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BY
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Abstract. In this paper we give best possible answers to a problem
proposed in [10] concerning ‘total mean curvatures of isometric imbed-
dlngs from some compact Riemannian mamfolds into a euclidean space
of arbltrary dimension,

1. Introduction. In the classical theory of surfaces in a
euclidean m-space E™, the two most important curvatures are the
so called Gauss curvature K and the mean curvature «. The Gauss
curvature is an isometric invariant and the integral of the Gauss
curvature gives the well-known Gauss-Bonnet formula. For the
mean curvature of a compact surface M in E™ the total mean
curvature ‘

(1.1) fM‘oﬁ dv

is a conformal invariant [9], where dV is the volume element of M.
In particular, if M is the boundary of a convex domain D in E?
the total mean curvature (1.1) is also a spectral invariant [15],
i.e., it depends only on ;che cigenvalues of the Lé.pla_ce-Beltrami
operator A on D,

In the first part of this series [4],. it is. proved that, for ahy
compact manifold M of # dimensions immersed in FE™, the total
mean curvature satisfies (see, also [16]).

(12) [ eav=e,

where o = |H|, H the mean curvature vector, and ¢, the volume
of unit #z-sphere $”(1). The equality sign of (1.2) holds if and
only . if M is 1mbedded as an ordinary #- sphere in an (#+ 1)-
dimensional linear subspace of E™,
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It is an interesting problem to improve the inequality (1.2) for
some special manifolds. For example, it is not known that whether -
the total mean curvature of every topological 2-torus in E™ satisfies

)y [ aav =2

However, When M is a flat torus, (1.3) holds if (a) = —4 [6], or
(b) M is pseudo-umbilical [11], or (c) the normal connection is’
flat [8]. In [17], Willmore proved that (1.3) also holds if M is a
tube surface of the same radius in E®. i

In![lO]_, the author proposed the following problem.

PrOBLEM. Let M be a given n-dimensional compact Riemannian
manifold and x : M— E™ an isometric imbedding of M in E™. What
is the total mean curvature of z? : e

In the third part of this series, we obtained some partial answers
to this problem. In this part, we shall continue to study this:provblem.
The method we used in this part bases on the spectral theory of
Riemannian manifolds. As two typical examples we shall show -
that the total mean curvature of any isometric imbedding of the
on-torus T'%* in E™ is = (27%/#)* and the total mean curvature of
any isorﬁetric imbedding of the Klein bottle K(a@, ) in E™ is > 2z%

2. Estimate of Total Mean Curvature by 1,. Let M be a
co_vmpact‘ Riemannian manifold of dimension # and let A be the
"Laplaée Beltrami 'oper‘ator acting on differentiable functions C*(M)
on M. Itis known that A is an elliptic operator The operator
A has an infinite sequence -

(2.1) ’ 0=lo<v21<12<---<1?<..-T'a)

of eigenvalues. Let V;={f € C*(M): Af = %; f} be the eigenspace
with eigenvalue 1;. Then the dimension of each V; is finite and is
called the multiplicity of 2;. It is known that if we define < f, 9> by
f fg dV, for f, g € C°(M), then <, > defines a pre-Hilbert structure
on C*(M) and the decomposition DV is orthogonal with. respect
to this structure. Moreover, 22, V; is dense in C*°(M). Since M
is' compact, V, is 1-dimensional and consists of constant functions.
For each function f € C°(M), let f; be the projection of f on
the subspace V;,£=0, 1, 2,---. We say that a function f € ,C,“".(M)
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_is of order zp -if f; =0 for i=0,1,---,p—1, ie, f has no

components in Vo, Vi;- 4, Vo A function % € C*(M) is said to

be of order p if 2 € V,. It is clear that the zero function 0 is of

~ order p for each p and there is no immersion of order 0 because
>0, .

In the followmg an. 1sometr1c immersion

‘ .z'_(:vl, 5, Lm) o M—»E

is said to be of order = p (respectively, of order p) if each coordin-
ate function of & = (&1, -+, w) is of order = p (respectively, of -
order p).

We prove the following

TuporeM 1. If @:M—E" is an imbedding of order=p

(p=1) from a compact n- dimensional manifold M into E’” then
the total mean curvature of M satisfies -

(2:2) [ arav= (Lﬁ) o(M), for m>1,
where v(M) is the volume of M. The equality holds if and only 'z'f
x is an imbedding of ovder p. ‘

Proof. Suppose that 2 : M~ E™ is an imbedding of order = p;
p=1. Then each coordinate function z; is of order = p; p=1.

Since (x;): is the component of %; in V; if we denote by < > the
inner product on the pre-Hilbert space C*(M) and 5

= <en @0/ Io)d> = [, <x.>,dv/(f 12 ldV) ’
then a similar argument as g1ven in [1, p 186] ylelds _

0=lldz: — >, a:, d(z:).l?

tzp

= ndxtuz 2 Z alt <d$;, d(\”z f> + Z azt”d(xz) ”2

tzp B tz2p

(23) - _ (ld: ”2 2> a,f(x,, A(x, t> + > a, <($z)h A(-’If:) >

Jtzp o izp
=zl = 3 avdi,
tzp
where || || denotes the norm 1nduced from from {,>. From (2 3)

we find
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dz: | = Z ial, = 2 (Z a?,) = L,ll:ll%,
N T : izh R
i.\e.;’ - ,
: T 12 : 2
24 [ 1az2av =1, [ s1av, )
where |dz;| is the length of the 1-form dx; on M. It is clear that
the equality of (2.4) holds if and only if #; is a function of order
#. On the other hand, since
ldz|?= 3% |dw;|* = n = dim M,
(2.4) implies | |
@5 , nv(M)zz,,f !xide
Where |.’L’| is the length of & with respect to the euclidean metrlc
of E™. Let o be the second fundamental form of M in E™. Then
the mean curvature vector H is given by H = 1/n# trace o and the

. mean curvature ¢ = |H | From (2.5) and the well-known Schwarz
1nequal1ty, we have ' ’

nv(M)(wazdv)gxﬁ(f médV)( 4ac2“dV) |
23,(/ oalxldV> 2zp(f (H- x)dV)

Where H-x is the scalar product of H and x in E™,
From Proposltlon. 2.2 of [7] we have

(26)

27 o(M) + f (H+x) dV =0,
Therefore, (2. 6) and (2.7) give

(2.8) f o AV = A2 o(M).
Now by using the Holder inequality we find
3 s 7 2 : 27 vel \# .
29  Hoamns [ aav=(f arav) ([ av)",
 where | . | |

(72.10)” l+l=1,— 7, s>1.
r s
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Thus we have
- 2 \1/r (x? ‘ Uy
(2.11) (fMoc dV) > —n—)v(M) .

If =2, (28) 'gives (2.2). If n is greater than 2, we set
(212) | =7,

then from (2.11) we get

(f, o dv)""zg (—ni) o(M)*?,

from which we get (2.2).

If the equality sign of (2.2) holds, the 1nequa11t1es in the -proof
above become equaht1es. Thus every coordinate function x; is of
order p. Consequently, the imbedding is of order 5.

Conversely, if the imbedding x is of order , then we have
(2.13) ' AZ-= 1,.

A theorem of Takahash1 [14] ‘then implies that M is 1mmersed
in a hypersphere S~ () of radius r centered at the origin as a
mlmmal submanifold.

On the other hand since Azx = 2nH and M 1s m1n1rnal in
S*r), x =7"H. Hence (2.13)- implies

2

. i

—~ and 1, = an
7

From these we see that the equality of (2.12) holds. This completes
the proof of the theorem. ,

Our proof of Theorem 1 is a modlﬁcatlon and generalization of -
the well known proof of the isoperimetric inequality due to A.
Hurwitz given in 1902. (See, also [131).

If x: M— E™ is any imbedding of M into E™, then by a sultable |
translation of E™ we may choose the center of gravity as the origin
of E™ Under this coordinate system, x is an imbedding of order
> 1. Since inequality (2.2) is independent of the choice of the
euclidean coordinate symem of E™, Theorem 1 implies the
following. ' L
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THEOREM 2. Let x:M-—>E™ be an imbedding of a compact
n-dimensional manifold M into E™. Then the total mean curvature

of x satisfies |
' 2 n/2
| f oa”de(—1>' o).

The equalzty holds if and only if ihere exists a vecz‘or cin E’” such
that x — ¢ is an imbedding of order 1. S R R

These two theroms are inspired by [2 131. If 7n=2, Theorem
2 is due to Bleecker-Weiner [2] and Reilley [13].

THEOREM 3. Let M be a compact Riemannian manifold of dimen-
sion n. If every isometric imbedding of M in an euclidean space E™
has total mean curvature = B and if the pth eigenvalue of A on M
satisfies 25 < (n)* 2B/v(M), then M admits no isometric imbedding of
order t = p in E™. ‘ e :

This theorem {follows immediately from Theorem 1. For the
later purpose, we mention the following result of Takahashi [14].

, LEMMA 4. Let  : M— 8™(r) be dn_isometrz'c minimal imbeddz'ng
from an n-dimensional compact Riemannian -manifold M into an
m-sphere of radius v. Then v =/ nfi, for some eigenvalue 2 of
the Laplace-Beltrami operator A on M. o

This lemma shows that, for any compact Riemannian manifold
M, the radii of spheres in which M can be ‘isometrically minimally
1mbedded are determlned by its spectrum; Spec(M) = {2, 1, s, - }.
Because not every Z‘,, can be realized by such an imbedding, it seems
to be interesting to determlne, for a glven D, Whether M admlts an
isometric 1mbedd1ng of order p. From Lemma 4 we have the
following partlal answer to this problem

- PROPOSITION 5. - Let M be an n-dimensional compact Riemannian
manifold, If /12,/%" is less than the maximal sectional curvatzire of M,
then M admits no-isomelric zmbeddmg of order t in any ‘euclidean
' space for t =p. ,

 Proof. It M admits an isometric imbedding of order # in E™,
then Az = 2;x, where  is the imbedding. Thus M is imbedded
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in aﬁ;n (m — 1)-sphere of radius » = ¢/ #/1; as a minimal submanifold.
Therefore, by the equation of Gauss, the sectional curvature of M
is less than or equal to 1:/7.

COROLLARY 6. Let M be the product manifold Sl(a) X S’Z"—l(b)
with a>b. Then M admits no isometric zmbeddmg of  order: P for
any p <+ 2n afb. '

Proof. Since M is the product manifold Si(a) x S$-1(d), the

maximal sectional curvature of M is 1/b* and the spectrum of M is
given by ' o ' '

(B, ntl—2)

(2.14) £ - ik 1=0,1,2000 0

Since @ > b, the first few eigenvalues 2, for % <1/ % a/b are élven
by : : . .

Thus we find :
2 1
L I I
29 » - b

Consequently, Corollary 6 follows from Proposition 5.

3. Applications. In this section we shall give some apphcatlons
of results obtained in §2. g '

- THEOREM 7. Let M be the product surface Sl(a)" x S1(b) with
ea=b. Then V
G) M ddmit._s no isometric imbedding of order p <a/b in any
euclidean space and '
(ii). every isometric imbedding of. arder'g a/b salisfies

(3.1) ; [ @av=2:af.

The equality of (3.1) holds if and only if a/b is an mteger and
the isometric imbedding is of order a/b. ’

Proof Part (i) follows immediately from Corollary 6 by setting

=1
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If z:M—E™ is an 1sometr1c imbedding of - orderz a/b, then
Theorem 1 implies ' ' o

e
(32) St =-4,

where ¢ is the smallest integer greater than or equal to ¢/b and A
is the area of M It is clear from (2 14) that \

/x,g% and A = 4z° ab.

Thus Part (ii) follows from Theorem 1 and (3.2).
* For the 2n-torus T%* = 8*(1) X --- x §(1) (27 times), we have_:-
the following best possible fesult. :

THEOREM 8. Let M be the 2n-torus T®. Then every isomelric
imbedding x : M— E™ satisfies

(3.3) | | f @ dV = ( 2 )

/]

The equality holds if and only if M is imbedded in a hypersphere of
radius r = v/ 2n by an imbedding of order 1.

This theorem follows from Theorem 2, Lemma 4 and the fact
21 = 1

The standard imbedding of T'%# in E“" is an isometric imbedding
of order 1. ‘ '

Let @, b be two positive numbers. Con31der the group r
generated by the followmg two mappings of E2:

(z, ¥) — (x, ¥y + b),
oy s B
(z, ¥) <w+2,‘y).

Then the quotient surface E*/I' with the induced metric givés rise
to a flat compact non-orientable surface K(a, ). Such a surface
is called a Klein bottle. '

| THEOREM’9 Let M be any compact flat surface in E™. If the

total mean curvature satzsﬁes

(34> ’ f o dV < 272,
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then M is homeomorphic to a torus T?.

Proof. Since M is a compact flat surface. M is‘ either homeo-
morphic to a torus T'? or it is isometric to a Klein bottle K(a, b)
for some @, b [1, p. 6]. If M is isometric to a Klein bottle K (a b)
Proposition B. II. 1 of [1] gives

- 1 1 _ ab "
21—47r( +bz)’ A=
Thus from Theorem 2, we obtam

35 f a? dV = 2.

Combining this with (3. 4) we ﬁnd that the equality of (3. 5) holds.
Consequently, M is imbedded 1n E™ by an imbedding of order 1.
Thus M is pseudo- umbilical in E™, Since M is flat, Theorem 2 of
[11] implies that M is imbedded in E“‘ as a Clifford torus. This
contradicts our assumptlon

Let RP?* be the 2n- d1mensmnal real projective space of constant
. sectional curvature one. Then the spectrum of RP* is given by

(3.6) =2kr2n+2k—1), Ek=0.
The multiplicity S of 4 is '

(9 + 2% —2)---(2n + 1)2n B
(3.7 | =T (2n + 4 — 1),

For each %, let {fi,---, f;,} be an orthonormal basis for V;. We
define a map v by

v =1 fo)s 7=y alEn 1),

Theri ¥, defines an equivariant isometric imbedding of RP** into
Est. +, is called the k-th standard imbedding of RP™. For each
'k, all Eth standard imbeddings are equivalent under euclidean
motions. The first standard imbedding 5 is called the Veronese
imbedding.

" For the real pfojeetive ‘plane. the Veronese imbedding is given
by . ‘
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xlz»luv, xz'=‘luw, x3=ivw,
3 3 ‘ 3

_1 2 | 2 1 ‘2 2 '2'
2y = —(u® — v?), Ty = e +v—2 )
! 6( )7 ? 643 (u : w’)
where #® + 22 + w? = 1.

THEOREM 10. - Every isomelric imbedding of RP* into E™ satisfies

" 2n _2% + 1 n__ﬁz’l_
(3.8) fRPZ,,a dvg( " ) e

The equality holds if and only if RP™ is imbedded in a E"®® py
the Veronese imbedding. Moreover, in this case, RP** is imbedded in
a hypersphere of radius v n/(2n + 1).

~ Proof. Since v(RP™)=¢;,/2, (36) and Theorem 2 imply
(3.8). If the equality of (3.8) holds, # is an imbedding of order 1.
Thus Lemma 4 says that RP* is imbedded in a hypersphere of
radius v/ #/(2n + 1) as a minimal submanifold. On the other hand,
the minimal imbedding of RP" in spheres is the composition of the
standard imbedding +, with some symmetric, positive semi-deﬁnite
linear map A of R” [12]. In our case v, = v, the linear map A
is the identity map according to Theorem 14 of [12] (s =2 in the
notation of [12]). Thus x is the Veronese imbedding. The converse
of this is trivial.

Let CP** and HP* be the (real) 2z-dimensional complex projec-
tive space and (real) 4n-dimensional quaternion projecive space with
the standard metrics, respectively. Then by using the same method
as above we have the following two results.

THEOREM 11. Ewvery isometric imbedding of . CP* into E™ satisfies
) 25 d 2(% + 1)71? ”
(3.9) [ @ d V= [HztDex] Yo
’I‘HEOREM 12. Every isometric imbedding of HP* into E™ sdtz’sﬁes

B10) [ avzo[ DT [ 4 gy,

- REMARK. It seems to the author that inequalities (3.8), (3.9)
and (3.10) hold for all imbeddings (not necessary isometric) in E™
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for RP*, CP?" and HP* respectively. But the author cannot prove
this conjecture at this moment.
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