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A SIMPLE PROOF OF CHEVET’'S THEOREM

BY

SHEY SHIUNG SHEU

Abstract. A sufficient condition for the continuity of sample paths
of a random field was proposed by S. Chevet. Chevet’s proof is based
on the notion of &-entropy and involved with heavy computations. In
this paper we shall present a simpler proof of his result using the
method of interpolation. The idea is to interpolate the original paths
so that the interpolated paths will be piecewise linear on any direction
parallel to an axis.

1. Introduction. By a random field, we mean a collection of
random variables, denoted by {X(2),¢e T}, defined on a pro-
bability space (2, &, P), where T is a subset of R*. Two fields
{X(2),te T} and {Y(¢), t€ T} are called versions or modifications
of each other if P{X@#)=Y(@)} =1 for every t € T. TFor each
o€ @2, X(+, ), considered -as a function defined on T, is called a
sample path or simply path. f T is a topological space, a process
over I is said to be sample-continuous if there exists a version of
it with all paths continuous. Sample-continuity has been an important
question to the researchers. For k=1, it is well-known that a
sufficient condition was given by Kolmogorov. For %> 2, a similar
condition was given by S. Chevet; see Chevet [3]. Chevet uses the
notion of c-entropy and his proof are very complicated. We shall
present here a simpler proof. Our proof is based on the method
of interpolation which is generally used to prove the case %2 =1.
In other words, we point out here that the method of interpolation
works for general k& provided that we interpolate the paths in the
right way. '
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9 Chevet’s Theorem. In this section, we shall state and prove
Chevet’s theorem. Since continuity is a local property, we may
assume, for the purpose of convenience, the indexed set T is the
k-dimensional unit cube I*=[0, 1]%. Before we present the main
theorem, observe the following simple but useful fact.

LeMMA 2.1. Let e = (&, &,---, ) be the extremal points
of I*: therefore, each e is 0 or 1. Then any t= (ty,"-, k) €T k
can be expressed as

‘ o
(2.1) = au(t) e®,
where

£ ) @
(2-2) wi(t) — ]:[ tjej’ (1 - tj)l_ejg .

In particular

2k

(2.3) ()20, Y a®)=1,

=1

oi(t) is comtinuous in t and is linear when I varies on any line
paralled to an axis. ‘

Proof. We note that by (2.2)< «;(t) is the product probabilitf
at e if we assign probabilities #; at 1 and 1—1¢; at 0 on the jth
marginal. Easy to check (2.1) and (2.3) hold. |]]

REMARK 2.2. If I% is replaced by any other cube (or rectangle),
Lemma 2.1 still holds if we define «:(#) in a similar fashion.

. To state the following theorem, let || | denote the maximum
norm over Rk; i' €. “t" = maX( ltlly It2l" ) ltkl), t= (tly' ° Yy tk) € Rk-

THEOREM 2.8. (Chevet). Let {X(2), t€I*} be a random field.
Suppose for each t, s € I,

(24) P(|X(t) — X(s)| =z g(lit — sl1)) < ([l — s[),

where ¢, h are nonmegative increasing functions such that for some
e >0,

(25) foeﬂf—)-dx<oo, I

h(lx’? dxr < oo,
xtt ,
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Then {X(t)} is sample-continuous. In fact, there is a wversion
{X(8), teI*} whose paths enjoy the following Holder condition: for
almost all o € 2, there exists a positive number K, depending on
o such that '

(2.6) Y (2, 0) — Y(s, 0)| <K, fo‘"’““ a(;c) dz |
for t, se Ik,

Proof. By (25), 9(¢) 1 0 and A(2) ] 0 as ¢ | 0. Therefore,
by (2.4), X(¢) is stochastically continuous; i.e.

P
X(t) — X(s) as t—os.
For each #>1, let
Tpo=1{t=(2, -, ts) : Vi, t:=32"%, some integer j, 1<j < 2#}.

That is, T, forms a 2-*-grid that partitions 7* into 2" small cubes
and we call any one of them a 2-*-cube (see figure 1 for %= 2).

i,
1

: 2
2’!

0 i 2 ..,... 1

2" 20
FIGURE 1.

£

Note that each ¢ in I* must belong to a 2-*-cube J,. By Lemma
2.1 and Remark 2.2, # = Ya:(t) e, where e, i=1, 2,---, 25 are
extremal points of J, and each «:(¢) is defined properly as in (2.2).
Now define a random field X, by letting

Xi(2) = Z ai(t) X(e)

whenever ¢ = Z%il a;(t) e, This definition is free of ambiguity
and the paths of X,(#) are continuous. Since by Lemma 2.1 X,(#)
is linear in ¢ on any line paralled to an axis, we have ’
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Max |Xpis(8) = X ()] = Max [ X,.(2) — Xu(D)].

aN Tty
Therefore
P(lyg}f | Xe1(2) — XKu(t)] Z 9(2771))
=P Max [ Xpoi() — Xu(D)] = g(z-)

tE],, n Tn+1

< Y, PUX@) — X(s)| Zg(2))

tseg, nTn-!—l

< 3 p(2-"1).
There are 2* such J,’s. Hence,

P(Mazi an+1(t) - Xn(t)l = g(z-—n——l))

tel

_<_ 32k 21xk h(z-—n—l) .

But (2.5) is’ equivalent to the fact that X,9(2™")<<c and
Z,,2””'h(_2*”) < oo, By the Borel-Cantelli lemma, one concludes that
X.(8) _converges' uniformly on I* with probability one. Now, let

Y o) jlim X, (t, o) if X,(¢, ®) converges uniformly in ¢,
[6)] poemrg R .
’ , 1o otherwice .

Then the paths of {¥Y(#)} are continuous and
Y(t) =X(@) as. for te|JT,.

For t & UP. T, since {X(2)} is stochastically continuous, there
exists a sequence {#,} in U%-1 T, such that
X(t,) — X(t) a.s.
Obviously
| Y(t,) > Y(@#).
Hence
Y(#) = X() as.

Thus {X(#)} is sample-continuous. Next, we show the field {Y(¢)}
satisfies (2.6). For o .

P( Max |Y(¢) — Y(s)]| > g(llt — sl)) < 3 2 h(27),

we—sp=2""
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by Borel-Cantelli again, one concludes that for almost all «, there
exists a positive integer #(w) such that if # = #(w),

Yt 0) = ¥(s, )| <9(2%), tseT,, [t—sl=2".

For general s and ¢ satisfying 27 '< [t —s[[<2™ for some
n > n(w), we choose sequences {t;, j =>#n} and {s;, j =#n} such
that #;, s; € T, [sje1 — 8;ll = 2777% |tj41— 25l = 2-7-%, and s;—2,
t;— 1. By the path continuity of Y (2), :

Y(t, @) = Y(t,, ) + (Y(#;, ) = Y(#j-1, ®)),

©
F=nt1
©

Y (s, 0) = ¥(sn, 0) + 3. (¥(s;, 0) — ¥(5j-1, ).

Hence .
[Y(¢, ) — Y (s, 0)]
S [Y(tm Q’) - Y(sm Q’)l

+ 30 1Y(t), 0) — Y(tjs — o)

oo

+ > 1Y(sj ©) — Y(sj1, ©)]

j=n+t1

<y +2 S g2

F=n41

4| -l g(x>
szfo L) gz

for all ¢, s such that [ — sl <2 "), For genefal t, s I* choose
K,>0 so that

4l 2-sl)
Y )~ V(s ) <K [ 28 gy,
. A 0 x
REMARK 2.4. Since all norms over R* are equivalent, | [ in
Theorem 2.3 can be any other norm,

3. Corollaries. As consequences of Theorem 2.3, we shall show

" COROLLARY 3.1 (Bernard [11). If a random field {X(t), t € I'*}
satisfies

_ .o Klt—s|
(1) E X - X()1° < S B =
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Jor some f>a>0, K>0, then it is sample-continuous.

Proof. Let | ’
9(x) = [logx|-7, 1<r<pa?
and 4
h(z) = Kx* [log z|~0+p-a0 | 3>,

It is easy to see that g and % satisfy (2.5). That (2.4) is satisfied
is a consequence of Chebyshev’s inequality. Hence, the result follows
from Theorem 2.3. |[[|

REMARK. 3.2. Theorem 2.3‘also implies that {X(#)} in Corollary
3.1 can be modified so that the paths satisfy the following Holder
condition:

[ X(¢, o) — X(s, )| < K |log |t — s|[-7**
for any fixed 7, 1<7r<<pat

COROLLARY 3.3 (Totoki [5]). If a mndOm field {X (1), t € I'*}
satisfies

(3.2) E[X(#)— X(s)|* < K |t — s[|*+7,
Sfor some «, B, K >0, then it is sample-continuous.
Proof. (3.2) implies (3.1). ||

REMARK 34. {X(#)} in Corollary 3.3 can be modified so that
the paths enjoy the following Hélder condition:
| X(2, ) — X(s, 0)| < K, [t —s|I”

for any fixed 7, r<fa .

A random field is called Gaussian if its finite-dimensional
distributions are multivariate normal. The path continuity of
Gaussian fields or Gaussian processes in general is discussed
extensively in Dudley [4]. We shall prove here

_ COROLLARY 35. Suppose {X(1)} is a Gausszan field such that
E(X(t))=0, YVt and

(3.3) E|X()— X(s)|2 < K |log |t — sl||-¢+»,
some K, f§>0. Then {X(t)} is sample-continuous.
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Proof. First, by direct computations we note that

fm—l—ﬁ-—eﬂ”z/"‘dySe-"z/z, >0,
e V S

2z
let
g(z) = |logz|-W+/5, 2>0.
Then '

PUX@) — X(s)| = g(lit — sl |
< exp [—¢*([t — sI)/2E[X () — X(s)|*}

< exp {——;K— llog Iz — sl l“ﬂ”} ,

let h(x) = exp {—1/2K |log z|**#2}, £ >0. Apparently, g and £
saisfy (25) and the result follows. |||

REMARK 36. According to Dudley [4], Corollary 35 is still
- wyalid if 3+ B in (3.3) is replaced by 1+ 4.

A Gaussian field {X(), t € I*} is called a Wiener field if
EX@®)) =0, V¢ and E(X(®) X(s)) = Mialt: As:), where
= (fy, -, 1s), S=(S,=*, Su), t: A si=Min {t;, s;}. Wiener field is
sample-continuous. To show this, we need

LEMMA 3.7. If {X(), t € I*} is a Wiener field, then
k
E|X(®) - X(®IP<Y, Iti—sil,
where t = (&1, ts,+ -, te), = (S1, Sg,°+*, Sp) € I

Proof.

E1X@®) — X))

E 3 A
= Ht,~+ Hs,—-—z].__[(t;/\s;)
o= ];[t,-—]_:_[(ti/\s,-) +[]:_[Si—]___l(ti/\sz')]

< Z [lti;‘ti Asil + Isi —t: A sil]

k
=Z lti_Sfly

since
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k k
10t =TI As)
i=1 . i=1
k—1 k-1 k-1
= tk(H t— ]t A s,-) + T e A sd)(t — t A sp)
i=1 i=1 i=1
k—1 k—1
< (Ht;— ]_—Iti AN Si) + (tk“'tk/\sk)

k

<> (t—t Asi)

i=1

by induction. [|]

CoroLLARY 3.8 (Chentsov [2]). The Wiener field is sample-
continuous,

Proof. This follows from Corolléry 3.5 and Lemma 3.7 if we
let || be thg I;-norm in (3.3). |||
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