A NOTE ON THE MAXIMUM OF PARTIAL SUMS OF IID RANDOM VARIABLES

BY

I. CHANG AND C. HSIUNG

Abstract. Let X_1, X_2, \cdots be a sequence of i.i.d. random variables. Assume $E|X_1|^p < \infty$ for some p > 2, $EX_1 = 0$, $EX_1^2 = 1$. Let $S_n = X_1 + X_2 + \cdots + X_n$.

The law of iterated logarithm for $\max |S_j|$ was studied by Chung, Jain and Pruitt, etc. For $\max S_j$, the \limsup part can be derived easily from that of $\max |S_j|$. But for the \liminf part, one has to do it separately. We prove a theorem about this in this paper.

1. Introduction. Let $\{X_n\}$ be a sequence of real-valued, independent and identically distributed random variables defined on a probability space (Ω, F, P) . Let $S_n = \sum_{i=1}^n X_i$, $EX_1 = 0$ and $EX_1^2 = 1$. It is well known that the law of iterated logarithm for $\max_{1 \le k \le n} |S_k|$ is

$$\limsup_{n\to\infty} \left\{ \max_{1\leq k\leq n} |S_k|/(2n\log\log n)^{1/2} \right\} = 1 \quad \text{a. s.}$$

and

$$\lim_{n\to\infty} \inf \{ \max_{1\le k\le n} |S_k|/(n/\log\log n)^{1/2} \} = \pi/8^{1/2} \quad \text{a. s.}$$

(see [1, 2, 4]). We also know that, for the $\limsup part$, $\max_{1 \le k \le n} S_k$ has the same form as $\max_{1 \le k \le n} |S_k|$, but this is not true for the $\liminf part$. In this paper we will study the $\liminf part$ of $\max_{1 \le k \le n} S_k$, and we obtain the following

THEOREM. Let X_n be i. i. d. random variables with $E|X_1|^p < \infty$ for some p > 2, $EX_1 = 0$ and $EX_1^p = 1$. Let $S_n = X_1 + \cdots + X_n$. Then

$$\liminf_{n\to\infty}\frac{\max_{1\leq k\leq n}S_k}{n^{1/2}/(\log n)^{\delta}}=\begin{cases} 0 & \text{for } \delta\leq 1\\ \infty & \text{for } \delta>1 \end{cases}$$
 a.s.

An easy consequence of this is about the limiting behavior of the stopping times $T_c = \inf\{n \ge 1: S_n > c\}$, as $c \to \infty$, which is

Received by the editors May 2, 1978.

stated after the proof of the theorem.

2. Proof of the theorem

LEMMA. Let B_t denote the standard Brownian motion. Let $R_t = \max_{0 \le s \le t} B_s$. Let δ be a position number less than or equal to 1.

For each positive integer n, let $t_n = cn^{\alpha n}$, where c and α are positive numbers with $\alpha > 2\delta$. Then

$$\liminf_{n\to\infty} \frac{R_{t_n}}{t_n^{1/2}/(\log t_n)^{\delta}} = 0 \quad \text{a. s.}$$

Proof. We know that the distribution of R_t is given by

$$P\left\{\frac{R_t}{t^{1/2}} \le x\right\} = P\left\{\frac{|B_t|}{t^{1/2}} \le x\right\} = P\{|B_1| \le x\}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-x}^{x} e^{-u^2/2} du.$$

Let $U_n = \max_{t_{n-1} \le s \le t_n} (B_s - B_{t_{n-1}})$. Then the U_n 's are independent and for any $\varepsilon > 0$,

$$P\left\{U_{n} < \varepsilon \frac{t_{n}^{1/2}}{(\log t_{n})^{\delta}}\right\} \ge P\left\{\frac{R_{t_{n}-t_{n-1}}}{(t_{n}-t_{n-1})^{1/2}} < \varepsilon \frac{1}{(\log t_{n})^{\delta}}\right\} \ge \frac{K}{(\log t_{n})^{\delta}}$$

for some constant K.

It follows from the choice of t_n and the Borel-Cantelli lemma that

$$\liminf_{n\to\infty}\frac{U_n}{t_n^{1/2}/(\log t_n)^{\delta}}=0 \quad \text{a. s.}$$

By the usual law of the iterated logarithm and the choice of t_n ,

$$\limsup_{n\to\infty} \frac{R_{t_{n-1}}}{t_n^{1/2}/(\log t_n)^{\delta}}$$

$$= \limsup_{n\to\infty} \frac{R_{t_{n-1}}}{(t_{n-1}\log\log t_{n-1})^{1/2}} \frac{(t_{n-1}\log\log t_{n-1})^{1/2}}{t_n^{1/2}/(\log t_n)^{\delta}} = 0 \quad \text{a. s.}$$

Therefore, the lemma follows from the inequality $R_{t_n} \leq R_{t_{n-1}} + U_n$. With the help of the lemma, we are going to prove one part of the theorem. By the Skorokhod embedding, (see [6]), there is a sequence of nonnegative, independent and identically distributed random variables $\{T_n\}$ with $ET_1 = 1$ such that the distribution of

 S_1 , S_2 , \cdots is the same as that of B_{T_1} , $B_{T_1+T_2}$, \cdots .

Let
$$\varepsilon > 0$$
, $t_n = (1 + \varepsilon)n^{\alpha n}$,
$$\Omega_1 = \left\{ R_{t_n} < \varepsilon \frac{t_n^{1/2}}{(\log t_n)^{\delta}} \text{ i. o.} \right\},$$

$$\Omega_2 = \left\{ \sum_{j=1}^n T_j < (1 + \varepsilon)n \text{ for all large } n \right\},$$

$$\Omega_0 = \Omega_1 \cap \Omega_2.$$

We know from the law of large numbers and the lemma that $P(Q_0) = 1$. Thus, for $\omega \in Q_0$ and n large,

$$\max_{1 \le k \le n^{\alpha n}} B_{T^k} \le R_{t_n}, \text{ where } T^k = T_1 + \cdots + T_k.$$

Hence

$$\max_{1 \le k \le n^{\alpha n}} S_k < \varepsilon \frac{t_n^{1/2}}{(\log t_n)^{\delta}}$$

$$< \varepsilon (1+\varepsilon)^{1/2} \frac{(n^{\alpha n})^{1/2}}{(\log n^{\alpha n})^{\delta}} \quad \text{i. o.}$$

This proves

$$\liminf_{n\to\infty}\frac{\max_{1\leq k\leq n}S_k}{n^{1/2}/(\log n)^{\delta}}=0 \quad \text{if } \delta\leq 1.$$

Next, we consider the case $\delta > 1$. We know from [5] that

$$\sup_{x} \left| P\left\{ \frac{\max_{1 \leq k \leq n} S_{k}}{n^{1/2}} \leq x \right\} - P\{|B_{1}| \leq x\} \right| < \frac{K}{n^{1/2 - 1/p}}$$

for some constant K. Let C be any given positive number. Let $n_k = 2^k$. Then

$$\begin{split} &\sum_{k} P \left\{ \max_{1 \leq j \leq n} S_{j} < C \frac{n^{1/2}}{(\log n)^{\delta}} \text{ for some } n \in [n_{k}, n_{k+1}) \right\} \\ &\leq \sum_{k} P \left\{ \max_{1 \leq j \leq n_{k}} S_{j} < C \frac{n_{k+1}^{1/2}}{(\log n_{k+1})^{\delta}} \right\} \\ &= \sum_{k} P \left\{ \frac{\max_{1 \leq j \leq n_{k}} S_{j}}{n_{k}^{1/2}} < C \frac{n_{k+1}^{1/2}}{n_{k}^{1/2} (\log n_{k+1})^{\delta}} \right\} \\ &\leq \sum_{k} \left\langle P \left\{ |N(0, 1)| < C \frac{n_{k+1}^{1/2}}{n_{k}^{1/2} (\log n_{k+1})^{\delta}} \right\} + \frac{K}{n_{k}^{1/2-1/p}} \right) \\ &\leq K_{2} \sum_{k} \frac{n_{k+1}^{1/2}}{n_{k}^{1/2} (\log n_{k+1})^{\delta}} + K_{1} \leq 2K_{2} \sum_{k} \frac{1}{((k+1)\log 2)^{\delta}} + K_{1} < \infty, \end{split}$$

where K_1 , K_2 are some constants. It follows then from the Borel-

Cantelli lemma that, with probability one,

$$\max_{1 \le j \le n} S_j \ge C \frac{n^{1/2}}{(\log n)^{\delta}} \text{ for large } n.$$

This completes the proof of the theorem.

An easy consequence of the theorem is

COROLLARY. Let $\{S_n\}$ be defined as above, and $T_c = \inf\{n \geq 1, S_n > c\}, c > 0$. Then

$$\limsup_{c\to\infty}\frac{T_c}{c^2(\log c)^{2\delta}}=\left\{\begin{matrix}\infty & \text{as} & \delta\leq 1\\ 0 & \text{as} & \delta>1\end{matrix}\right.\quad\text{a. s.}$$

and

$$\lim_{c\to\infty}\inf\frac{T_c}{c^2/2\log\log c}=1 \quad \text{a. s.}$$

REFERENCES

- 1. K.L. Chung, A course on probability theory, 2nd Edition, Academic Press, New York, 1974.
- 2. ____, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948), 205-233.
- 3. P. Erdős and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. 52 (1946), 292-302.
- 4. N.C. Jain and W.E. Pruitt, The other law of the iterated logarithm. Ann. Probability 3 (1975), 1046-1049.
- 5. V.B. Nevzorov, The distribution of the maximal sum of independent summands, Dokl. Akad. Nauk SSSR 208 (1973), 43-45.
 - 6. A.B. Skorokhod, Research on the theory of random process, Kiew, 1961.

NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN.