Z) + (Ze)g(T, Y))
= Bo(T){(Y)o(Z) + (Za)o(Y))
= (@ + B)o(T){(YB)e(Z) +(ZB)w(Y)}
= Bles + B)o(T){(Vy 0)(Z) + (Vz0)(Y))}
— af{(Vr o)(T)o(Z) + o(Y)(Vz0)(T)}
= Bo(T)H{(Vy 0)(@)0(2) + o(Y)(Vz0)(3)} = 0.

Let Z =T and Y be orthonormal vectors in (), then (9. 2) gives
(9.3) a(Xe) =0
for Xin@. For Yand Z in (J and T = o, (9. 2) gives

af(e + B){(Vy 0)(Z) + (Vz0)(Y)}

(9.4) = ag(¥, Z)([8 — 2(n — 2)es](Fet) — ()] .-

In particular, we have

(95) [B— 2(ﬂ - 2)06](0)06) - w(coﬂ) = 28(x + ﬂ)(Vy o)(Y)
for unit Y in @

If Y=T is a unit vector in () and Y is perpendlcular to Z
(9.2) gives

(9.6) | alZa) = (3— mas(vs w><T>w<Z>
for Z in TN and any unit vector T in . From thls we find
(97) R ' ap(Vr &)(T) =apf(Vxo)(X)

for unit vectors X, T in Q. Moreover, from .(9;5) and (9.6)‘~;‘\7"re
get.

08) (@) = (3 — m)ah(Vr &)(T)

and '

(9.9) a(wp) — BI2(#* — 5 + BYat — (1 — 1A1(Vz 0)(T) . N
Let 7 and ¥ be in @ and Z = 3. Then (9.2) and (9.8) give

(9.10) a@pl(n—)(Vro)(Y) + (Vy o)(T)} = (2~ 3ap(Vr 0)(T)
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from which we get
(9.11) (V2 0)(Y) = ap(Vy o)(T).

On the other hand, if T and Y are orthogonal, (9.4) and (9.11)
imply: that

(9.12)  apla+ B)(Vro)(Y) = apla+ A)(Vyo)(T) =0.

Substituting this in (9.10) we see that if «gf(e+ p) 70, then
(Vzo)(T)=0 for T in (). Consequently, on the open subset
U= {pe N|as(a + B) +0at p}, & and g are constants. Therefore,
U is either the whole hypersurface N or U is empty. In the first
case, the principal curvatures are constants. In the second case,
we have

(9.13)  wpla+ §) =0.
From (8.2), we have

(2 + Do’ = (2 —1{o + n(n+ 1o + 2(n + 1ap}

(9.14) =m—1p + (7 — Da{2(e+ ) + (n — 2)es}.

Since both o and p’ are constants, #a?® + 2w is constant. Thus if
o+ (0, one of =0 or @+ B =0 will imply that « is a nonzero
constant. Therefore either « = 0 identically or both @ and g are
constants. In the first case, N is a hypercylinder and thus Theorem
41 implies that M is one of the mentioned spaces. In the second
case with & =40, we have either g = 0 identically, or (Vr 0)(T) =0
forall T in @ by (9.8). If p=0 identically, N is an extrinsic
hypersphere. Lemma 211 then implies that M is one of the
mentioned spaces. If #5%40 and (Vzrw)(T)=0 for all T in a,
(9.10) implies that (Vxw)(Y) =0 for X, Y in (J. Lemma 3.1 tells
us that (J) is integrable and every maximal integral submanifold N
is totally geodesic in N. Hence by the constancy of « and total
umbilicity of N, we see that N is an extrinsic sphere in M. Since
N has codimension 2 in M, Lemma 2.11 shows that M contains
a totally geodesic hypersurface of constant curvature. Thus M is
either a sphere, a real projective space or one of its noncompact
" duals. ‘This completes the proof of the theorem.
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10. Remarks.

ReEMARK 10.1. Since our discussions in this paper are local, the
local versions of the corresponding results hold. In particular, we
have the following local results,

THEOREM 4.1'. The only irveducible locally symmetric spaces
which contain hypercylinders are real -Space-forms. '

THEOREM 51’. The only irreducible locally symmetric spaces
which contain quasihyperspheres are veal-space-forms and complex-
space-formes. ' '

THEOREM 6.1’. The only irreducible Hermitian locally symmetric
spaces whick contain J¢-quasiumbilical kypersurfaces are complex-
space-forms.

THEOREM 7.1'. Thke only irreducible locally sym}netric spaces
wkick contain locally symmetric quasiumbilical hypersurfaces are
real-space-forms.

THEOREM 8.1'. Let M be an irreducible locally symmetric space |
of dimension>5. Then a quasiumbilical hypersurface is conformall
Slat if and only if M is a real -space-form.

THEOREM 9.1’. The only irreducible locally symmetric spaces
which contain Finstein quasiumbilical kypersurfaces are real-space-
Sforms. '

REMARK 10.2. This work was done during his sabbatical leave
of the first author from Michigan State University at Katholieke
Universiteit Leuven. The first author would like to express his
thanks for his colleagues at K. U. L. for their hospitality.
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