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 ON REARRANGEMENTS OF SERIES(")
- 'MEN-CHANG HU AND JU-KWEI WANG

Abstract. This paper studies the effects upon the rearrangement
of series by a permutation ifi terms of its run number,

1. The best known result on the rearrangements of series is
Riemann’s theorem which states that the terms of a conditionally
convergent real series may be so rearranged that the resulting series
will diverge to oo, diverge to — o0, converge .to any .preassigned real
number, or oscillate between any two preassigned values, finite or
infinite. See 13, p. 328].. Most subsequent works on rearrangements
of series (e.g. [2]) are in the direction to allow the terms of the
series taken from some vector space V, and to prove. that under
suitable cqnditions the _Sums of the convergent rearranged series
“will fill up some linear subspace of V. .

In this paper we approach the problem from a different angle.
Instead of considering a given series and its various rearrangements,
we consider a given rearrangement to see how it acts on various
series. The only result in this direction known to us is a theorem .
in [1] which we shall state as Theorem 1.

First let us introduce our terminology. By a permutation ¢ on
the set N of positive integers we mean a one-one map of N onto
itself. The series X351 ¢, is called the rearrangement of the series
Y%uad, by o. o is “called conbérgence-preserving H i@ IS
convergent whenever XYiaaa, is. o is called sum-preserving if
whenever both i3, @, and Y%, @. are convergent, they have the
same sum. ' ' o

Let <! be two positive integers. We denote the set
e N:E<n<l} by [k I] and call it a segment in N, Let A
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be a finite set of positive integers.. By a 7run in A4 we mean a

maximal segment contained in A, maximality being with respect to
set-theoretic inclusion. The runs in A form a partition of A. The
total number of runs in A4, i e. the number of classes in this
partition, is called the run number of A. Thus the set {3, 1, 9, 4,
6, 8, 7} has 3 runs: [1, 11, [3, 41, [6, 9] Its run number is 3.

We shall also denote the set [k+1,l]={neN:k<n<l}
by (%, 7]. The numbef of elements of a set A will be written as
BA. ' I

If o isa permutatlon of N, we shall denote by 0, = 0a(0) the
run number of the set o([1, #]). The sequence {p,} will be called
the sequence of run numbers of o. ‘

With these notations we can restate Agnew’s theorem in [1]
in a slightly different form: |

THEOREM 1. A permutation o on N is comvergence-preserving
if and only if the sequence {p,} of the run numbers of o is bounded.

Agnew’s original proof depends on a theorem of Toeplitz on
regular matrix transformations, and is not cdnstructive. Also it
does not tell what we can expect of ¢ in case it has an unbounded
sequence of run numbers. Our Theorem 2 will be a strengthened
form of the “if” part. It is rather elementary. We include it only
for the sake of completéness. Our Theorem 3 will be a strengthened
form Qf- the “only if” part, and its proof will be constructive.

THEOREM 2. A permutation o on N with a bounded sequence
of run numbers is both comvergence-preserving and sum-preserving.

THEOREM 3. If the sequence {p,} of rum numbers Vof a peifmutd-
tion o o N is unbozmded then for any two non-negative numbers
a and b there is a series Y,*.;a, which converges to 0. while the

bartial sums of the rearranged series Y%, a.,c,,) osczllates between

a cmd —b.

Actually this result is the best we can expect of ¢:because
there is a permutation ¢ which “does not behave any better than
thls, as the following theorem shows:
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TuEOREM 4. There exists a permutation o of N with its sequence
of run numbers unbounded such that for any series XT..a, which
converges to 0, the lower limit of the paritial sums bf Dinel Bolny IS
always non-positive and the upper lLmit of those partial sums is
always non-negative. '

What went wrong in this example is that the Jower limit of
{o.(a)} is 1. In fact we have '

THEOREM 5. Let o be a permutation on N and {o,} be ils
sequence of run numbers. Then the following are equivalent:

A. iMoo oy = . -

B. There exists a series Y2 a, comverging to 0 such that the
lower limit of the partial sums of the rearranged sevies 2.5-i1Gsw
.28 1. '

The following theorem shows that the condition B in Théorem
5 is hard to improve:

THEOREM 6. An example may be constructed to show that «
permutation o with

~lim p,(0) = @

700

may be sum-preserving.

Based on the construction of Theorem 6, we may construct
another example to show ‘

THEOREM 7. A _ﬁermutation © on N may be sum-preserb‘ing even
if both ‘

lim p,(z) = c©
#7500
and

lim p,(z=%) = oo,
=00 .

An unsolved problem left in this research is to find a necessary

and sufficient condition for a permutation on N to be sum-preserving.

We thank Mrs. Wai-fong Chuan who informed us of the ex-
istence of the Reference [1] so that we know that Theorem 1 is

- not our creation. We have subsequently revised this paper. ‘
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2. Proof of Theorem 2. Assume that X a,=s and p, <M for
all #. We want to show that X @, =S. Given‘re >0. Let #n, be
a sufficiently large integer such that\ o

n : ¢
s - a;| < —
s -3 o<

whenever # > #, and

Z a] < ———

=

- whenever. m =1 > n,. Choose a‘n integer = such ‘thatv o([1, #:])
o [1, nl]. For mn>mn, let o([1, n]) = Uin R;, where R; are the
_runs of ‘ o([1, »]), arranged from left to right. We have

Zaa(k)—zak+zzak

]——2 keR

Hence
]s—Za,(k)!éls— ak|+z
k=1 = =2

Therefore

a‘<M°
ke_R k M

Za,,(k) = S. QED

3. Proof of Theorem 3. For each #, let R(n, 1), R(n, 2),-
R(#n, o,) be the runs in o([1, #]), arranged from left to right.

Since {p,} is unbounded, we can choose an increasing sequence of . -

positive integers #i, #.,-- -, such that
(31 1€ o([1, ml), |
(3.2) 2<< pu; < o, <-+7,
(83) R(mj1, 1) D 0([1 n;]1) for all j € N.
For each j, let

P; = {Max R(n;, i) :i =2, 3,"--, ou;},
Q; = (MinR(n;, i) —1:i =2, 8,-, p,} .

From (3.3) we see that Qi, P, Qz,‘Pz,-"-‘- are pairwise disjoint.  For

each positive .integer % define .
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af/(oy; — 1) if 7 isodd and k€ P;,
1—a/(on;—1) if j is odd and %k € Q;,
@ =1—b/(pn;, —1) if §

b/(on; —1) if j

0 if otherwise.

is even and k € P;,
is even and k€ Q;,

Then

> @] < @+ 5w~ 1)

if ne& R(n;,1). Hence X a@,=0. On the other hand it can be
verified that
iaam _[ @ i jisodd,
} Py l——b if j is even,
while
—-b < i oy S @

for all #. Therefore the series Y @, diverges (unless ¢ =b=0)
with its partial sums oscillating between —b and a.

4. Proof of Theorem 4. Let m,= (2—1)n Then m, is an
increasing sequence of even numbers with m,.1 — m, =2n. We
define ¢ : N—> N as follows: for =20, 1, 2,--- we define

[m,,+2k if 1<k<=n,

L E) =
) = Lok —m)—1 i m<k<on.

It may be readily verified that for this o, om +a=2n+1 - Hence
{p,} is unbounded and o is not convergence-preserving. On the

other hand 0., =1. Hence if 27.a: =0, we have

m m
7 l‘l‘
lim E A, = lim E ar,= 0.
k=1 k=1

This shows that 0 lies between the lower and the upper limits of
the partial sums of ] #,w. Q.E.D.

Another point worth noting is that the set of all convergence-
preserving permutations is mnot a group. Thus, in the example of

the above proof, the inverse of ¢ is given by
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foo Am, + E if =2k,
o~ (m, + 1) = [ _ .
lm, +n+& if 1=20—1,
where [/ € tl, 22]. A moment’s reflection reveals that the run

numbers of o~'([1, #]) is either 1 or 2. Thus ¢! is convergence-
preserving while its inverse ¢ is not.

5. Proof of Theorem 5. B=A. Let p be an arbitrary positive
integer. Since X @, =0, there is an m such that

i akl << —:—I'—
o1

b

whenever # > m, and
> <+
kE=r ﬁ

whenever s> # > m. Since the lower limit of the partial sums of
2@, is 1, there is an m’ such that

[

o([1, m'D) D [1, m] and ) aum =
k=1

[\]

whenever #>m’. Now assume that 2 >m’. If Ri, Ry, -, R, are
the runs in o([1, #]), then by our choice of  m,

Zakl<~1~

keR]- ﬁ

for each j =1, 2,---, 0,. Hence

> ﬂk,'E iap(k) Z—%—,‘

kERj

P

'%pnzz

J=1

'S0 ',o,; >-p/2 whenever # > m'. This proves that lim p, = co.
~ A=B. Since each additional term o(# + 1) can alter the run
number p, at most by 1, so if we define (1) =1 and

6(%) = pn - Pa-1, n=> 1;

the value of e(#) is either 1, or 0, or —1.

V (5.1) In the nonzero terms of the sequence {¢(o~'(#))},, 1 and

—1 appear alternately with 1 appearing first. e ‘
Indeed, we note that .

if oY1) <o-1(2),

sy o T
e(a(1)) = Lo if o~1(1) >61(2),
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and for #>1,

1 if o-i(m) <o (2—1) and o~ (n)<oUm+1),
e(o7i(n)) =4{—1 if o' (w)>c(n—1) and o' (n)>cHn+1),
0 if o-%(2) lies between o~ (z—1) and o-1(2+1).

(5.1) follows from these observations. ,

Now let N, =e"(1), No=¢"%(0) and N-=¢"'(—1). Since
lim p, = 00, both N, and N- are infinite sets. For each # < o(N,),
let

F(#) =Min{k € o(N.): B> n} .

By (5.1), F is a bijection from o(N,) onto o(N.). If we puf
S =010 F oo, we have '

(56.2) S :N,— N. is a bijection. ,
Furthermore, from the observations made in the proof of (5.1), we
can derive |

(5.3) S(n)>n for all 7€ N..

In the sequel we shall construct a series X @, such that
Ya,=0 and liminf, Xiudw =1. In-the definition of @, we
always require that

(C1) @ity = —@ocs—'ayy for all me€ N_,

(C2) a.,w =0 for all k€ N, »

So we vnreed only to define @, for me N+.v It will be clear from
the definition that @, =0 for all m € N, and lima; = 0.

For any finite subset I of N, let v(I) = Saere(n). If I, k€ N,
let :

Al k) =max{n=1:v([l n]) =Fk}.

(5:4) a1, B) is a well-defined positive integer.

In fact we note that (1) »([/, #]) changes its value at most
by 1 when #. is replaced by # +1, (2) »([,1]) =¢()=1 or 0
or —1, and (8) lim,v([I, #]) = co. (54) follows from these facts.

As immediate consequences of the definition of 1(J, 2), we also
have

(55) If m> 2 =21(, k), then »((2/, m]) > 0.

(5.6) 2, k+1)>21, k).
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Next we introduce two construction procedures, called Procedures
I and II respectively. At present we only describe what we can
achieve with these procedures, leaving -the detailed constructions
toward the end of the proof.

PROCEDURE 1. Assume that we are given =2, &) and that
@ojy have been defined for all j € [1, X'] satisfying '

l'
Siap=1
j=1

as well as the conditions (Cl) and (C2). The present procedure
 constructs a V' = A2, &) and defines a.;y for all j e (X, 2]
such that /

0 S(N:NI1, YD CI1, 27715

(1) ZMiawp =2;

(2) (C1) and (C2) are salisfied;

(3) Xiua.,p =1 whenever d 2, 2'];

(4) Maxjea1 @] < Maxjernaann,, s> @i

PROCEDURE II.  Assume that we arve given 2 = (I, &'') and
that a.;y have been defined for all j € [1, '] satisfying
arr
D Aoty =2
et
as well as the conditions (C1) and (C2). This procedure constructs
a =22, ) and defines a,;y Jor all j € (2, 2'] such that
(0") S(N:NI[1, 2Dl V1,
1) ZMawpn=1;
(2") (C1) and (C2) are satisfied,;
(3") Xhiawy =1 whenever d<=[2, 21,
(4) Maxjeaaann, |8y <+ Magjers o, s> [@ap .

With these procedures available, we construct the series 2. @,
in the following manner: We start with 1, = 2(1, 1) and define

aup =e(j)  for jell, al.

Clearly

P

1
Z a,p =1
j=1 7
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and (Cl1) and (C2) are satisﬁéd. By applying Procedure I and
Procedure II alternately, we obtain an infinite sequence of integers

<< <<---

and ‘a sequence of numbers a,¢;» such that
(1) limjowa@.p = 0;
(2) @.p = —@usn» if § € Naj
(3) ap»p=0 if j € N
(4) Thua;n=1  if d= 2
(5) Yihawp=1 for all odd .

From (1), (2) and (3) we know that > a,=0. From (4)‘ and (5)
we know that

”
lim inf a,n=1.
o ; a ()

This will complete the proof of Theorem 5 if we carry out the
constructions in Procedures I and II, which we do presently:

Procedure I. By (56) we can choose an o« so large that if
we put 27 = 2(}, e’’), then
[1, 271> S(N. n[1, VD
and

1 ;
o < Maxjeri, 1108, 50>1° @yl -

Set
P=N.n @, 2],
X=N-n, 2],
Y={neX:8n)>21},
Z=X\Y ={nec X:8n) <1},
B=§YY)cP, .
C = the set of the first $Z elements in P\B,
A=BUC. _
By (55), (#P) — (#X) = »((¥, 27]1) > 0. Also, by (5.2), B =#Y.
Thus #(P\B) > #(X\Y ) =#Z, and C is well defined. By definition,
#A =4#X: let T be the order-preserving map of X onto A
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(57) T(X)<z forall z€ X,
In fact (5.7) follows immediately if we can show that for
every x € X,
(58) #AN (¥, 2] Z#(X 0 (2, 2]).
Now if #((P\B) < (2, ]) <4Z, then
(P\B) n (/1’, zlcCn (2, z].
Thus
#An ¥, 2D =4(Cn (&, 2]) +#(B n (¥, D)
2P0, zD) 24X n (2, 2]),
the last inequality follows from
FPn 2, x]) —#(X n (¥, 2]) = »((X, 2]) > 0.
If #(P\B) n (¥, z]) >4z, then
) ‘C c (¥, z2].
Thus )
$(A N (X, 2]) =4$Z + #(B n (X, &1)
| | HZ + (Y n (X, 2D) Z#(X n (2, 2]).
This proves (5.8).
We note that (5.8) is actually the possibility condition of the
marriage problem as was mentioned in [4, §10].

For each z€ Z consider the finite sequence of positive integers
- 01, Vg, V41 defined inductively by

=2z, ”2=T(01);
v = S(ve), v = T (vs),

Vare1 = S(va1),

with 01, 03, -, Vs1 € X, 2, ¥y,---, Va €A, We carry on the
process until vg741 > 2/. Let '

V(2) = {v1, v, -, var} .

Remember that @, = —a,s') <0 has already been defined for
z € Z, and by (Cl) and (C2), '

. i .
Z Bo(z) = —Z @, = —1.
j=1

zez
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Now for j € (2, 2’] we define a,¢;y as follows:
(C3) @y = e(v) l@srl, vEV(2), 2€ Z
(C4) a,p» =Vea, j € P\A.

(C5) a,p=0 otherwise,

If d (2, '], then

Z s = Z Qs -+ Z Qs + Z Z As(o) .

77 veTin
Fix z and d temporarily. Let
Q.=Q.(d z)={ve V(z) nNA:09<d},
-=Q-(d, 2)= freViEInX:v<d}.
By (5.7), if k= Q-, then T (k) € Q., so #Q. > #Q_, and

Z o() = Z sy T Z AD)
vcﬂ (z) veq+ veEQ_

= la,| ($Q+ —#Q-) = 0.

Therefore

d 2 )
E' T = _2_\ Zs(5) + Z 2o (5
j=1 j=1

JeP\4

A’
= Z sty = 1.
i=1

This is the condition (3). Since #Q.(z, 1'') =#Q-(z, 2’/), and
#(P\A) = «’’, we also have *

a1

Z Qo) = Z tGoip + D Gy =2,

jeP\a

which is (1). The conditions (2) and (4) are immediate.

Procedure 1I. Choose &’ so large that, .if we put =202, & ),"
then » / ’
[1, 128N n[1, 27D. N -
Next we define P, X, Y, Z B, C, A, T, V(2), Q. =Q.(d, z), and
Q- =Q_(d z) mutatis mutandis as in Procedure I. For j e (27, 2]

we define @, by
(C6) @y =% e(v) la,a|, if vEV(2\{2}, z€Z
(C7) awp =0, - if otherwise.
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Now if d & (1, '], then

P

a
Z A = Z asi t Z Z Qy(v) .
j=1 j=1

zeZ el (3)
v<d

Since
Z As(v) = Z @) + z As(v)
vel(2) veq+ ve@_
v<5d
—;— |Goor] (HQ+ — #Q-) if zeQ_,
é—ldacz)! HQ. —#Q-—1) if z€ Q..
So
a s 1
Z (i) 2 Z 2oy T Z Bo(2) -
j=1 j=1 2 zeZ
As '

x'l
Z As(z) = ""Z Qs = -2,
jiez i=1

we have Xfia,hp=1 for d € (2, Z’]. This proves (3'). The
conditions (17), (2’) and (4’) are all clear. Q.E.D.

6. Proof of Theorem 6. We define s, =0. From 2=1 on we
define successively the following:
D = Sp-1 + &, Py = (Sp-1, P2l;
= pr+ &, Qr = (Dr, 021 ;
rnn=qr+k—1, Rp=(q 7];
ss=7e+tk—1, Spe=(r, sl
R, and S; being interpreted as empty sets. We also define the set
of even integers in R, U S; as E; and the set of odd integers in
R, US; as O,
Next we define the map o : N — N by defining it on the segments
Py, Qk, R; and successively. We let

0(Pg) = Epys, o(Qe) =P,
U(Rk) - Qk-l ) G(Sk) = Ok ’

and on each of these segments o should be order-preserving. We
illustrate this definition in the following figure:
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e s
—— 1+~ \0EOEOEOE+———+———OEOEOEOE —————|OEOEOEOE —
Py Qi 04 UE:, P, Q: O, UE; Pt Qrezn OppiUEg s

The definition of ¢ can also be written elementwise as follows:

dr+1 + 2(2 — Sp-1) if ne Py,

(n) = n—Fk if ne @,
’ _ln—Sk——5 if ne R,
g +2(n—7)—1 if » E<Sk.

When 7 € (P, Pr+1], each point in o(P:) is a run in o([1, #]).
Therefore p, = k. ‘This shows that ‘

lim p, = ©0.

To prove that ¢ is sum-preserving, assume that both 2 a, and
31 @, are convergent. We have
*r °r
St =D+ Y, G — 2, Ca.
P P <P, gy
By Cauchy’s criterion, the last two terms tend to 0 as 2— oo,
Therefore X @y = 2 @
Actually the last result can also be deduced from the fact that
the sequence of run numbers of ¢! is bounded. We prefer the
above réasoning because we shall use it again in the proof of

Theorem 7.

7. Proof of Theorem 7. We use the notations in the proof of
Theorem 6. Let

Ny = U (@s4-1, 2851 + 4k — 2]
k=1

and
Nz = N\N1 .

Let ¢; and ¢» be the order-preserving one-one maps of N onto Ny
and onto N; respectively. Define the_ permutation = on N as follows:
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p1000 ¢ (nm) if ne Ny,
(n) =1 TR )
¢z 0 a1 o g7 () if € N,.

Then ¢[N; and |N, behave like ¢ and o-! respectively. Hence
both ¢ and <~' have their sequences of run numbers tending to co.
7 is sum-preserving because

25, . 25, .
Z Co(n) = Z @, — Z a, + Z [/ 2%¢5)
n=1 H=1

7<% @y 7<% Py
+ E : Cr(n) — E: ay,
"6, RELTX )

and the last four terms tend to 0 as k2— oo,
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