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SUM S OF IID RANDOM VARIABLES

I. CHANG AND C. HSIUNG

Abstract. Let X;, X,,--- be a sequence of i.i.d, ra{ndom variables.
Assume E|Xi|? <o for some p>2, EX;=0, EX}=1. Let

Sy =X3 + X5 Foeee + X,

- The law of 1terated logarithm for max ISJI was studied by Chung,
Jain and Pruitt, etc. For max Sj, the limsup ‘part can be derived
‘easily from that of max |Sj]. But for the liminf part, one has to do
it separately, We prove a theorem about this in this paper.

1. Introduction. Let {X,}bea sequencé of real-valued, independ-
ent and identically distributed random variables defined on a pro-
bability space (2, F,P). LetS,= X7 X;, EX; =0and EXi=1. Itis
well known that the law of iterated logarithm for maxi<r=, Sl is

lim sup{)lrri?zc S /(222 log log n)”z} =1 a.s.

and

Iirﬂn_)inf{{gka}” [Sk|/(#/1og log n)”z} = z/8!/? a.8.

(see [1,2,4]). We also know that, for the limsup part, maXicz<, Sk
has the same form as maxXj<z<,|S:|; but this is not true for the
liminf part. In this paper we will study the liminf part of
maxXj<z<, Or, and we obtain the following

TororeM. Let X, be i.i.d. random variables with E [ X, < o
for some p>2,EX, =0 and EX:=1. Let S,=X; +---+ X,. Then

Lim inf _MaXi<e<Sr {0 for6<1 o

e pt2/(log n)? o for & > 1

An easy consequence of this is about the limiting behavmr of
the  stopping times T.= inf{n>=1: S,>c¢c}, as ¢— o, which is
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stated after the proof of the theorem.
2. Proof of the theorem

LeMMA. Let B; denote the standard Browwian motion. Let
R: = maxoes<; Bs. Let & be a position number less than or equal to 1.'
 For each positive integer n, let 1, = cn*", where ¢ and o are
positive numbers with o > 26. Then
liminf Rt =0  as.
”"°°, t”“’/(logt ) LA

Proof. We know that the dxstrlbutmn of R;: is. g1ven by

P{ R’f_<;rx} p{'Bf' <x} P{lBll<x}

tllz t112

1 . 212
== e * du
R -l/ 277: fx .

Let U, = m<'51}§',,_1<s<t,,(Bs "'B’n-l)' Then the U,’s .are independent
andforanye>0 ‘ ’ e '

. t1/2 ' I R,n tneyg 1 > K
P{U <em} Pl(t _t”_1)1/2<6 (Iogtn)”}_ (logt,)°

for some constant K. ,
It follows from the choice of #, and the Borel-Cantelli lemma

_that

“lim inf U, = -
B tllz/(log 1 )3 0 a. S

By.the usual law of the iterated Iogarithr'n and- the ‘choice of #,,

R;
11msu Nl S
p tl’z/(logt Yo o R
L= I1m3up ] : Rt (¢4=11log log t,-)'? — as.
e (tn—lloglogtn e £/ (logt,)? o

Therefore, the lemma follows from the inequality R:; <R;, , +U,.
- With the help of the lemma, we are going to prove one part of
the theorem. By the Skorokhod embeddmg, (see (61, there is a

sequence of nonnégative, 1ndependent and identically distributed

random variables { T} W1th ET1 =1 such that the distribution of
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Sy, Sy, -+ is the same as that of By, Br+r,, --*

Let e>0,¢,= 1+ e)nf“"

' GO
<eg—>"m" 0.},
{ T (log £,)° }

8y = {Z T,- < -(1~+ ¢)n for all large n},
. =1 .
: 'QO = 91 n 192. c )

We know from the ‘IaW of large numbers and the lemma that
" P(2) =1. Thus, for o € 2 and % large,. . ' '

" max B SR:M, where T¥#=T;+ --- + Tk.

k
1SR T
Hence
. S . tuz
max Oy <.g-—————r
1<kLn %" (Io.g tn)a
: an\1/2
< el BN
’ ( 6) (Iog nan)&

“This prbveé

lim inf _MaXispsys Sp _ 0 -f 5 <1 ’
>0 112/(10g n)a 1 -

Next we con31der the case & > 1 We know from [5] that

sup lp{ max“ff" St < x} P{IB1I <z} | <Tf{;u~r-.i

for some constant K., Let C -be any given pOSIthC number.- Let

= 2%  Then
Z P{lrgl]:i}is <C —lag-l—;—;—)—&- for some # € [, nk+1)}
=T p{mms <ot
e L
< S(p{voni <o s b )
= K Zk: nk”(lffi’zkﬂ)“ R 2K2; (& + 11)10g 2)° K<,

where Ki, K; are some constants. It follows then from the Borel-
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Cantelli lemma that, with probability one,

‘maXS >C n''? for large # |
A i = ——— TOYr" large 7.
igjsn J (log 1n)? ) ‘g

This completes the proof of the theorem.
" An easy consequence of the theorem is

COROLLARY. Let {S,} be defined as above, and T, =inf{n>1,
S,>c}, ¢>0. Then

limsup ___ Le ‘__{OO as 6<1 a.'é.
LR cz(logc)” 0 as &o>1 ~

and

lim inf —1“__ = ’ a.s.
e e2/921loglogc
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