CONFORMAL MAPPINGS AND FIRST EIGENVALUE OF LAPLACIAN ON SURFACES

BY

BANG-YEN CHEN

Abstract. In this note we give a simple relation between conformal mapping and the first eigenvalue of Laplacian for surfaces in Euclidean spaces.

1. Statement of Main Theorem. Let M be a compact Riemannian surface and Δ the Laplace-Beltrami operator acting on differentiable functions $C^{\infty}(M)$ on M. It is known that Δ is an elliptic operator. The operator Δ has an infinite sequence

$$(1.1) 0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_p < \cdots \uparrow \infty$$

of eigenvalues. Let $V_p = \{f \in C^\infty(M) : \Delta f = \lambda_p f\}$ be the eigenspace with eigenvalue λ_p . Then the dimension of V_p is finite, it is called the multiplicity of λ_p . Let $x: M \to E^m$ be an immersion of a surface M in E^m . Then the euclidean metric of E^m induces a Riemannian metric on M. In this paper we shall consider only the induced metric on M. As in [4], we shall call an immersion $x: M \to E^m$ to be of order p if all coordinate functions of $x = (x_1, \dots, x_m)$ are in V_p , where x_1, \dots, x_m are the euclidean coordinates of x. In the following we shall denote by $\lambda_1(x)$ and A(x) respectively the first eigenvalue λ_1 and the area of M with respect to the immersion x when it is necessary.

In this paper, we shall prove the following conformal inequality for λ_1 .

THEOREM 1. Let $x: M \to E^m$ be an imbedding of order 1 from a compact surface M in E^m . If φ is a conformal mapping of E^m with $A(x) = A(\varphi \circ x)$, then we have

Received by the editors July 31, 1978.

⁽¹⁾ Partially supported by National Science Foundation under Grant MCS 76-06318.

$$(1.2) \qquad \lambda_1(\varphi \circ x) \leq \lambda_1(x) .$$

The equality holds when and only when φ is a rigid motion of E^m .

If c is a nonzero constant, then we have $\lambda_1(cx) = \lambda_1(x)/c^2$ and $A(cx) = c^2A(x)$ for the similarity transformation cx. Thus the assumption on the area in Theorem 1 is necessary. Moreover the assumption is generic in the sense that if $A(x) \neq A(\varphi \circ x)$, then by choosing a suitable similarity transformation ψ of E^m we have $A(x) = A(\psi \circ \varphi \circ x)$.

It seems to the author that inequality (1.2) is the only conformal inequality we know so far for spectra. Some applications of Theorem 1 will be given in the last section. A typical example reads as follows: If M is a cyclide of Dupin given by an inversion of an anchor ring in E^3 with circles of radii a and b satisfy $a/b = \sqrt{2}$, then $\lambda_1 < 4\pi^2/A$.

2. **Proof of Theorem 1.** Let $x: M \to E^m$ be an imbedding of a compact surface M in E^m . Without loss of generality we may choose the center of gravity as the origin of E^m . Let (x_1, \dots, x_m) be the euclidean coordinates of E^m . Then we have $\int_M x_i \, dV = 0$. The minimal principle [1] then implies

(2.1)
$$\int_{M} |dx_{i}|^{2} dV \geq \lambda_{1} \int_{M} (x_{i})^{2} dV, \quad i=1,\dots, m.$$

The equality holds if and only if each x_i is in V_1 . On the other hand, since $|dx|^2 = \sum_{i=1}^m |dx_i|^2 = 2$, (2.1) gives

$$(2.2) 2A(x) \ge \lambda_1(x) \int_M |x|^2 dV.$$

Let $H = \frac{1}{2} \operatorname{trace} \sigma$ be the mean curvature vector of x, σ the second fundamental form of x. Then we have [6]

$$(2.3) A(x) + \int_{M} (x \cdot H) dV = 0.$$

Thus (2.2), (2.3) and the Schwartz inequality imply

$$2A \int_M |H|^2 dV \ge \lambda_1 \left(\int_M |x| |H| dV \right)^2$$

$$\ge \lambda_1 \left(\int_M (x \cdot H)^2 dV \right)^2 \ge \lambda_1 A^2.$$

Consequently, we obtain the following result of Reilly [7].

(2.4)
$$\int_{M} |H|^{2} dV \geq \frac{\lambda_{1}(x)}{2} A(x).$$

The equality holds if and only if x-a is of order 1 for some vector a in E^m .

In the following, we denote by TMC(x) the total mean curvature of x, i.e.,

$$\mathrm{TMC}(x) = \int_{M} |H|^{2} dV.$$

Suppose that $x: M \to E^m$ is an imbedding of order 1. Then we have

(2.5)
$$TMC(x) = \frac{\lambda_1(x)}{2} A(x).$$

If φ is a conformal mapping of E^m into E^m then we have [3]

$$(2.6) TMC (\varphi \circ x) = TMC (x).$$

Combining this with (2.4) and (2.5), we find

(2.7)
$$\lambda_1(\varphi \circ x) A(\varphi \circ x) \leq \lambda_1(x) A(x).$$

The inequality holds if and only if $\varphi \circ x - b$ is of order 1 for some vector b in E^m . In particular, if $A(x) = A(\varphi \circ x)$, (2.7) gives

$$(2.8) \lambda_1(\varphi \circ x) \leq \lambda_1(x).$$

If the equality of (2.8) holds, then $\varphi \circ x - b$ is also of order 1 for some vector b in E^m . By using a translation on E^m , we may also assume that the center of gravity of $\varphi \circ x$ is the origin too. In this case, b = 0, and $\varphi \circ x$ is of order 1. Consequently, we have

(2.9)
$$\Delta x = \lambda_1 x, \quad \bar{\Delta}(\varphi \circ x) = \lambda_1(\varphi \circ x),$$

where $\lambda_1 = \lambda_1(x) = \lambda_1(\varphi \circ x)$ and Δ and $\bar{\Delta}$ are the Laplace-Beltrami operators on M with respect to x and $\varphi \circ x$, respectively. From (2.9) and a theorem of Takahashi [8], we see that M is imbedded by x and $\varphi \circ x$ into the same hypersphere $S^{m-1}(r)$ of radius $r = \sqrt{2/\lambda_1}$ as minimal surfaces.

Now, by a result of Haantjes [5], we know that conformal mapping on E^m are generated by translations, rotations, homothetic

transformations and inversions centered at a fixed point. Since the centers of gravity of x and $\varphi \circ x$ are assumed to be at the same point 0, the conformal mapping φ is free of translation. Moreover, since M is imbedded both by x and $\varphi \circ x$ into the same hypersphere $S^{m-1}(r)$, φ is free of homothetic transformations (except the identity transformation). On the other hand, inversions centered at 0 are given in the following form:

$$\bar{x} = \frac{c^2}{(x \cdot x)} x$$

for nonzero constants c. Thus inversions centered at 0 always carry a hypersphere of radius r into a hypersphere of radius c^4/r^2 . In our case, since both surfaces given by x and $\varphi \circ x$ lie in the same hypersphere $S^{m-1}(r)$. Thus φ is free of inversions too. Consequently, φ is given only by a rotation. Conversely, because the area and the spectrum of a surface are invariant under rigid motions (generated by translations and rotations), if φ is a rigid motion, the equality of (1.2) holds.

REMARK. Theorem 1 shows that the estimates on total mean curvature for surfaces in E^m given in [2, 7] are weak in general.

3. Applications. In this section we shall give the following applications of Theorem 1.

Let $S^1(1)$ be the unit circle in a plane E^2 . Then the product surface $T^2 = S^1(1) \times S^1(1)$ is a flat surface in E^4 with area $A = 4\pi^2$ and $\lambda_1 = 1$ [1]. A surface in $E^m \supset E^4$ is called a *conformal Clifford torus* if it is the image of the Clifford torus under a conformal mapping of E^m . The anchor ring in E^3 given by

$$((\sqrt{2} + \cos u) a \cos v, (\sqrt{2} + \cos u) a \sin v, a \sin v)$$
$$0 \le u < 2\pi, \qquad 0 \le v < 2\pi,$$

is among the class of conformal Clifford tori. It is easy to see that the Clifford torus in E^4 is of order 1. There exists no conformal Clifford torus of order 1 in E^3 . Theorem 1 implies the following.

THEOREM 2. Let M be a conformal Clifford torus in E^m $(m \ge 3)$ with area $4\pi^2$. Then we have

$$(1.4) \lambda_1 \leq 1.$$

The equality holds if and only if M is a Clifford torus.

Let (x, y, z) be the Euclidean coordinates of E^3 and $(u^1, u^2, u^3, u^4, u^5)$ be the Euclidean coordinates of E^5 . We consider the mapping defined by

$$u^1 = \frac{1}{3} yz$$
, $u^2 = \frac{1}{3} zx$, $u^3 = \frac{1}{3} xy$, $u^4 = \frac{1}{6} (x^2 - y^2)$, $u^5 = \frac{1}{6\sqrt{3}} (x^2 + y^2 - 2z^2)$.

This defines an isometric immersion of $S^2(1)$ into $S^4(1/\sqrt{3})$ as a minimal surface. Two points (x, y, z) and (-x, -y, -z) of $S^2(1)$ are mapped into the same point of $S^4(1/\sqrt{3})$ and this mapping defines an imbedding of the real projective plane into $S^4(1/\sqrt{3}) \subset E^5$. This real projective plane imbedded in E^5 is called the *Veronese surface*. It is known that Veronese surface satisfies $A = 2\pi$ and $\lambda_1 = 6$ [1]. A surface in E^m $(m \ge 5)$ is called a *conformal Veronese surface* if it is the image of the Veronese surface under a conformal mapping of E^m . There is no conformal Veronese surface of order 1 in E^4 . From Theorem 1 we have

THEOREM 3. Let M be a conformal Veronese surface with area 2π in E^m . Then we have

$$(1.5) \lambda_1 \leq 6.$$

The equality holds if and only if M is a Veronese surface.

REFERENCES

^{1.} M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une variété Riemannienne, Lecture Notes in Math, no. 194, Springer-Verlag, Berlin, 1971.

^{2.} D. Bleecker and J. Weiner, Extrinsic bounds on λ_1 of Δ on a compact manifold, Comm. Math. Helv. 51 (1976), 601-609.

^{3.} B.Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973), 563-564.

^{4.} _____, On total curvature of immersed manifolds, IV, Spectrum and total mean curvature, Bull. Inst. Math. Acad. Sinica 7 (1979), 301-311.

^{5.} J. Haantjes, Conformal representations of an n-dimensional Euclidean space with a non-definite fundamental form on itself, Proc. Kon. Ned. Akad. Amsterdam 40 (1937), 700-705.

- 6. C.C. Hsiung, Isoperimetric inequalities for 2-dimensional Riemannian manifolds with boundary, Ann. of Math. 73 (1961), 213-220.
- 7. R.C. Reilly, On the first eigenvalues of the Laplacian for compact submanifolds of Euclidean space, Comm. Math. Helv. 52 (1977), 525-533.
- 8. T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
- 9. J. White, A global invariant of conformal mapping in space, Proc. Amer. Math. Soc. 38 (1973), 162-164.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824.