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Abstract. Let X, X, X;,--+ be i.i.d. with EX =0 and let
Sp=X; ++--+Xn. Let {b(n)} be a sequence of nonnegative numbers.
In this paper, two different methods for analyzing moments of the
maximal “excess M({6(n)}) = sups=zo (Sp —b(n)) are reviewed and
generalized. The first method relates the moments of M({b(2)}) to .
certain convergence rate problems associated with the strong law and
analogous limit theorems for the driftless random walk {S,}. As an
application of this method, a general theorem relating the finiteness -of
moments of M({b(n)}) to moment restrictions on Xt is obtained,
‘generalizing earlier results of Kiefer and Wolfowitz, Chow iand Lai,
"Cohn, and Scott, It is also shown that under minimal moment conditions
on X+, EM?({e(nlogn)?}) << or = oo according as &> or
< (pEX?)H?, The second method works only for linear boundaries
b(n) =¢en (¢>0) and is based on the Wiener-Hopf equation for the
negative-drift random walk {S, — &z}, This method yields some sharp .
asymptotic estimates for the integral moments of M({en}), and some

" applications 'of these asymptotic estimates to fluctuation theory are
- given, : : :

-+ 1. Introduction aipd ‘sﬁmmary.  Let X, X1,jX§,""'; be - i.‘}’i../d:.
random variables with EX =0 and let S,=X; +---+ X, (So=.0).
This assumption and notation will be adopted throughout the rest

of thé paper unless stated otherwise.” Let {6(#)},_0,1,... be a
sequence of nonnegative numbers such that 5(0) = 0. Define

an M({b(m)}) = sup (S, — b(m)),
(12 - M{b(m)}) = sup (IS.] — b(m) .
%ﬁ\ 'I_‘he‘ Marcinkiewicz—Zygmund strong ‘law_ of 'large;nurﬁbers ‘cén
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be stated in terms of M({{b(n)}) as follows: For a>%, if
E | X['® < oo, then ’

- (13) PiM{{en¢}) <oo}=1 for all «¢>0.

Let logix=1logx and log:x = log (loge-1x) for k=2. The
classical law of the iterated logarithm can be stated in terms of
M({b(n)}) as follows: If EX2®=o2>(, then
PIM({c(2nlog:#)"?}) <c0l=1 if ¢>o0,
(14)
=0 if e<o.
To obtain a stronger conclusion than almost sure finiteness of
the random wvariable M({6(#)}) as in (1.2) or (1.3), it is natural
to ask what conditions would guarantee the finiteness of its moments.

For the special case b(n) = en, Kiefer and Wolfow1tz [7] showed
~ that for p>0.

(15) - E(X+’)ﬁ+1<w 00 & EM({en}) <o for all o> 0.

Later Cohn [5] consniered b(n) = en” W1th aa> and showed
that for >0 o

(1.6) E|Xiﬁ+<1'd><oo<=)EMp({mw}><oo for all ¢>0.

This result was also proved independently around the same time by
Chow and Lai [2] using other methods.. Recently Scott [13], by
sharpening the methods of Cohn, succeeded in extending (1.6) to
b(n) = (nl(n))“ where «>3 and ()= (Iogk (¢ + €¥))" with
k=1 or 2 and r>0 "He showed that for p>0 1f E|X|V¢ < oo,
then

AN BUXP0/0( X)) < = BRI 1)) <o

As pointed out by Scott [13], most” of these investigations were

'~ motivated by applications to optimal stoppmg problems (cf. Section

4.8 of [4]) and queuing theory.

In $4 below, we shall give a much more definitive generalization
of (1. 6) While the approach of Cohn and Scott does not seem to
be able to handle boundaries other than n“l(n), the method which
we developed in [2] to analyze M ({en®}) can be modified to handle
much more general _b’oundaries.' In §4, we shall use this approach
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to show that an intrinsic form of results of the type (1.5), (1.6)
and (1.7) is the following. '

TuaeOREM 1. Let X, Xi, X;,--+ be i.i.d. mndom variables suck
that EX =0 and E|X|'<oco for some 1<q<2 and let
S,=Xi+--+ X, Let b(¥) be a positive function on [1, o)
satisfying the following conditions: I
b(t) is nondecreasing and limi..t~°b(t) = & for bso:m‘e

(1.82) s>1/q,

1im SUD 1w B(1E)/B(2) < o and lim infr.ob(1t)/6(t) >1 for
(1.8b)
all large 2.
“Let p>0. For =0 define o
(19)  B@) =iflt: b 22}, By@) = [Tyris@)dy.

Set b(0) =S, =0. Then

(1.10) EB,(X*) < o0 & EM({b(n)}) < o
We note that if 5(f) ~ {t(log:t)"}¢, where a> %, 7 is ény
real number and k=1, 2,---, then A(x) ~ Cx'*(logs )" and

Bﬁ(x)~C'xﬁ+<1’“7(logkx)'7, where C and C’ are positive con-
stants. Hence Theorem 1 includes (1.5), (1.6) and (1.7) as special
cases and it can even handle the one-sided result involving
M({b(x)}) which implies the corresponding two-sided version for
U ONN | S

" The condition (1.8a) excludes boundaries of the type w2y (nm),
where v (#) is slowly varying, e. g, v () = (log:n)'* or
w(n) = log #. In connection with the law of the iterated logarithm
(14) it is particularly interesting to consider the moments of
M({c(2nlog: #)"'?}). Parts (i) and (ii) of the following theorem
imply, however, that all positive moments of M({c(2#nlog, n)t?})
are infinite. In fact, for p>0, even EM?*({c(nlogn)'?}) = co if
e < (p EX®)'?. Part (iii) of the following theorem says that the
equivalence (1.10), however, still holds for the “marginal” class of
boundaries b(zn) = ¢(nlog #n)''? with > (p EX?)'%

THEOREM 2. Let X, X1, Xz, be i.i.d. and let S,=X1+---+X,
(So=0). Let p=>0. o
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(i) If X is symmelric, then
(111) EM?*({e(nlog n)''*}) = o for all 0<e < (p EXZ)I'2

(Noz‘e that EX"’ may be mﬁmte in (1.1D).)
(i) I geneml (without assuming X to be symmetrzc) the

}elatwn (1. 11) still holds if 7 , |
(L12)  EX=0 and E(IXI#**/(1+log* 1X])} < oco.
| (iii)‘ If (1.12) holds, then for every > (p EX*)'",
(118) . EiM*({e(nlogn)"?}) < .

Conversely, if (1.13) holds for some >0, then (1. 12) ‘holds.
(iv) Suppose EX =0 and EX* << oo, If "

(1.14) 5 fcm X?+2(Jog X)'dP < oo,

then for every &> (p EX®)12,
(115) | EM#({c(nlog m)*}) <.
Cohversely,‘ z’f k(1.15) holds Jor some ¢ >0, then (1.14) holds.

In connection with the Kiefer-Wolfowitz theorem (1.5), ngman =

[8] obtamed the. followmg useful inequality:

(1.16) - EM((en)) < S e EX?.

ThlS inequality turns out to be asymptotically sharp When el o,
as Robbins, Siegmund and Wendel [12] 1later showed that if
0<EX’=0¢"< oo, then as ¢ | 0,

(1.17) . ‘ EM ({en}) ~—;—az el

- The approach which we developed in [2] and which we shall review
briefly in §4 enabled us to generalize Kingman’s inequality - to
boundaries of the type (%) = ¢z and also .to higher moments.
It was shown in [2] that given «> % and p >0, there exists a
universal constant A; . depending only on p and « such that

EM?({en*}) < A, 4 e?{E(X+]e)p+We)

(1.18) b (B /eyt yperaus)
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The above ineguality (1.18) 'in turn enabled us to generalize in
[2] the Robbins-Siegmund-Wendel theorem (1.17) as follows: TFor
>3 and p>0, if ©®>EX*=0>0 and E(X*)?*¥® < oo,
then - o

lim e#'GeD EMo({en®})
S =G E(sup (W(#) —19))*,

where W(t), >0, is the standard W1ener process.- ;

‘The asymptotic result (1.17) often turns out to be -an - adecuate
numerical approximation for EM({en}) when ¢ is small (cf. [8,
page 3241). As will be shown in §2, (1.17) can in fact be sharpened

as
(1.20) | EM({en}) — % o et = O(1)

under the minimal assumption " that 0 << EX?=oc*<oo. More
generally, we shall show in §2 that if p is a posmve integer and
ElXI?+1<oo then as ¢ | 0, )

(121 CEMA({en}) — 2-5(p1)(o¥/e)? = O(e=4D) ,

which therefore yields a refinement of (1.19) with ¢ =1. In this
special case @ =1, M({en}) is the maximum of the raridom walk
{S, — en} with negative drift, and the asymptotic relations (1.20)
and (1.21) have a number of 1nterest1ng implications in- fluctuation
theory which we shall discuss in §3. )

The approach which we used to prove (1.18) and (1.19) in [2]
is based on a maximal inequality and the invariance principle for
driftless random walks. It does not, however, seem to be powerful
enough to give more refined results of the type (1 20) and (1.21).
Instead of thmkmg in terms of dr1ftless random walks Kingman’s
approach to prove (1. 16) in [8] deals d1rectly Wlth the negatwe-'

lemma which is commonly referred to as the W1ener—Hopf equatmn

(cf. [6, page 385]).
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 LeMMA 1. Let Y, Yy, Yo, be iid. and U,=Y, +---+ Y,
U, = O) Suppose liMmyow U, = —0c0, Let M = max,=, U,. Then

(1. 22) ' = (M +7Y)+,

where “Z” denotes equality in_ distribution.

In §2 we shall make use of Lemma 1 and a refinement of
Kingman’s argument to obtain a recursion formula for EM? in
terms of EM*',---) EM and the moments of Y. This recursion
formula not only gives an easy alternative proof of the asymptotic
- relation (1.19) when » is an integer and « =1, but 1t also proves
the sharper results (1 20) and (1.21). - '

For notational convemence, we shall sometimes use Vinogradov’s
symbol < instead of Landau’s O in the following sections.

2. Application of the Wiener-Hopf equation to integral moments

of the maximum of a random walk with negative drift.

THEOREM 3. Let Y, Yi,-- be i.i.d. with EY = —e<0. Lot
U.,=21Y; (U=0) and let M= max,,>oU Let  be a posztwe'
integer. If E|Y ]"+1<oo then

@1 EM=(2){EY* — E((M +Y)")),
and in generaZ, | o N
CEM* = {(k + 1) e} {(k i 1)<EMk 1><EY2>V
e +(*F 1)<EMk—2><EY3> £
a | HEYHL4 (—1FE(M + Y)*’)k“},

’ﬁ ’ uP'roof F1rst assume in addition that E (Y“)’“‘2 < . Then
EM k41 < o by the Kiefer-Wolfowitz theorem (1 5). - Therefore
using the Wlener Hopf eguation (1.22), '

(23> | EM* = E((M + Y)*)+*,

Since zFtl= (x*')k“ + (== )E+, it then follows that
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E((M + ‘Y)+)k+1
=FE(M + Y)k! + ( DFE(M +Y) )’a+1

. E+ 2 ]
(24 = EM = (k+ 1) o(EMP) + ( 9 )(EY Y(EM*-1)

+ (k + 1)<EY3><EMk 2y -
L EYRL 4 (—DFE(M + Y)Yk,

From (2. 3) and (24) (2.2) is established if E(Y+)"+2< o is also
assumed. - J

We now drop the condition E (Y+)F? < oo and use a truncation
argument. We note ‘that all the terms in (2.2) are finite under the
assumption E |Y|#! <ol (In particular, E((M + Y)- )kt
< E(Y-)H 00,) ~For ¢>0, define Y;i(e) =Y; Ly,<en,
U,(c) = Yi(e) +++-+ Yau(c) and M. = max,= U, »(¢). By choosing ¢
laige enough, EY((;) = —e(c) < 0. Since (Yi(e))* is bounded, (2.2)
holds for M., i.e.,

EM: = {(k + 1)6(6)} 1{( 1)(EM’:‘1)(EY§(0)) PR
(25) :
+EY"”(6) + (—D*E((M. + Yi(e))- )kﬂ}

Letting ¢-> oo in (25) then gives the desired conclusmn. |

It is obvious that (2.3) and (2.4) also hold for k2= 0, and so it
~ follows that

(2.6) . ' E(M +Y) =—EY.
Hence for k= 1 2, :
@en ’ E((M +Y)- )k> |EY |®.

ngmans 1nequal1ty (1. 16) follows from (2 1) and (2.7) (with

=2). The bound (2.7), however, is too crude to yield asymptotic -
results of the type (1.20) and (1.21). A more careful analysis in [31
yields ‘sharp bounds for E((M + Y)-)* which are of the right
order of magnitude for proving (1.20) and (1.21). In particular,
these bounds lead to the following lemma. '

Levva 2. Lot X X Xo--- be ii.d. with EX=0 and lot
S,=X1+--+X, (So=0). For ¢>0, define
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(2.8) M, = M({en})—max(S—en) Y. = X—e

Let p>0 If E(X )1’“<oo and P[X%O]>0 then
(2.9) E((M.+ Y.)- )f’<<e as‘ elO.

The proof of Lemma 2 is given in [3], where it is also shown
that E((M. + Y.)7)?> ¢ (under the assumption 0 < E(X-)% < o),
which is con31derab1y sharper than the result given by (2.7 ). Making
use of Theorem 3 and Lemma 2, we obtain (1. 20) and more generally
(1. 21) as an immediate corollary. :

COROLLARYkl.v With the same notations as in Lemma 2, let k be
a positive integer. If E|X|*' < oo, ther as ¢ | 0,

(210) EM: = {2- k(k')+0(e)}(EX2/e)”

Proof. Puttmg (2. 9) in Theorem 3 and. notmg that EY%
= EXJ + 0(s) for i=1---, k+1, (210 follows by . induction in
the case P[X 7’:0]>0 The case X = 0 a.s., however, is trivial. |

3 Relatlon between the max1mum and the ascendmg ladder
varxable of a negatlve-drlft random Walk and some applications of
Theorem 3. Let Y, Yy, Y3,--+ be iid. with EY = —e<0 and
let U,=Y,+--+ Y, (Uo—_—~0). Define o

31 M= max u,, 4 = inf {n'z 1:U,>0}(inf @ = ).

As is well known in fluctuation theory, the maximum M is closely
related to the ascending ladder variable U, + The :fo:llowing'theorem_ ~
gives a recursive relation for the kth moment of U., Jr.,<x1 in terms
of moments of lower order and EM* The recursive reIatlon for
EM*® given in Theorem 3 therefore in turn prov1des a recursive
estimate for EU* o die w1 -

THEOREM 4. Let Y, Y, Y- be i.i.d. . mth EY———e<0
and let U, =Y, +:--+Y, (Uy=0). - Define M and T+ as in (3.1).
Then for » >0,

(82)  EUY Lieycy <0 S EM’ < 0 S E(Y*) ™ < 0.

 Let k be a positive integer and assume that E(Y*)F+'< co, Then -
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(3.3) © EU. I;T+<m:, = P[M = O](EM)

U, L oy = PIM — 0{EM® — 2(EU. oo/ PLM = 01
= P[M = 0{EM* — 2(EM)*}

(3.4)

(md in geneml

EUk I]:r+<oo]/P[M O]

(35) (U, Lo o) (BU T o)

R -1 B
= EM*% — : :
Z Byl k21 P'[M = 0] ’

where Z}c4 denotes summation over the set C of all ord'ered‘ partitions
(B, k) of k (i.e, =k +---+Fk) wih v=2 and k; >1
(i=1,---, v). ' ‘ :

ReMARK. For the special ‘case_ r =1, the equivalence (3.2) was
established by Taylor [15, page 742]. As an immediate consequence
of (32), we obtain the following generalization of a theorem of
Taylor [15]- concerning stopping times of negative-drift random
walks: If EY <0, then for » >0,

(3.6) EY )+t < oo == E(U7) Iecon < ©

for every random variable ¢ having a possibly defective distribution
on the positive integers.

. Proof of Theorem 4. Since EY <0, Plr,=o]=P[M=0]>0.
Define the sticcesive ladder indices 71 =7, and for =2 ‘

T;=inf {n>Ti1: U, — Ur,_ > 0} on [T;-1<oo],

1

3.7 - .

T =0 on [Tiﬂ = co].

Obviously - , _

(3.8) M= Ur, Irycon + (UTZ—UT,)Ith<oo]+"‘ .

" From (3.8) and (1.5), (3.2) follows easily.

Let To=0 and ¢;=T;— T;-1 for i>1. It follows from (38)
that
EM EUrI Il:f1<0°:| + E(U11+12 Url) 1;:11<oo 5007 +---
(39) . . {EU,II[,,@J} 1+ P[11<OO] + Plri<<co, rz<<oo]+---}
{E IEt+<ooj}/P[T+ = CD]
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since Plr; < 00,---, r; < 0] = Pi[ry < oo]. Hence (3.3) holds.
We now use a similar argument to prove (3.5). Raising both
sides of (3.8) to the kth power and expanding, we obtain that

EMk {EUk I[r <w]}{1+P[T+<CD]+P2[T+<m]+ }

(3.10) g kl AEU . Lo con} - {EUY, Lo o)}
x 3 <P[r+<oo]>fu—~v. |
1<§ i,

Letting p = Plr. < o], we note that for every fixed v >2,

P =0 =)t 3 phaeD

©(311) 15, <<, 195, &%,
= (1 —_ p)-—u .
From (3.10) and (3.11), (35) holds. |

A useful estimate of the quantity P[M = 0] which appears in
the formulas (3.3)-(3.5) of Theorem 4 is provided by the following
basic result in fluctuation theory (cf. [6, page 379]):

(3.12) ; PIM=0]=Plry = 0] = l/Ez'_ R
where 7. =inf {#>1:U, <0}. By Wald’s lemma,
(3.13) ¢eBr.=—EU, 2EY-,

and therefore in view of (3.12), we obtain the following upper
bound:

(3.14) . PIM=01<¢/EY-.

Making use of (3.3), (8.14) and Kingman’s inequality (1.16), we
have the following simple proof of a well-known result of Spitzer
[14] concerning the ladder variable of a driftless random walk.

COROLLARY 2. Let X, X3, X;,-+- be i.i.d. with EX =0 and let
S,=Xi+---+ X, Define T=inf{n>1:85,>0}. Then

(3.15) 0<EX®< 00 =3 ESp < co.
Proof. TFor ¢>0, let Y;=Y(e)=Xi—e, U,= U,(e)

=Y, +---+ Y, and define M and r+ as in (3 1). Assume that
0<EX?*< . Clearly as ¢ | 0,
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 (316) U., Lcn—Sr  as.

There»fvore in vieﬁf of Fatou’s lemma,’ it suffices to show that

(317) EU. Lepcn =0(1) as ¢ 10,

Since P[M =0]<K¢ by (314) and EM L et by Kingman’s in-
equality (1.16), (3.17) follows immediately from (3.3). |

“The result (3.15) was first proved by Spitier.[lzl] using much
deeper fluctuation thoeretic tools and 2 strictly analytic argument
mvolvmg certain generatmg functions associated with the driftless
random walk {S, } The above proof, which is based on consuienng
the negative-drift random walk {S, — e} mstead, is much more
. .elementary and probabilistic in nature. Spitzer’s analytic arguments
have been generalized by Lai [10] who showed that more ger;g:rally
for k=1, 2,---,

(3.18) 0<E|X|"<oo=ESh <,

By making use of (1.20) and (1.21) instead of Kingman’s inequality
(1.16), we are able to modify the argument used in Corollary 2 to
give a simple proof of (3.18) for the case & =2.

COROLLARY 3. With the same nolations as in quollary 2,

- (319) . 0<E|XIP<oo=ES? <™.

Proof. As in proof of Corollary 2, it suffices to show that
(3.20) EU%, Iic <o) = o(1) as ¢ 0

under the assumption 0 <E|X|[*<co. By (34), the left-hand side
of (3.20) is equal to P[M=01{EM®—2(EM)*}. Let o = EX®,
By (1.20), EM = +¢%*/e + O(1), and by (1.21), EM? ~ %(6%/¢).
Since. P[M = 0] < ¢, (3.20) follows immediately. 1

To be able to extend the above argument to prove (3.18) for
~ higher values of %2, we would need more detailed asymptotic ex-
pansions for EM({en}) (i =1,---, k) than (2.11) and the argument
would become much more involved. In [3] we present an alter-
native approach also based on the mnegative-drift random walk
{S, — en} to prove (3.18) for all values of £ (& need not even be
an integer). '
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While Corollary 1 establishes the asymptotic expansion (1.20)
for EM. to the O(1) term when EX?2< co, a similar . application
of Theorem 3 turns out to yield also an asymptot1c expansion for
Var M, to the O(1) term when E|X|®< . Both these asymptotlc
approximations are of interest in queuing theory, since the mean
and the variance of M, are important entities in the analysis of
queues. - Moreover, by making use of the. well-known series repre-
sentations of EM, and.VarM, in terms of E(S, — en)* and
E{(S,—en)*}*. (cf. [8]), we have the following interesting corollary
on the asymptotic behavior of the series X n*lE(S — ez)* .and
2P n L E{(S, — en)*)3.

- COROLLARY 4, Wzth the same notatzons as m Corollary 1 zf
EX =0 and EX*= o < o, then as' ¢ | 0, ' '

(3.21) Zle(S —en)t (= EM)V— 5 o —1+0(1>.
If furthermore E|X|® << co, then aS‘g 1o,
> at E((S, — en)*} (= Var M)

(3.22)
=loer Laxy et ow.

Proof. We need only show (3. 22) "Let Y.=X—¢ By (21)
and (2.2) (with %= 2), S -

Var M. = (4*)~' (EY%)? + (3e)~1 (EY2)
+ (BT E((M. + Y)7) — (4e)"H{E(M. + Y.)-)22,

Hence' applying (2.9), we obtain (3.22). i ‘

4. Relation of the max1mal excess to convergence rates for
driftless random walks and the proof of Theorems 1 and 2. In the
preceding “Wiener-Hopf equation” approach to analyze M({en}),
the linearity of the boundary (which can then be transformed into
the negative drift of a random walk) is crucial to the argument,
and the method obviously fails to analyze M({b(n)}) for nonlinear
boundaries #(%). To handle general boundaries b(n), we shall make .
-use of a maximal inequality for driftless’ random walks and the
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following simple lemma which generalizes a similar result in [2]
for the case b(n) = en”. ’

LEMMA 3. Let Soe =0, Sy, Sz,"‘ be any sequence of random
variables (not necessarily sample sumsk). Let b(t) be a positive non-
decreasing function on [1, ) such that limi.b(t) = . For £>0,
define B(z) = inf {t :b6() = z}. Set 5(0) =0 and define M({b(n)})

as in (11) Let c>1 Then for t>0

P[S > cb(n) for some n> ﬂ(t/(c — 1))]

(4.1)
' < PLM({b(m)}) > 1] < ZP[ max §,>¢/~'t].

nSﬂ(c £)
Consequently, for p >0,
(42)  EMA(b(mD < | pci’/(ci’—l)} f ut~ 1P[ max S, > u]du.

n=< p(cu)

Moreover, letting L= L({cb(n)}) =sup{n=1: :S‘,,}c_‘b(n)}(sup @ =0),

(43)  EMA({b(m)}) = p(c— 1)? f” u=* PLL> g(u)]du.
‘Proof. Since b(#) < cit=n< ﬂ(cJ t), -it follows that

P[M({b(n)})>f]<ZP[ max (s ——b(n))>t]

P msb(n)scc —nt
P max S>> c"lt]
i=1 nSﬂ(c t)
To complete the proof of (41), we note that

P[S, > cb(n) for some n> g(t/(c —1))] ;
< PIS,—b(n)> (¢ —1)b(#) for some #
with 8(n) >¢t/(c — 1)]
< P[M({b(n)}) >1].

From (4. 1), (4 2) and (4. 3) follow easﬂy |>

' Throughout the rest of this section, we shall specialize Lemma
3 to the case of a driftless random walk §,=X; +eee+ X,
X, X1, X,,:++ being iid. with EX =0. Our generalization (1.18)
of Kingman’s inequality was obtained in [2] by using Lemma 3
with 8(%) = en* and the following maximal inequality: For x> O,
1<9g<£2 and n, k=1,2,---, '
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(44) P [max S; > a:] <nP[X>z/(2k)]+ {(4k/x)’q_nE [ X |9}*

i<n

(cf. [2, page 55] and [11, page 681). We shall now use Lemma 3
and (4. 4) to prove Theorem 1. ‘ ‘

Proof of Theorem 1. In view of (4.2) and -(4.3), to prove -the
equivalence (1.10), it suffices to show the followmg implications:

EBp(X+)<OO-‘—=>fomui’-1P|: n;.ax)S >u du<oo
: _ J=pleu) -

(45)
for all c > 0,

(4.6) | .[)m u?=* P[L({cb(2)}) > p(u)]du <
' for some c>1%EB?(X+)<OO;

We ﬁret ‘note that in view of (1.8b),

EB,(X*) <& [ ur-i plew) PLX > uldu< oo
“n - . 0 , ‘
for all (or equivalently for some) ¢>0.

From (1.8a), it follows that B(cu) < u''®, Since g > 1/5, by setting
n = [g(cu)] and choosing % large enough in (4 4), it is easy to see
that the implication (4.5) holds.

“To prove the implication (4.6), we ‘note that 7 ?%S,—>0 as.
since E|X|?<< o and 1/3<q<2 and so in view of (1.8a),
S,/b(n) —>0 a.s. Therefore by an argument similar to that used
in Lemma 3 of [2], letting

L*({2b(m)}) = sup (#>1: X, > 2cb(2)}(sup @ = 0),
we obi;ain that for all large s,

(48) PLL({cb(m)}) > m] > %P[L*( (26h(m)}) > m].

By Lemma 4 below,

PLL*({2cb(n)}) > m]

(4.9) > m PLX > 26(2m)1/{1 + mP[X > 2cb(2m)] 2

In view of (1 8a), we have for all large m

(4.10) m PLX > %b(2m)] < m PLX > m'1—0 as m— oo,
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since E[X|?<<co. By (1.8b), 82[8(x#)]) < ru for some 7 >0 and
all large #. Therefore from (4.8), (49) and (4.10), it follows that
fo°° ur=1 PLL({chb(n)}) > B(u)] du < oo
= fm =1 g(u) P[X > 2crul du < .
(1}
Hence in view of *(4.7), the desired implication (4.6) holds. I .

LEMMA 4. Let X, X3, X, -+ be i.i.d. mndo.n’i variables. Then
for e>0 and m=1,2, -, )

(4.11) P[maij >c]>mPLX > eI/1 + mPLX > el .

jsm .
- Moreover, if {b(n)} is a nondecreasing sequence of real numbers
and L*({b(n)}) =sup (n = 1: X, > b(m)}, then for m=1, 2,---,

PLL*({b(m)}) > m] L
>mP[X>b2m)]/{1+ mP[X>b02m)]}.

(4.12)

Proof. The inequality (4.11) follows easily from
P [max X; > e]

jsm
= P[X; >k6] + P[Xg >:1P[X: <€) 4
+ P[X,> ] P [X <¢]
=mP[X > ] P[maxX,- < e].

j=m
To prdve (4.12), we apply (4.11) and note that

~ P[L*({6(n)}) > m] = P[X, > b(n) for some m <z < 2m]
k = P[m<a,§ X > b(2m)] |

REMARK. The preceding proof of Theorem 1 also gives the
. following convergence rate result: - With the same notations and
assumptions as in Theorem 1,
. EB(X*)< oo (=)/0@uf’"1P[ max S; > uldu < o

i=p(eu)

(4.13)
~ for all (or equivalently for some) ¢>0.

In the literature on the strong law and related limit theorems,
most convergence rate results are, however, concerned with the

convergence or divergence of the integral
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(4 14) - f 10 1P[max8j>b(t)]dt

nstead Let us assume that b(t) is str1ct1y 1ncreasmg and dlfferent1-
‘able. Then applying a change of - var1abIe cw = b(t) to the integral
in (4.13), we obtain that . :

. fnuﬁ»‘,lP max S; > u|du
Jo o Lispeen

(415) |
S = fm (b(-t).)p—lb’(t)P[maxs->b(z>/c]dt..~

Viewing the integral above in comparison with the 1ntegral in (4 14)
it is interesting also to compare (4.13) with the correspondmg result
for the integral in (4.14). In [11], it was proved, again by a. simple
apphcatlon of the maxlmal inequality (4.4), that with the same
notat1ons and assumptions as in Theorem 1

(4.16)  E(B(X+))t+i< oo {:} j; tﬁf1.P[r§_1<alt§§ S; > b(t)] dt << oo, ‘

Proof of Theorem 2. We shall make use of Lemma 3 together
with the ideas and results developed in [1], [9] and [11]: Setting
b(t) = e(tlogt)V? in Lemma 3, we obtain from (4.3) that
EMr({s(nlog m)'*}) = e?(c — 1)» E(Llog L)

(4.17) for ¢>1,

where L =sup {#n: S > ce(nlog n)%}(sup @ = 0). _

To prove (i), let 0<<e<<(p EX®Y% Choose ¢>1 such that
ce < (pEX?®)V2 . Since X ‘is symmetric, it then follows . from
" Theorem 4(i) of [11] that EL?”? = oo, Hence in view of (4.17),

EM?({e(nlog n)''?}) = co.

We next proceed to prove (iv). Suppose EX =0 and EX®
=gtz oo, Assume that the one-sided moment condition (1.14)
holds. In view of (4.2) and (4.15), to prove that (1.15) holds for -
all e»>‘1f)1"2‘ % it suﬂ‘ices to show that

j; ASZihy 1(Iogt)if”zP[maXS >e(t10gt)1’2]dt<oo

for all ¢> p'*a.

(4.18)

Since the maximal inequality (4.4) clearly fails to yield the desired
convergence rate result (4.18) for this “marginal” class of boundaries
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e(t Iog $)t2 . we shall use another approach which involves the
-analysis of the limiting behavior of delayed sums (see Lemma 5
below), For 7, t =1, define

(4 19) ; Sni = > X5, S.:= max S, i

T iLirivt 1<j<:
(S,,; is called a delayed sum of the sequence {Xj}.) Set 6=2/(2+ p) '
and ¥ (t) ={(1—0)logt}~-“-» in Lemma 5 below and define
7w = [k”“""’/(log 1. By Lemma 5,

(420) P[Snk n,c 's#(ﬂ,a) > 6{7310 1#(”1:) IOg ”k}1,2 io. ] = 0
for all 0 > {2(1—-6)}12

Clearly ¥ (my) ~k5 a- ”/(Iog k) and (S, nl vy =k} is a set
40f independent random variables for large ko. Therefore by the
Borel-Cantelli lemma, (4.20) is equivalent to o '

f P[ max §; > 0{g(u)(log #)/(1 — 0)}**] du < oo

(4.21) J=g @
for all 6> {2(1 —0)}r2 2

where g(u) =u’'¢- ‘”/ (log #). Applying a change of variable t—-g(u)
to the integral in (4.21) and noting that log¢~ (6/(1—0))logu
and 2(1 — 8)/6 = p, it .is easy to see that (4.18) holds.

Conversely assume that (1.15) holds for some &> 0. To prove
‘the moment conditieriii(rl.lﬁl-) on X*, we can make use of Lemma 4
and essentially repeat the argument used in Theorem 1. '

We shall now prove (iii). Clearly the preceding proof establishes
~ that if (1.12) holds then (1.13) also holds for every ¢ > (p EX®)'2
Conversely, aésume the{t (1.13) holds for some ¢>0. To prove that -
(1.12) holds, we need only show that EX =0 and EX® << oo, ' since
~ we can then apply (iv) to obtam the desired moment condition for
X+ and X~ separately. "Take-¢>1 and note that as in (4. 17),-

o > EM?({e(nlog n)'?}) = e?(c — 1)? E(Llog L)??,

-where I: =sup {#n : |S,| > ce(nlogn)'?}.  Hence ELr? < oo, and
so by Theorem 3 of [11], EX =0 and EX®<<o as desired.
- To prove (ii), we make use of (iii) and a truncation argument
involving Esseen’s error estimate in the normal approximation. The
‘details are similar to [11, page 661 and are omitted. | '
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In the following lemma, the special case Y (¢) =1 has been
‘established in [2], and this special case is closely related to
convergence rate results of the type (4.16) for the “marginal”
boundaries 8(¢) = ¢(£log?)*? and also to the finiteness of moments
of L, where L is as defined in (4.17) (cf. [2] and [11]). As we
have seen in proof of Theorem 2, the special case ¥ (2) =c(log?)~¢-9,
however, is involved in the corresponding problem for M({b(n)}).
Our proof of Lemma 5 is based on a modification of the ideas used
" in the proof of Theorem 1 of [9] and Theorem 3 of [2] for the
special case v (#) =1. The details of the proof are omitted here.

LEMMA 5. Let X, Xu, Xs,-- - be i.i.d. random variables such that
EX =0 and EX2=02<_09, For », t > 1, define S,,: and S, as
in (4.19). Let v be a positive continuous function on [1, ) satisfy-
ing the following two conditions: ‘ .
(4.22a) .  is slowly varying,
(4.22b) (logt)—* < ¥ (2) < (logt)* as t— o for some p>0.

Then for every 0<<8 <1, the following statements are equivalent:

> PLX > e{n’ y(n) log n}'?] <
(4.23) : ) o
" for some (or equivalently for all) «>0;

(4.24) lim_iup {201 — ) w0 v(n)log n}-128,, v S0 a.s.;
(4.25) lim sup {20 =) v (n) log n}~128,, 0y 0 a.s.

In particular, if +(t) ~c(logt)- ¢ for some constant; ¢, then (4.23) .
is equivalent to the moment condilion

(4.26) - fcmj X*3(log X)—*dP < .
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