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" Abstract. Presented herein is the asymptotic behavior of the ran-
dom solutions ¥%(#; o) and x(#; @) of the random Volterra integral

equa:c‘ions y(t; o) =f(f; o) + AL‘tk(t, s; o)ds and x(f; o) =f(f;, o)
-i—j k(t, s; o)[w(s; o) + g(s, #(s; ©))]1y(s; w)ds, respectively., The
exis;ence of the resolvent kernel in the random resolvent equation
r(t, 5; o) =k(£ s5; o) + j:k(t, #; w)7(#, s; o)du is studied under

suitable restrictions on the random kernel k(#, s; w), and then the
limiting behavior of |l&(#; @) —y(#; @)|lz,e,4,p) as £~> 00 is considered,
Some applications to systems theory are indicated.

1. Introduction. The mathematical descriptions of phenomena in
many scientific research areas frequently result in random Volterra
‘integral equations, for example, see Bharucha-Reid [1], Padgett
[4, 5] and Tsokos and Padgett [7]. This is particularly true of
systems theory when a system involves a random parameter (Tsokos
[6], Wei [8]). In this paper we consider the random linear Volterra
integral equation

(1) Y(t; ) = F(t; o) + [ k(L 53 @)y (53 0)ds
and the perturbed form

(12) @t 0) = F(t; 0) + [ k(t,s; 0)[a(s; 0)+ o(s,a(s; 0))] ds,

where t € R, = [0, @), » € 2, the sample space of a probability
space (2, A, P), y(¢; ) and x(¢; o) are unknown stochastic
processes, k(Z, s; ») is the stochastic kernel defined for 0<s<i#<<co,
f(t; ®) is a known stochastic process, ¢(¢#, x) is the random
nonlinear perturbing higher order term  defined for #€ R, and
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x € R*. Under some restrictions on the random perturbing term
9(t, x(¢; »)), we wish to compare the random solutions of (1.1)
and (1.2). |

In a recent paper, Jordan and Wheeler [2] studies equations of
the form (1.1) and (1.2) in the deterministic case. However, due
to the random nature of certain physical situations in many branches
of the applied mathematical sciences, stochastic models are neces-
sarily more descriptive and realisticc. We extend the study of
Jordan and Wheeler to the stochastic setting and also extend the
result to allow a larger class of the unknown stochastic process
z(t; ). ‘

In §2 some function spaces which are useful in considering
random equations are defined, a theorem of Padgett [6] on the
existence and uniqueness of the random solutions is stated. Also we
investigate the almost sure existence of the resolvent kernel
associated with k(¢, s; »), which is defined by the random resolvent
equation

(1.3) 7, s; 0)=Fk(, s; o) + /: kE(t, u;, o)r(u, s; o)du

where 0<s<{¢<<oo., §3 will contain the results concerning the
limiting properties of the random solutions. In §4 applications of
the results to a general system with random parameters will be
presented. |

2. Random’solutions and the resolvent kermel. A stochastic
process z;({; »), t€ Ry, j=1,2,--, # is said to belong to the
space L;(2, A, P) or to be a second order process if for each
te R,., we have

lejt; @), = Ellz;(t; o)1= [ 1)t o)Pdp<co.

The‘ colI'ection of all 'equivalent n-component random vectors

z(t; o) = (x:(t; 0),---, 2,(f; ®)) constitutes a separable Banach

space with norm ;
lots )l = la(t; )z = max ot o)z,

the space will be denoted by - L3}(£2, A4, P).
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The space Lo(2, A, P) is defined to be the space of all
P-essentially bounded stochastic processes ¥(¢#; o) with norm

lv(t; @)l = P-ess suply(t; o)l ='inf {suply(t; o)I}

where £, is such that P(2,) = 0. ~ ,

Let C= C(R., L3(2, A, P)) be the space of all continuous
functions from R. into L;(2, A, P) with the topology of uniform
convergence on compact subsets of R,. The space C is a Fréchet
space (Yosida 1965) with metric defined by Fréchet combination
_of the sequence of seminorms

ats @), = sup lo(t; o).

For Banach spaces B, D contained in C, the pair (B; D) is
said to be admissible with respect to a linear operator U if
U(B) c D. The space B is said to be stronger than C if every
iconvergent sequence in B also converges in €. We define
BC = BC(R,, L2, A, P)) to be the Banach space of all bounded
continuous functions from R, into L3(82, A, P) with norm

le(t; @)lisc = sup lx(t; o).

We denote by GC(R., L3(2, A, P)) the Banach space of all
continuous functions from R, into L3(2, A, P) such that there
exist a positive constant I" and a positive continuous function G(2)
on R, satisfying [z(¢; o)[| < I'G(2) for all € R,. The norm in
GC(R,, Li(9, A, P)) is given by

l(2; @)lloc = sup {lz(t; )I/G®}.

Note that BCc GC c C and BC=GC if G(t) =1 By a random
solution x(t; o) of the equation (1.1) or (1.2) we will mean an
element of C which satisfies the equation P-almost everywhere (or
almost surely).

The following result of Padgett [5] is stated for reference.

THEOREM A. Uwnder the following conditions, there is a unique
random solution of (1.2): | ’
(i) For each pair (t, s) e A={(t s) : 0<s< << oo},
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E(t, s; o) € Lo(2, A, P) and the function k: A— L(2, A, P) is
continuous. ‘

(ii) B and D are Banach spaces stronger than C and the pair
(B, D) and (D, D) are admissible with respect to the integral operator
U defined by

(Uz)(t; o) = [ k(2 53 @) a(s; o) ds.
(iii) x(Z; o) —> 9, x(¢; ®)) is an operator from
S(0) = {z(t; @): x(t; o) €D, [2(#; o)lb < o}
into B salisfying the Lipschitz condition ‘
lg(t, 2(t; @) — g(t, ¥(t; @)z < 2 l(t; @) —y(#; @)lb,

where o and 2 are constants.
(iv) f(; o) eD, A+ DU, and

17 (5 @)llp+ U1 - llgt, 0z < o[1— UL+ )],
where U] is the norm of the operator U.

The existence of the resolvent kernel is essential to this study.
The following theorem gives conditions:_

TBEOREM 2.1. Under the fbllowz'ng conditions, there exists a
kernel 7(t, s; w) € Lo(2, A, P) which solves the resolvent equation
(1.3) almost surely for almost all s, t with 0 <s <t << oo,

(i) Same as condition (i) in Theorem A.

) [ IEG, 53 0P dt < for almost all s € [0, T1.
Proof. Let T'>0 be fixed. For 0<¢t<s< T, let
An = [Tk, s o)l as,
B@) = [ lIks, t; o)ltas,
ct, )= [ Aw) du
and define

r(t, s; 0) =k, s; ),

- 7ana(l, 85 @) = ﬁk(z‘, u;, o) 7r,(u s; 0)du.
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Define 7,(¢, s; o) =0 if T =s>¢t>0. First, we show by induction
that for #>0and 0<s<¢< T,

rn-l-l(t, S; w) € LOO(’-Q: A-9 P)
and

(2.1) ll7use(t, 55 @)l < LA@B(s)C(2, 5)"/nl]V

For # = 0, the results are immediated by Hélder inequality. By the
Holder inequality again and induction, we have

st 55 )< [ IRCE w5 0 - NrwssC, 55 )il

<[ [ e, w5 ol ] [ st 53 21|
< [ABBE) 1| [ A, s>"+1/<n—-1>'du]
= [ADB(s)C(t, s)y"/n11, |

where the inequalities are taken almost surely.
Now, define 7(Z, s; ) = Lnar,(t, s; ) if 0<s<t T and
v(t,5; 0)=01if 0<¢t<s< T By (21) it follows

It 55 < 3 s, 5 oI
< kG, 53 )l + 3 LADBODYmT,

where D = f A(u)du. The series converges by ratio test since -

LD f(n+ 1)D/(D*/n!)]"? = [D/(n+ 1)]"* <1 for any =n>D.
Moreover, it is clear that (¢, s; o) € Lo(2, A, P). Using Lebesgue
Dominate Convergence Theorem, we have for almost all o,

ftk(t, u; o)r(u, s; é) du = /;t k(t, u; w)[i0 7.(%, s; a))]du
= f: /;tk(t, u;, o) 7,(u; s; o)du

= Z rn(t’ S35 Q))
=7t s; o) —Ek({, s; w).

Thus 7(¢, s; ) solves the resolvent equation almost surely for
0<s<t<T Since T >0 is arbitrary, the proof is completed. ///



78 DUAN WEI [March

We now will rewrite (1.2) to a equivalent form containing the
existing random resolvent kernel. Left multiplying both side of
(1.1) by (¢, s; ») and integrating, we obtain .

L vt w5 )y 0)au— [ r(t, u; 0) f(u; @) du
—_—j:r(t, u; w)[fouk(u, s; 0)y(s; o) ds]du
= At[/;tr(t, u, o)k(u,s; ) du]y(s; w)ds

= [t 53 ) — k1, 53 )] 9(s; 0) ds.

Hence
[ Et, s; ) yis; oYds= [ 7t u; 0) Fu; o) du,
0 0
and (1.1) is equivalent to
(22)  ¥(t; ©) = f( o)+ [7(L w5 ) f(u; 0)du, tER..
Now (1.2) can be written in the form ,
2t ©) =F(: o) +fo’k<t, s; @) 2(s; @) ds,
where
F(t; 0) = £(t; o) + [ kGt 53 0) (s, (s 0)) ds.
Applying (2.2) to this equation, we obtain ‘
2(t; o) = F(t; o) + fo’ru, s: 0)F(s; »)ds
=[ras o)+ [(#0t 55 0) 065, 25 0)) as]
+f’r(t, s: o) F(s: o)ds
» 0
(2.3) | + fotf(t, s; w)fosk(S, u; o) 9(u, x(u; o)) duds
=[f(t; m)—fo’r(z, s: ©) f(s: ) ds] + [k, u; )
— /: (i, s; w)k(s, u; o) ds]g(u, x(u; o)) du

=y(4; o) + fotr(t, $; @) ¢(s, 2(s; @))ds,
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where 2(¢; o) is the random solution of the nonlinear perturbed
equation (1.2) and %(#; ) is the random solution of the correspond-
ing linear equation (1.1).

3. Asymptotic behavier of the random solutions. Now the
following theorem on the asymptotic properties of the random
solutions is readily proved.

THEOREM 3.1. Let y(¢; o) and x(t; o) denote the random solutions
of (1.1) and (1.2), respectively. Suppose
(i) g satisfies
(¢, 2(2; 0))] <d(t; o)lx(t; )
Jor all t >0 and o € 2, where d(t; o) € GC and satisfying

(3.1) fTT“ fd(s; w)llds—0 as T — oo;

(ii) 7(¢, s; o) satisfies
@ [lrtt, s; N G(s)ds < B<co for all t;

() supezr [ (2, s; @) G(s)*ds—0 as T co; and

(c) for all ¢>0 there exisis 6 >0 such that if A C R+
with m(A) <9, /:4 lir(t, s; @)l G(s)* ds<<e, where m denotes Lebesgue
measure. Then |x(t; o) —y(t; w)]| >0 as t— o if y € GC.

Proof. Fifst, we show that y(¢; ») € GC imples x(¢; ») € GC.
Let L=|d(¢; o)lsc and M = |ly(t; @)|gc. By hypothesis (ii),
choose 7 such that suptZT_/o‘t*T]llr(t, s; o)ll G(s)*ds<< 4+ L and
‘ choose 6 > 0 such that fA Mr(t, s; o)l G(s)’ds<< i+ N whenever

Ac[0,¢] and m(A) <<8. Fort=>T,let A)=1{s:t—T <s<}1,
ld(s; w)|= % B}. Then part (b) of hypothesis (ii) implies that
there exists T7:>T so that m(A(t)) < whenever ¢> T
Since x(#; ») € C, the compactness of [0, T:] implies that there
exists J>1 such that [z(Z; @)|<J on [0, Ty]. Choosing
P>4M + 3], we have [x(¢; )] <P on [0, ). For if not, there
exists ¢ > T such that [z(s; o) <P for 0<s<t and [x(¢; o)l
=P, But

ot ol < M+ { [ [ Ut s; il oCs, as; o))ids[aP)”,
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and’
[, 53 ol - l0Gs, ats; @)l ds
= llr(2, s; ol » 19(s, 2(s; @)|ds

[0, 1= TIUCL~T, £~ ACOIUACD
<3(1+P)/A4.

So [x(t; w)]| £ M + 3(1 + P)/4 < P, a contradiction.
It remains to prove that [[z(¢; o) —y(¢; @)[—0 as t— oo,

Equation (2.3) implies [2(f; o) — y(¢; )] g{ /. [ [lrtt, s; )i
2 1/2 0

< lg(s, x(s; ®))] ds] dP} . Let N = [2(¢; o)llc. Using hypothesis

(ii) again, choose T such that sup;>r At_Tlllr(t, s; a))lllds<e/3L(1+N)

and choose 8 > 0 such that / llr(z, s; @)llds < e/3L(1 + N) when-

ever AcC[0,¢] and m(A) <5, where ¢ is an arbitrary positive
number. Define for ¢ > T,

A ={s:t—T <s<t, lld(s; o)l =¢/3B(1+ N)}.

Since d(t; ) is diminishing, there exists Ty> T such that
m(A(t)) < & whenever £ = T,. Then for t > T,

f,,t llr(2, s; )l + l9(s; @) ds
<@+ [T s s + [, 55 o)l as]

Ll s olldes; 0)as)
<(1+ N)‘{L [Ze/BL(l + N)] + [¢/3B(1 + N)] « B} =e.
This completes the proof. ///

4. Application to systems theory. Random integral equations
occur freduently and naturally in control systems theory (Tsokos
and Padgett [7]). In general, consider H as a black box (for example,
a stochastic electrical .or mechanical system) with input and output

terminals. With the general hypothesis that H is linear, tlme
invariant and nonanticipatory, H can be repressented by :

Hf(t; ) = [ h(t —s; 0)f(s; @) ds,

where f is a random input signal, % is the stochastic imf)ulse
function - associated with H. If G is a random linear operator defined
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by Gf(¢; o) = Af(¢; ), where A is a constant, then we form a
feedback stochastic control system by connecting H with thé box
G, as illustrated in Figure 1.

75 @)
+
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I

FIGURE 1.,

The system thus can be expressed .- by the following random linear
Volterra mtegral equation:

4D Y ) =ft5 o) [kt -5 o) yls; w)ds,

where k(¢; o) = A « h(t; o).
On the other hand, a class of nonlinear stochastic servomech-
anisms can be_described by the differential equation

(4 o) = [A(w) + b(0)]2(; o) + blw) g2, 2(¢; »)), t=>0,

where x is an unknown random state variables, A(») is a random
variable subject to error (which is frequently the case in applied
problems, where A(w) can often be written in the form
Alw) = & + (), with & assumed to be known and the perturbing
element ¢(w) a random variable), 5(») is a random variable and g
is the characteristic function of the servomotor. Integrating this
equation, we have '

(42) 2(t; 0) = F(t; o)+ [ bt — 5; )(s; 0) + 0(s; 2(s; @)1 ds,

where f(#; o) = e2@® 2(0; w), k(t; o) =b(w) AW if >0 and
k(#; ) =0 almost surely if #<<0. , :

To compare the systems (4.1) and (4.2), we cite Theorem 3.1.
Under the appropriate conditions, the two systems are consistent
in the long run (as ¢{— ®). The rate of convergence of |z(¢; o)
— 9(¢; o)l is closed related to the hypothesis of Theorem 3.1 and
can be determined up to a given tolerance limit. Moreover, the



82 R ... DUAN WEI .

“hypothesis of" Theorem 3.1 ‘would have to- be 1nterpreted in the
framework: ‘'of the particular system in question.
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