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BOUNDARY VALUE PROBLEMS FOR nth ORDER
ORDINARY DIFFERENTIAL EQUATIONS
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RAVI P. AGARWAL AND P.R. KRISHNAMOORTHY

Abstract. For nth order nonlinear ordinary differential equations
when the boundary . conditions are prescribed at two points, several
existence and uniqueness results are obtained. In some cases it is .
shown that the results are best possible, An iterativé method is given

_ to the maximal solution, A comparison result is also given,

1. TIntroduction. In this paper we shall consider the #nth order

nonlinear differential equation
(1) B ™ + f(ti x, x’7" ) x(ﬂ) = 0;
together with

x(ag) =0, £=0,1---, -2

(2)

J;(I?)(b) = ()
or

.7,'(?)(61) = 0,
(3)

zO(B) =0, i

0,1,---, n—2, (e<b),

where 0<7 < p<nm—1 It will always be assumed that the
function f(2, x, xz',--+, ) is continuous in (¢, z, *', -+, ), at
least in the interior of its domain.

 In-§2, we have used Schauder’s fixed point theorem to discuss
the existence of solutions for the above boundary value problems.
In §3, several versions of the contraction mapping principle are
used when the function f satisfies a Lipschitz condition over
[, 8] X R'+! and over a compact region (defined appropriately in
the results) to prove the existence and uniqueness of the solutions,
In §4, a weight function technique previously used by Collatz 9l
m the editors February 24, 1978 and in revised form December 4, 1978.

Keywords. Boundary value problems, existence, uniqueness, best possible interval,
maximal solution, comparison result, :
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is employed to find better results than those obtained in §3. For
some particular cases best possible results are obtaiued, In $5,
several weight functions are used to prove the existence and
uniqueness of the solutions For the boundary value problem (1),
(2) best possible Iength of the interval is obtained. In §6, an
- iterative procedure is given which provides the existence and
umqueness as well as an error bound which is of special type;
namely, it satisfies the same boundary conditions as the solution.

In the last section 7, a different successive approximation method

is used’ to find the maximal solution of the boundary value problem
(D), (2) for 0<7r<#n-—2" A comparison ‘theorem is also given.

The results obtamed in th1s Paper generalize the known results .

for the second and third order differential equations. Also it seems
that some results obtained here cannot be improved further.

2. Existence and uniqueness.,
LeMMA 1. The Green's function of the boundarykvulue problem
— 2™(¢) = 0, ‘ ’ :
4) ‘ - xP(a) =0, i=0,1,"--, n—2,
z®(b) = 0, 0<p<Ln—1)

and all its derivatives with respeci to t uplo order p arve non-negative.

Proof. It can easily be verified that the Green’s function of
the boundary value problem (4) is ‘

’ G:(2, 5) = Gu(t, s) — (2 — s)*?,

G) Glt, s)=—— L ___ a<s<t<bh, -
(1’3'—1)' b—s nep-1
\ Gt s) = (8 — q)*1 (b_a>_
a<t<s<b

Hence the j-th derlvatlve (7 < p) of ‘G(¢, s) with respect to t is-

(t_a>n 1_1(1177__.5_)” = (t—-s)"—a—’l;k

9IG(t,s) _ 1
(6 ot (m—j—1)1

a <s<t < b
1/ b—s \"—3-1
t—a ”"‘J—l< > ,
(t—a) —a
 a<t<s<b,
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So it is sufficient to prove Ssz(t, s)/6t7 >0 when a<s< 1 <b.

Since it is true if #=s, we consider only @ <s<t<b. Because’

t—s b—s
and
t—s b—s
we have ) .
(t—- a)”‘f*l > (b—- a)"—!"l
\t—s b—s
and hence

(t — a)ri-* (%'_:_Z_)""’”l (=it 0.

LEMMA 2. The Greew's function of the boundary value problem
— 2™ (2) =0, o
(7)  zW(@) =0, O<p<n—1),
| Cao@By=0, i '

l

0,4, m—2"

and its jth derivative (0 < j < p) with respect to t are non-negalive
if (n+ j) is even and nonpositive if (n +j) is odd.

Proof. The Green’s function of the boundary vélue ‘problem
(7) is - ‘
Ht, s) = (b—t)* (ili’—)""p" ,
_ : (— 1) , b—a
H(@t, s) = —=2_
(8) H(,s) = )1 a<s<t<b
Hy(t, s) = Hy(2, s) — (s —D)*7,
’ a<t<s<bh -
Hence :

b—ea
a<s<t<Lb,
. . — n—p—1
b—tn—.f—!(_——s "),
( ) b—a
—(s—t)~i-1, © @aZLt<Ls<h

(b— t)n—j-—l (E;?_)””p_l;
C o 8iH(2, s) _ (— 1)+
S atf - (m—j =1
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Since
(10) b=ty (SZEYTT (s pyreit>
b—a ‘
if a<t<s<b asin Lemma 1, the result follows.
LEmMMA 3.
j‘bl_a_f'G(t, s) f DG, S) 4
- Ja | ot7 oti
(11) — 1 [b — a ( a)n__] —1 _J 1 t—a ”_j]
(m—j—1! —p v —J ( )
= ¢;(2). ‘
fb]_aiH(t.,‘ s) lds'
@ ot
(12) _ 1 b—a ;5 pwess 1 el
(—j—1)! [n—;b (&= n—j ®=8 :]]
=vi(?). ‘
(13) : max ¢; (t) = max ¥;{(I) = «;,
A= i<h a<i<d
where
= (— g =D (”_“Y—] if n—1>p=7,
i (7 — 7)1 n—p toeTize=d,
(14)  =@-a if n—1=p=j,
(D= ) (b—a)-i . %
= - —1>2p=>7j+1.
(n= ) (n— 1 gl iel
Proof. See the appendix. V
THEOREM 4. Let M;>0 (j =0, 1,---, ) be given real numbers.
and let Q be the maximum of |f(t, =, x',---, )| on the compact

set ; ;
{2, 27):a<t<b, [P <M;, j=0,1,--, 7).
Then if

(b—a)<(n—p) (aé”__;jj!l)n]‘{ij_l >1 -5

if n—1>p=j,

(15) <-4 if n—1=p=j,
< (B=DU= DMV 15 s,

Q(p— ) .
' 7=0,1,-,7
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each of the boundary value problems (1), (2); (1), (3) has a solution
of class C™ on [a, b]. Furthermore, given ¢ >0 there is a solulion
x(t) such that

(16) e @) <e, j=0,1--+, 7
on [a, b] provided b — a is sufficiently small.

; Proof. Here we shall give the proof for the boundary value
problem (1), (2). If the integral equation :

b . .
an o) = [ G(t, ) f(s, a(s), -, @N(s)) ds
. has a solution of class C? on [a, 8], then it will also be a solution
for (1), (2).
The set

Bla, b] = {2(t) € C[a, b]: 2P| < M;, =0, 1,7},
where '

Nz9] = max [29(@)],

a=t=b

is a closed convex subset of the Banach spacé C"’[a,k b]. The
mapping T : C”[a, b]— C™[a, _b] defined by

18) (T = [ G, ) f(s, 2(s), ¥ (), -, @(s)) ds

is completely continuous. For x € Bla, b], we have

i
‘ =Q¢j(t)$wj i=0,1,---, 7
where we have used Lemmas 1 and 3. Thus condition (15) implies
that T maps Ble, &] into itself. It then follows from the Schauder
fixed point theorem that 7" has a fixed point in Ble, 8]. The fixed
‘point is a solution of the stated boundary value problem.
If (1) is a solution of (1), (2) with x € Bla, b], then lx‘”(t)l
- £Qa; (j=0,1,---,7) on [e, b] and the last assertion of the therem
follows.

(Tx)PH)<Q [ P 9IG(, 8) 4

COROLLARY 5. Assume the Sfunction f(Q, z, ', -, x") satisfies
the condition that
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If(t’ x, x,7"', x(r))l < CO + Z Ci+1 Ix(])ld(l)’
. j=0

where 0<a(j)<<1 for =0, 1,---, . Then eack of the boundary
~value problems (1), (2); (1),:(3) has a solution.
3. 'Unique‘ness results.

| THEOREM 6. Let the function f(t, =, z', -, ) satisfy a
Lipschitz condition of the Sform o

7@ @, &y 22) =S 9, ¥ 9D

19
( ) <ZL |2 — y@|

on [a, b] X R+, Then if
(20) ) © = Z L; ;<< 1,
each of the boundary value problems (1), (2) (1), (3) has one and
only one solution.

Proof. Here afso we shall give the proof for the boundary
value problem (1), (2). Let the space S consist of contmuously 7
times differentiable functions on [a, 5] w1th norm

lu] = max _ZL; lu»()1.

‘We shall prove that the'o'perator'_ T defined as'in (18) on S is a
contracting operator on S. To this end we have

(T2)0@) — (TP
< [} ZELD S Litaws) — yos)las

, oti

(21) P e ‘afG(r‘t s)
0 Sle-vimx ““at—ds
< [z — vl @, j=0,1,

Multlplymg (21) by L; and summmg over all j, we obtam
llTx — Tyl < |}z — o Z L; s

= allz—yl.



19797 #TH ORDER ORDINARY DIFFERENTIAL EQUATIONS ~ . 217

Since @ << 1, the operator T is contracting and hence the problem
(1), (2) has one and only one solution.
To prove the next result, we need the following:

LEMMA 7. (Falb and Jong [10]). Let T map a ball B = {w:
[Iw vl £ #} of a Banach space S into S. If there is an « € (0 1
such that for all u, v € B ‘

(22) , | Tu — To|| < llu — o]
and if | N
(23) : 1Tyo — 9ol < 2(1 — &),

then T has a unique fixed point y in B. If T maps the ball B into
itself, condition (23) can be omitted.

In the next theorem we shall show that the function f need
not satisfy a Lipschitz condition on [e, 8] x R™+! but it is sufficient
if f satisfies Lipschitz condition on D

| D= {(t, o) @ <1t <b ) € Cla, bl,
(24) ’

2P (W) <N %, j=0, 1,7},
(247} ]
THEOREM 8. Let the fuhction 1, .7:," a,"",‘---, x") satisfy a Lips-
chitz condition (19) on D, where N salisfies either .

(25) meey < N(1— a)
if m = max If(t 0, 0,--+, 0)| for e <t < b, or merely
@) - " M&<N

if M =maxp|f(¢ =, &'+, 7). :
-Then each of the boundary value problems "(.1),‘ (2); (1), (8) has
one and only one solution x(t) € D

Proof. Let the space S§ consist of 7 tlmes contlnuously dlffer-
entiable functions on [, 5] with the norm

[l = max{ co

0<j<r o; a<t<b

Let #(2) = 0 and B ‘be the ball {we S : |w|<N}. Then if u(?),
- 9(¢) € B, we have from the operator 7 defined as in (18) on B’
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N(Tu) D) — (To) P (@)

N ) . b 9IG(¢, s) 1
. i — (i) . — T e
= }—.0 {L‘ gtasxi [u () — v (t)! ® a dS}

ot
SOJ_,' i

i=0

and hence -
L TWP@) = (TP D] < 3 Liaslu — ol
| <alu—v] =0 1,---, 7
from whicﬁ it follows that
- 1T — Toll < e llu — o]l |
To apply Lemma 7, we need to show that (23) holds. Let (25)

hold; then we have

[Tz < [ 3’6(’ ) 1£(s, 0,0+, 0] ds

< mos; 7=0,1,---, 7
Hence we have
I(T20) — 2ol S N(1— ).
Next let (26) hold; then for any # € B we have
la» )| < %L N
T

and by the hypothesis M = max, [f(2, #, u',---, u)|. It follows
that

Krwew < [0 (;Z SL 17 (s, u(s), w(s), -, ucri(s‘))]ds

SM“]’ .7:0’1’”,7
Hehce ' ‘
NTull < N.

- This completes the proof of Theorem 8.

- For n =2 see Bailey [6] and for # = 3 see Agarwal and Krish-
namoorthy [41.
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4. Some improved uniqueness results.
THEOREM 9.  Let the function f(t, x, z',---, ) satisfy a
Lipschitz condition (19) on [a, b] X R™*'. Then if

r

27 sup, Wl(t) ngﬁb%_QW( )ds=a <1,

the boundary value problem (1), (2) has one and only one solution.
Also, if

1 . b
(28) sup *—W(Vt) JZ_;L,- .

a<=t<b

O'H(, s)
at’

W(s)ds=a<1,

the boundary value problem (1), (3) has one and only one solution,
where W(#) is a positive, or possibly non-negative, continuous
function on [a, &].

Proof. Let S be the space of 7 times continuously differentiable
functions. The norm on the space S is defined as follows:

lall = sup. W(t) ZL lu(2)].

asis
We have from the operator 7' defined as in (18) on S
[(Tz) P () — (Ty)D ()]

< [H{PEL 11 ae), w/(9), -, 5s))

— F (s, y(s), ¥'(s), -, y<’>(s))l}ds

3G (¢, s) s [2D(s) — y9(s)]
<f { i V2L W(s) } @

<lo—yl [ 2CL ) w5 as

and hence

. a! ajG(t’ S)

172 — Tyl <{ sup L; 2 Sl W(s) ast I — g

e<:<h W(t) ]‘;0: /;b“

= e [z — yl.

Since @ <1, we can apply the contraction mapping principle, which
will ensure the existence of a unique solution of the boundary value
problem (1), (2), and the proof for the bdundary value problem (1),
(3) is similar.
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The following particular cases of Theorem 9 are of independent
interest.

41 If we take W() =1, then Theorem 9 is the same as
Theorem 6.

42 Let =2, ﬁ=r‘¥ 0, and

; 2
then condition (27) takes the form
D Lob—a)y<l,
48
which is better than the resuit

GB=D r,6—ar<1
43

obtained by Coles and Sherman [8]. Also, if we take

W(t)=sin7r<[7’;:‘;>,

then condition (27) takes the form
L L -ar<1
which is the same as obtained by Bailey et al. [6].
43 let#=38, p=7 =0, and
W) = t=—ar@G-1);
then condition (27~) takes the form

1 )
60 Lo(b a) <1,

which is better than

3 — )}
160 Lo(b—a)*<<1

obtained by Agarwal [1,2]. Also, if we take W(¢) as the nontrivial
solution of the homogeneous differential equation
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W/ (t) + LW(t) =0

satisfying W(a) = W'(a) = W(b) = 0 with W(t)> 0, { € (a, 5), then
condition (27) takes the form (b — @) < (b — a);, where (b — a2); is
the first positive root of the equation in I:

V'3

2sin( L — ) + exp ( “L%"'al) =

which is the same as obtained by Agarwal [3].

44 Let =0 and let W(¢) be the nontrivial solution of the
homogeneous differential equation

W®(t) + LyW() =0
satisfying W® (a) =0, i=0,1,--, #—2  WP(B)=0 with
W () >0, t € (a, b) and let a +1,(L,) denote the first point after
@ where the pth derivative of W(#) vanishes. Then condition (27)

takes the form (b — a) <[,(L,) and this result is best possible.
For, the boundary value problem

u™(t) + Lou(t) = 0, :
u®(a) =0, - i=0,1,-, n—2,
uP(a+1,(L)) =0, 0<p<m—1,

has the trivial as well as nontrivial solution; also if #»(a + [,(Ly))
7 0, then there is no solution. :

5. Several weight functions.

THEOREM 10. Let the function f(, x, x',---, ) satisfy a
Lipschitz condition (19) on [a, b] x R7+1, Then if
1 0GR S) Xy v } |
(29) aoN) (% S LW()]ds<a<l
j = 0; 1,' ccy 7,

the boundary value problem (1), (2) has one and only one solution.
Also, if

07H (1, s)

SLwlas<a<,

le(t) a {

the boundary value prbblem (1), (3) has one and only one solution,
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where Wi(t) (i=0, 1,---, #) are positive, or possibly non-negalive,

continuous functions on [a, b].

Proof. Let S be the space of 7 times continuously differentiable -
functions. The norm on the space S is defined as follows:

bt = gz { max A7)

We have from the operator T° defined as in (18) on §
(Tz)P (@) — (Ty) P (t)]

< [ [ZELD 5 Lws) e UL g

<z = ol [ PR DA A

and hence

17z — Tyl < | I LW as [lo - ol

1
W;i(t) ob

j=0, 17"'; 7

Since @ <1, we can apply the contraction mapping principle. The
‘proof for the problem (1), (3) is similar.

51 Let#=3, 7= p=2, and
ww=1u-are-a-Le-o
Wi(t) = — % (t—a)+ (¢ —a)b—a),
We(2) = (b — ).
Then condition (29) takes the form

%Lo(b —a)® + %— L(b — a)* + é L —a) <1,

which is the same as obtained by Agarwal [2].

52 We attempt to find suitable W;(¢) (j =0, 1,---, #) by requir-
ing equality in (29). For this we choose W;(¢) = W (2), and choose
W(t) to satisfy

B W@ + 13 LWO@) =0
. 7=0
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with W@ () >0, ¢t € (a, ], so that>W<”(t) >0, : €(a, b] for all
i=0,1,---, p;and if p=n—1 WP >0, ¢ <[a, bl
Now let #(?) be the solution of

(32) uO(8) + 3 Ly uh(#) = 0

satisfying #®?(a@) =0 (1=0,1,---,2—2), 4P(#)>0 on (e, b]; and
if p=n—1 then #*Y() >0 on [a, &].

Since the solutions of (31) depend continuously on e, we choose
o sufficiently close to but less than 1, so that (31) has a solution
W(¢) which satisfies W®(a) =0 (=0, 1,---, #—2) and whose pth
derivative is arbitrarily close to the pth derivative of #(¢). Since
u?(t) >0 on (@, b, and #®’(¢) >0 o0n [a, 8] if p=n—1, W)
can be taken to be strictly positive on (@, 81; and if p=n2—1 we
can take it to be so on [, 8]. With such &« and W;(z) = WP()
(j=0,1,---, ), equality holds in (29); and Theorem (10) ensures
the existence of a unique solution of the problem (1), (2).

From the above observation, if we let @ + /,(Ly, Ly,- - -, L,) denote
the first point after ¢ where—pth derivative of #(¢) vanishes, then
it (b—a)<<l, (Lo, Li,---, L,) there exists a unique solution of (1),
(2) and this result is best possible. For if equality holds, then there
exists a trivial as well as a nontrivial solution of (32). Also, if
u?(a + 1,(Lo, Li,---, L;)) 0, then there is no solution. ‘

For # =2, the same results are obtained by Bailey et al. [6]
and for » =3 by Agarwal [3].

6. Convergence of successive approximation. Hereafter in this
section we shall denote /,(Lo, Ly,---, L,) by [,(L) in short. First
we shall prove that /,(¢L) is a decreasing function of z and hence
there is £ >1 such that /,(uL) = b — a. For this, we prove

THEOREM 11. Let u(2), u(t) be two functions satisfyin‘g

Du(t) = u™() + i L;u(t) =

w(t) + > Lyu(t) <0,
i=0

u(a) =uM(a), i=0,1,---,2—1
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Then
uD () > uP(t), t € la, a+ 1,(L)].

Proof. Inequality D, u:(¢) < 0 with some ¢(¢) = 0 can be written ‘
as D,u,(2) + ¢(2) =0, and hence if u(¢) is the solution of the
equation D,u(t) = 0 with P (a) = u(@) (j =0, 1,--+, #— 1), then
we have ‘ '

(@) = ut) — [ w(t—s) o(s) s,

where w(¢) is the solution of D,w(t) =0 with wP(ae) = 0;
i=0,1,-, 2—2 and w”V(g) =1 Thus we have

up(t) — ur @) = — [1 2= 4 () as,

But since (aﬁw(t —58))/6t? >0 as long as a<s<t<at lj,(L) the
result follows immediately. . '
Now if we take v(?) as the solution of the equation

v®@() + p 3 LipP) =0 (#>1)

and u(¢) as the solution of (32) with #®(e) =v¥(a) =0, 1=0,1,---,
n—2 and #»V(a@)=0v"Y(@q)=1 then from Theorem 11,
u®(t) =vD(@), t €[a, a +1,(L)]. Hence v»’(¢) must vanish before
a+ lp(L) since #‘#’(¢) vanishes at a+/,(L). This simple fact and
the uniqueness of the solutions of initial value problems imply that
for some 2 >1, [,(¢ L) = b — a. Thus the problem

YO@) +a) Liyp@P@®) =0 (p>1),

(33) yO@) =0, i=01-, =2

v @ (b) =0,
has a nontrivial solution with v (¢) >0, t € (a,b), and if p=n—1
then on [a@, b). To fix the choice of +(¢) we also require

Y@#=-D(g) = 1. Then it is always possible to choose C to be the
smallest possible constant such that

(34) [ Saco(L)vow.
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THEOREM 12. Let (4, z, x',--, ) satisfy Lipschitz condition
(19) o D

D={(t z21)):a<t<b, 2(t) € C7a, b],

@ PWI<m e Co (1= )Ty o)
M L -

§=0,1,--, 7}
Then an infinite sequence {x,(t)} (#=0,1,2,---) can be obtained
in D by the successive approximations ‘
zo(2) =0,
(3) @i = [ Gt ) £ (s, 25, 2(s), -+, 20(s)) ds
n=0,1, 2"
and as n— o it converges 10 a unique solution of the boundary value

problem (1), (2) in D.

Proof. First we shall prove by induction that an infinite
sequence {z,(2)} (#=0, 1, 2,---) can be obtained in D by the suc-
cessive approximations (35). Since x4(¢) € D, let us assume that
x2:(t), 22(2), -+, £,-1(t) have been obtained in D. Then z,(2) is
obtained by (35) since Z,-1(¢) € D. In order to complete the induc-
tion it is sufficient to prove z,(¢) € D. Now by (35) and (34) we
have :

|29(2) — 2(2)] <f a’G“ $) |f(s, 0, 0,---, 0)] ds

(36) f i Gagf $) gs

<m-C- e () j=0,1--7
,u

Hence x:(t) € D.
Recall that the problem (33) is equ1va1ent to

P (1) = ﬂfab {_ai%;t‘,_sl Z L,-gb“)(s)} ds
» j =0:’1)“': f-

Hence by (35) and (36), we have
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a2 — 2@l < [ {5 L) ) ZL () — ()]} ds

o (3) [ {255 oo
<m-C- (ai_)ww(t) i=0 1,7

Continuing in this way, we get

[2P() — 22 (@) < m+C- ( i >” WD (¢)

j=0: 1,---, 7

(37)

Then from these inequalities we successively have

(1) ~ P < S [2a(8) — 3 ()]
< :\__d‘_lmC( /11

e (N1 21\ o
<m-C ( ><1 ﬂ) Py (1),

]
(since £ >1) i=0,1,---, 7

>”‘i¢<j> )

and hence z,(t) € D. This completes the induction. Also, since
©>1, estimates (37) ensure that the sequence {x,(#)} converges to
a limit, say x(¢). Hence we have proved that the boundary value
problem (1), (2) has at least one solution in D. Since it is easy to

prove the uniqueness part it is left to the reader.

6.1 From Theorem 12, the error estimates are obtained as

j=0’ 17.-., r

For =2, the same results are obtained by Bailey et al. [6] and
for » =3 Agarwal [5]. The error bound obtained in (38) satisfies
the same boundary conditions as the original problem.

7. Ma_ximal solution and comparison result. Here we shall
consider 0 <7 <7 — 2. Let B denote the Banach space of » times
continuously differentiable functions on [, 8] with the norm
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[zl = max { max |zP (@)}
I=ji<r a<i=<b

and let K c B denote the closed convex cone of functions having

nonnegative derivatives upto order . Let S denote those elements

of K which satisfy the boundary conditions (2). Further we define
S, ={zeS: |zl <o}

TuEOREM 13. Let the following assumptions hold.

A. o(t, wo, #1,---, u,) is conmtinuous nonmegative and satisfies
g(ty ﬁO, i¢-1," %y ﬁf) 2 g<t7 Uo, U,y uf) for all (t, Uo, u17'. ) uf);
(t, "o, %1," ", z?,) = [a, b] X R’::l such %y > Uy, %y = Uty Uy > Uy,

B. There exists a o >0 such that for t € [a, b]

b 9iG(L, s)

' < -
. ot g(s, p, 0,7-+)ds<p, j=1,2,, 7.

For t € [a, b] define the ilerates
b
w@®) = [ G, $)9(s, o, o0+, 0) 85,

39 @)= [ Gt $) 95, Bpmsls), Thals), o+, () ds,

= 1, 2,---.
Then the sequence {x.(t)} comverges to the maximal solution of the
equation
(40) ™+ g, ®, 2, D) =0
satisfying boundary conditions (2) in S,.

Proof. From Theorem 4, solutions of the boundary value
problem (40), (2) are the solutions of the operator equation

@) T = [ 64 ) ats, a6, &/(s),++, TO()) s,

where T is defined on S,.
Now clearly x,(t) € S,,, since z27*(#) < p, § = O 1,---, . Using
A and B, we find

a0(8) = L "i‘—;%s—lﬂs 2(s), 2i(s), -, @) d5

j=0’ 1!.
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Using an inductive argument it is easily seen that
o Z2xd(@) = x() = -+ = 2P0).

Next from the uniform continuity of 87G(¢, s)/6t’ on[a, 1% [a, b1,
0<j<7r given ¢>0, there exist 0(¢)>0 such that for
Itl b t2[ < 6(5),

G(ty, s) — G , ) < £ .
16, o) s 5] (b—a>max 9@, o, 0,7, p)

a<t<bh

But for any #, =0, 1,-

|20 (21) — 2P |

< f {' 3IG(t, ) _ 837Gt s)

at] 6#% g(sy xﬂ"l(s)7 a;.n—l(s): Tt

x0.(8)) ds
b
< 16 ) = 6, $)lg(s, o, 0,+, p)ds
whenever [#; — ;| << 8(¢) uniformly in #forall j =0, 1,---, . This
shows that {z,{¢)} is equicontinuous. Hence by Arzela’s theorem
{z,(t)} is precompact and being monotonic converges uniformly to
some x(¢) € S,. Form the continuity of ¢, £(¢) is a solution of the

operator equation (41) or equivalently of (40), (2). Now let y(t)
be any other solution of (40), (2) in §,. Then

zy(t) — y ()

f BELS) 1g(5,0,0,+,0) = (s, 4(s),¥/()-+-, ()]} ds

In fact, induction shows that for each =0, 1, 2,---,
) —y P20 =01, 7

Therefore, in the limit, £P(¢) — y(¢) > 0. This completes the
proof of Theorem 13.

THEOREM 14. Let the assumptions of Theorvem 13 hold. Suppose
Z(t) is a solution of boundary value problem (D), (2) in B with
I1Zll < 0, and let

LFCE, o, v, u)| < g2, Lo, lusl,- -, lur]),
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~for all (t, uo, t41,--, ur) in [a, b] % R+ Then (ZD(@)| <zDP@)
for a <t < b, where x(t) is the maximal solution of(40), (2).
Proof. =1, 2,---, set

vt = [ G, $)0Cs, Uui(S), Yor(S),7++, Y(s)) d
with 9o(t) = 1Z@)], -, 4(£) = 12 Then

. by A _
42) = [ LCLI) 45, 1Z()1, 12/, | 21D ds
> f a’Gagf 5) £ (s, Z(s), Z/(s),++, Z9(s)) | ds 21 ZD(B)]
' j= O,la" *y 7.
Inductively, it can readily be seen that
ZO()] < 9P0) S YW <+ S PB <.
As in Theorem 13, {#,(2)} is equicontinuous and, in view of the
montonicity, converges uniformly to a solution y(¢) €S, of (40),

(2). But the maximality of x(¢) completes the proof of Theorem
13. :

For 2 =2, similar results of Theorems 13 and 14 have been
obtained earlier by Chandra and Fleishman [7].
APPENDIX
Proof of the Lemma 3.

From Lemma 1 and the form of the Green’s function G(Z, s),

we have

[]256:0 o [ 2502

= eicD [L{e-orm (=2

— (- s)n—f—l} ds

+f (t — a)*- J_l(b_Z)”—P_l]dS | o

- (n—-]l'—l)! {[ gzg: = “J—ST]:

e
(t—a)*7-

o 1 _

T (m—j— 1 {(b @) n—p
1 _ n—j g
—3 (t—a) }
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which proves (11). Similarly from Lemma 2 and the form of the
Green’s function H(?, s) the relation (12) follows. Now (13) and
hence (14) follow from the following observatmns'
(a) ¢;(¢) attains maximum at ,
(i) t=+t, if j=p<n—-1
where
—Jji—1Db—-a)
(72— p)

(ii) ¢t =2, if ]+1<ﬁ<n-—1
(b) v ;(¢) attains maximum at

(iii) & =1, if j=p<n-—1

tr=a+ (7

?

where

(n—j—1)(0b—a)
(2 — p)

(iv) t=@a, if j+1<p<n—1.

t2‘=b e

£

REFERENCES

1. R.P. Agarwal, Nonlinear boundary value problems, Proc., Seventeenth Conference
on Theoretical and Applied Mechanics (1972), India,

2. , Nonlinear two point boundary value problems, Indian J. Pure and Appl
Math. 4 (1973), 757-769.

3. , Two-point problems for nonlinear third order differential equations, J.
Math. Phys. Sci. 8 (1974), 571-576.

4. R.P. Agarwal and P.R. Krishnamoorthy, On the unigueness of solution of nonlinear
boundary value problems, J. Math, Phys, Sci. 10 (1976), 17-31.

5. R.P. Agarwal, Improved error bounds for the Picard iterates, J, Math. Phys. Sci.
12 (1978), 45-48

6. L. Bailey, L. Shampine and P. Waliman, Nonlinear two-point boundary value
problems, Academic Press, New York, 1968.

7. J. Chandra and B.A. Fleishman, Positivity and comparison results for nonlinear
boundary value problems and related periodic solutions, J. Math. Anal, Appl. 24 (1968),
545-554.

8. W.J. Coles and T.L. Sherman, Comvergence of successive approximations for
nonlinear two-point boundary value problems, SIAM J. Appl. Math, 15 (1967), 426-433.

9. L. Collatz, Einige Anwendungen functional-analytischer Methoden in der praktis-
chen Analysis, A. Angew Math. Phys. 4 (1953), 327-357.

10. P.L. Falb and J.L. Jong, Some successive approximation methods in control and
oscillation theory, Academic Press, New York, 1969,

MATSCIENCE, THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS-600020,
INDIA, )
REGIONAL ENGINEERING COLLEGE, TIRUCHIRAPALLI-620015, INDIA,



