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Abstract. In this note we give a simple relation between con-
formal mapping and the first eigenvalue of Laplacian for surfaces in
Euclidean spaces.

1. Statement of Main Theorem. Let I be a compact Rie-
mannian surface and A the Laplace-Beltrami operator aéting on
differentiable functions C°(M) on M. It is known that A is an
elliptic operator. The operator A has an infinite sequence

(1.1) =< h<l< - <l<--+ o

of eigenvalues. Let V,= {f € C°(M) : Af = 2, f} be the eigenspace
with eigenvalue 2,. Then the dimension of V, is finite, it is called
the multiplicity of 1,. Let x: M— E™ be an immersion of a surface
M in E™ Then the euclidean metric of E™ induces a Riemannian
metric on M. In this paper we shall consider only the induced
metric on M. As in [4], we shall call an immersion z : M— E™
to be of order p if all coordinate functions of x = (&1, -+, Tm)
are in V,, where &1,---, » are the euclidean coordinates of z. In
the following we shall denote by 1:(x) and A(x) respectively the
first eigenvalue 2; and the area of M with respect to the immersion
& when it is necessary. _

In this paper, we shall prove the following conformal inequality
for 1.

ToHEOREM 1. Let z: M— E™ be an imbedding of order 1 from
a compact surface M in E™. If ¢ is a conformal mapping of E™
with A(z) = A(p o x), thern we have
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@) Ml 0 2) < Mu(a). o
The equalily holds when and only when ¢ is a rigid motion of E™.

If ¢ is a nonzero constant, then we have i;(¢x) = 1(®)/¢? and
Alcx) = c*A(z) for the similarity transformation c¢z. Thus the
assumption on the area in Theorem 1 is necessary. Moreover the
assumption is generic in the sense that if A(x) s~ A(pox), then
by choosing a suitable similarity transformation ¢ of E” we have
A(z) = A(¥opox).

It seems to the author that inequality (1.2) is the only conformal
inequality we know so far for spectra.' Some applications'of Theorem
1 will be given in the last section. A typical example reads as
follows: If M is a cyclide of Dupin given by an inversion of an
anchor ring in E* with circles of radii a and b satisfy a/b=+v"2,
then 11 <d4z®/A.

2. Proof of Theorem 1. Let z:M— E™ be an 1mbedd1ng of a
compact surface M in E®”  Without loss of generality we may
choose the center of gravity as the origin of E™ Let (Z1,---, )
be the euclidean coordinates of E™. Then we have f x: dV = Q.
The minimal pr1nc1ple [1] then implies

@en - . ‘f.mx,.[de; /h*[ ()2 dV, i;l,"', m.

The equality holds if and only if each ; is in V1 On the other
hand, since |dz|% = ZM ldz: |2 =2, (2 1) g1ves '

@2 2A(x)2zh(x)f|wlde

Let H= 4 traces be the ‘mean curvature vector of .'v o the second
fundamental form of z. (,Then we have [6]

(2.3.> Az) + fM (z+H)dV =0.
Thus (2.2), (2.3)‘ and the Schwartz inequality; imply
24 [ 1HPav=u(f 12l 1H V)

>u(f (@-H?av) = nar.
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Consequently, we obtain the following result of Reilly [7].
ey faErarz 29 ae)

The equahty holds if and only 1f r—a is of order 1 for some L
vector ‘@ in E™,

In ‘the followmg, we denote by TMC (x) the total mean
curvature of x, i.e.,

TMC (z) = f H|aV .

Suppose that =z : M — E’” is an 1mbedd1ng of order 1. Then we
have ' '

gz;s) . TMC () = 1“’) Aa).

If';sv is a conformal.rnapping of E™ into E™ then .we‘have [3]

26) - . TMC(gox)=TMC(x).
Combining this with (2.4) and (2. 5)A 'We‘ﬁnd v
(2 7 - S ACEYD)] A(¢ ox) < () A().

The 1nequa11ty holds if and only if pox—b is of order 1 for some
vector b in E™, . In particular, if A(z) = A(go ox),. (2.7) gives

(2.8) Moox) = (x).

If the equality of (2.8) holds, then ¢ox — 5 is also of order 1 for
_some vector b 1n E™ By usmg a translation on E™, we may also
assume that the center of gravity of gox is the origin too. In
this case, 5=10, and ¢pox is of order 1. Consequently, we have

(2.9) - Aw=h$ _A(qoow)—/h(soox)

where 1; = h(x) = i(pox) and A and A are the Laplace Beltrami
operators on M with respect to x and ¢ oz, respectively. From
(2.9) and a theorem of Takahashi [81, we see that M is imbedded
by = and g ox into the ‘same hypersphere Sm- () of radius
7 =12/, as minimal surfaces.

Now, -by-a result. of Haantjes [5],. we know that conformal
mapping on E™ are generated by translations, rotations, homothetic
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transformations and inversions centered at a fixed point. Since the
centers of gravity of # and ¢ ox are assumed to be at the same
point 0, the conformal mapping ¢ is free of tramnslation. Moreover,
since M is imbedded both by # and ¢ o £ into the same hypersphere
Sm-1(y), ¢ is free of homothetic transformations (except the identity
’transformation). On the other hand, inversions centered at 0 are
given in the following form:
2
= (mc- x)

for nonzero- constants ¢.  Thus inversions centered at 0 always
carry a hypersphere of radius #» into a hypersphere of radius c¢*/72
In our case, since both surfaces given by & and ¢ox lie in the
same hypersphere S™-(r). Thus ¢ is free of inversions too.
Consequently, ¢ is given only‘ by a rotation. Conversely, because
the area and the spectrum of a surface are invariant under rigid
motions (generated by translations and rotations), if ¢ is a rigid
motion, the equality of (1.2) holds.

REMARK. Theorem 1 shows that the estimates on total mean
curvature for surfaces in E™ given in [2, 7] are weak in general.

3. Applications. In this section we shall give the following
applications of Theorem 1. '

Let S'(1) be the unit mrcle in a plane E?. Then the product
surface T%=S1(1) X S*(1) is a flat surface in E* with area A =4z
and 2:=1 [1]. A surface in E™ D E* is called a conformal Clifford
torus if it is the image of the Clifford torus under a conformal
mapping of E™ ‘The anchor ring in E®* given by

(V2 + cbsu)acosv, (V2 + cos#) asinv, asinv)
0=u<2r, 0=0v<<2r,

is among the class of conformal Clifford tori. It is easy to see that
the Clifford torus in E* is of order 1. There exists no conformal
Clifford torus of order 1 in E3® ‘Theorem 1 implies the following, .

THEOREM 2. Let M be a conformal Clz_ﬂ’ord torus in E"‘ ( mz 3)
with area Ax’. Then we have
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(14) ' HETL.
The equality holds if and only if M is a Clifford torus.

Let (z, ¥, z) be the Euclidean coordinates of E®* and (u', u® #°

u*, u°) be the Euclidean coordinates of E°. We consider the mapping
defined by

1 1 _1
u=__—1yz, L 7 =2y,
g T3 W=t
= 1_
6v 3

This defines an isometric immersion of S2(1) into S$%1/v/3) as a

u‘*:%(xz-yz), u’® (z* + 9 — 22°).

minimal surface. Two points (z, ¥, z) and (—z, —y, —2) of S%(1)
are mapped into the same point of S*(1/1/ '3) and this mapping
defines an imbedding of the real projective plane into S$*(1/v 3)CE®.
This real projective plane imbedded in E° is called the Veronese

surface. It is known that Veronese surface satisfies A= 2z and
21=6 [1]. A surface in E™ (m=5) is called a conformal Veronese
surface if it is the image of the Veronese surface under a conformal
mapping of E™ There is no conformal Veronese surface of order
1in E* From Theorem 1 we have

THEOREM 3. Let M be a conformal Veronese surface with area
2z in E™. Then we have :

(15) | n=6.
The equality holds if and only if M is a Veronese surface.
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