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Abstract. We present a new technique based on some simple
ideas from approximation theory for the solution of the problem of
the estimation of the prior distribution.  We first give the solution
when the posterior density is known, and then when it is unknown
but can be estimated. We show how the rate of convergence of the
estimators of the prior is related to the rate of convergence of the
estimators of the posterior and give a comprehensive example involving
a location parameter family of N(0, 1) distributions,

1. Introduction. Let X be a random variable with density f.
Suppose f is unknown but that the conditional densities of X
-given the values of an auxiliary random variable Y exist and are
known. Put ¢(x, ) = D,P{X < 2|Y = u} and suppose that the
distribution of Y i G. Then f and G are related by the
expression :

1 7@ = [ e, w) d6w) .

When we wish to einphasize the dependence on G we will write

f #f s, In the problem of “estimation of the prior distribution”,

g is known but G is not and f¢ might not be. The aim in solving

this problem is to obtain an estimate of G in the form of a

sequence {Gy} of cdf s which converges weakly to G.

If 1ndependent observatmns Ty, Xy of X are available, the‘

" technique we propose for constructlng such a sequent1a1 estlmate of
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the prior distribution G begins with a sequence of density estima-
tors {fu} of f¢ constructed from the observations. The #th member
" f» of this sequence is a function of x which also depends on the
first # observations &i,---, £, Having this sequence, ‘what one
would like to do is put f,, in on the left-hand szde of (1.1), add a -
subscript # to the G, and treat the result as an ‘integral equation
for the unknown G, in the hope that the sequence {G.} so obtained
may be shown to be an estimator of &. This direct approach is in
general doomed to failure because a sequence of density estimators
is like an “approximate identity” and the identity operator is not
representable as an integral operator in any of the "hice” function
spaces. Thus in general, if we denote the integral'operator by K,

(12) KG(x) = [ g(z, u) dG(u),

f» will fail to be in the image under K of the set & of ¢df’s and
so the equation KG, = f, will have no solution in &. To overcome
this 'diﬁ'iculty'we pose the problem in a uniformly convex function .
space (in our application we shall use L?(u4) spaces, 1<< p<<od)
and exploit the convexity properties of &. What we then do is
take G, to be the best approximate solution (in the sense of
approximation theory) of the equation KG, = f,. . This means that
|KG» — fal = min {|KG — f,|: G € &} (in the norm of the appro-
priate function space); in more. descriptive terms we choose the
 f» in the convex set K(&) which is closest (in the norm) to fa
and then let G, be-the solution of the integral equation KG, = f,.
The method is ‘simple and has great geometric appeal; moreover
‘the construction of {G,} which we w1ll describe is sunple straight-
forward, and effective.

The remalnder of this ‘paper is devoted to domg all of this
carefully. In §2 is the main development of the procedure, m this
section we suppose ‘that fg is known. In §3 we discuss the modi-
fications which need to be made in case f¢ is unknown but can be
estimated by density estimators {f,}. We discuss in §4 some basic
results relating the rate of convergence of G4} to G to the rate
of convergence of {fa} to fe. o .

We remark ﬁnally that this general framework can be apphed
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to cover another situation, namely that in which X =Y + Z with
Y and Z independent. If Z has density &, then clearly (1.1) holds
with ¢g(x, u) = kB(x —u).- The fifth and final section of the paper
is devoted to a comprehensive example of th1s kind in which Z
has the N(0,1) distribution. : ' i

2. Estimation of G when f is kmown. In this section we
discuss the details of the COl’lStI‘uCtIOIl of the estimates {G,} in ‘the
case where f is known. The method is an application of some
elementary notions from approximation theory.

. Let () be a class of cdf’s which is equigbntinuous at infinity,
that is, 1 —[F(e) — F(—a)] converges to zero as ¢ — o uniformly
over all F in (. An example of such a class is the set (Jrp of
cdf’s F . which have the property that for some R >0, F(x)=0
for < — R and F(z)=1 for x>R. ‘ ‘

Let (S, %, #) be a measure space and define the integral opera-
: tor K on (J by the expression (1.2), where

(AD) g:S x R—»R is Borel measurable and for each x in S
- - the map #— ¢(x, ») is continuous and vbounded.

K isA well-defined because the boundedness of ¢ entails the conver-
gence of the integral foreach # in § and G in @. The functmn'
KG .is also denoted by f¢. .

‘A sequence {F,} of cdf 's is said to converge completely to a
function F - provided it-converges Weakly to F and F is itself a
cdf. A mecessary ‘anﬂ -sufficient condition for a sequence of cdf’s
-which converges weakly to a function to converge completely to the
same limit is that the sequence be equicontinuous at infinity [11, p.
180].  In this section we shall show how to construct a sequence of
cdf 's which éonverges completely to the prior distribution G. In
order to do this we will require that g satisfy the following con-
dition. Let m dénote Lebesgue measure on the real line R.

If G, and G; are nondecreasing functions on R and if
‘(A2) KG, and KG, are defined and equal almost everywhere [2],
then G; and G, differ only by an additive constant.
~We call this condition the u-identifiability condition. For p = m it
is discussed by Teicher [16] and a charaéterization of this. condition
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in spaces of continuous functions is given by Blum and Susarla [1].
Put briefly the condition says that if an equation of the form KG
= f has’' a nondecreasing solution, than it has exactly one non-
decreasing solution, apart from an additive constant.

Let O¢ denote the image K(Q) of ( under the integral
operator K. (A2) guarantees that K is injective on (J so -that
K- is well-defined on OX. The following lemma shows that if {f,}
c X than the natural choice for an estimator of G works provided -
only that {f.} converge to f¢ in measure [«] on S.

LemMMA 21. Let (A1) and (A2) obtain. Suppose (f.) C O¢ and
{fu} converges to Je in measure [p]. Pul G,= “lf,,; Then {G.}
converges completely to G. ‘

Proof. G, is well-defined by (A2) and f. € O¢. Let {Ga.} be -
an arbitrary subsequence of {G,}; by Helly’s weak compactness
theorem [11, p.179] and the equicontinuity of @ at infinity there
is a subsequence {G,,k} and a cdf H in ) with {G,,k} converging
completely to H, Then by the Helly- Bray theorem [11, p.182],
KG,,ki (x)-—»KH(x) foreach  in S. But KH=KG a.e. [z]
because every sequence of functions which converges in measure has
a subSequenee with converges a.e. to the same limit. Then by (A2),
H =G + ¢, but ¢ must be zero, smce both G and H are cdf's.
Thus every subsequence of {G,} has in turn a ‘subsequence which
converges completely to G, so {G,} converges completely to G.-

In order to get a *“good” choice of sequence {f,} in & we
will exploit some convexity properties of (J. Note that the f, are
not yet related to any density estimators because f¢ is assumed to
be known We require a third and final hypothesis about 9. Put

by(x; G) f g9z, u)l’dG(u) The condition imposed is

For some p in ]1, o[, [bs],1, ., is uniformly - bounded

“over (J.

(A3) LY(w)
A sometimes useful dlfferent condition which is suﬁ‘iment but not
necessary, for (A3) is

B,(x) =sup{|b,(x; G)|: G in (J} is integrable [x] for

(AS) some P in ]J1, oof.
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A more,readily verified condition which is sufficient for (A3) is
@z sw{ 1oz, w12 mdn): v in Rj<e.

LEMMA 2.2. Let (Al) and (A3) obtain. Then X is @ ‘compact
convex subset of L*(p). :

, ' Proof. The convexity of O is entailed by the convexity of
and the linearity of K. X is a subset of L?(z) by Jensen’s
‘inequality 'and (A3). To show &{ is compact, let {fu} be.in 9¢,
Ju=KGy, G, in (J." Helly’s weak compactness theorem  and the
equicontinuity of ) at infinity give the existence of a subsequence
{Gas,} of {G,} and a cdf G with {G,,} converging completely to
G. By the Helly-Bray theorem, f,,k(yx)%KG(x) for each  in S.
The inequality |f () —KG(2)|? < 207[[8,(x; Gu)| + 155(2; G)I]
is used together with (A3) and the Lebesgue dominated convergence
theorem to show that f, — KG in L?(x), and this completes the
proof.

" Before proceeding, we wish to assuage the reader who has
begun to wonder what all the fuss is about. After all if f is
known and has the form (1.1), then all that need be done is solve
(1.1) for G. If one is fortunate enough to be able to solve (1.1) in
.closed form then nothing more need be said. What is given here

is-a procedure for bsolvingf a type of equation (namely an integral
~ equation of the first kind) which is notoriously difficult to solve.

The procedure has the additional benefit that each of the approximate
solutions is a ¢df. An .often-used method for solving such an equation
is the eigenfunction expansion. This method is inappropriate here
because the resulting sequence of functions which convérges to G
will not consist of cdf’s. . We now make a final digression to discuss
a few elementary properties of metric projections. A ;

In a uniformly convex Banach space (such as Lo(p), 1<p< oo,
[3D), a Iidnempty closed convex set contains a unique element. of
“smallest norm "[5, p.74]. Hence for each f in L?(z) there is an
f in ©O¢ such that |f —ijP(”> = inf{|f — Rlrtcw: & in O¢}. Define
P: Lt(p)—>O¢ by P(f)=Ff P iswell-defined since f is uniquely
determined by f, and is called the metric projection on &X. The
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' following lemma gives some continuity properties of P,

LEMMA 23. Let 1< p<<oo. Then P is a continuous wmap of
L(n) onto OX. If p=2, then P is a ‘nonexpansive map.

‘Proof. The first assertion is Theorem 2 of [8]. For the second,
see page 157 of [9]. '

We now return to the main thread of our development. The
Krein-Milman theorem [5, p.440] tells us that ¢ is the closure of
the convex hull of its extreme points. Since L?(x) is separable for
1< p<< oo, we may choose a countable dense subset {¢,} of ext(&().
In fact, the extreme points of £ are the images of the extreme
points  of {) under K because K is injective on (J by (A2).
Thus there are c¢df’s E, in (J) such that e, = KE, If = g,
then the situation is particularly nice. Let V be the unit step
(Heaviside) fﬁnction; it can be shown directly or as a consequence
of theorem V.8.6 of [5] that ext((Jr) = {V(xr —u): —R<u <R}
If OCr=K({r) it follows that ext(&(r) = {9(x, u): — R<u <R}
It is also easy to show that if {7.} is a countable dense subset of
the interval [— R, R] then e, = ¢(-, 7,) will do for a countable
dense subset of ext(EXr) provided D.g is in L2(p). '

Let S, = cofey,---, e,}. It can be shown that as a consequence
of (A2) the set {e,} is linearly independent, so that S, is a simplex.
The following lemma shows that the S,’s fill out &¢ 'as 7% — 0o,

Lemma 2.4 OC={J S,.

Proof. Since O¢ is closed and S, is a subset of £X, Wevhavwe
the inclusion of the union in &X. For the reverse inclusion let f
be an element of £ and choose &> 0. ‘Then there exist @y,- -+, da
in ext(Q() and nonnegative numbers #;,---, £, summing to one for
which |f — Ntit:a:] <e/2. For each i choose ¢; so that le; — a;]
<e¢/2. Then |f — Ziatie| < |f — Ziatia:] + Diatile —ail <e.
Since ¢ is arbitrary the result follows. ‘

COROLLARY 25. Let f be an element of L*(u). Then d(f, S,)
= d(f, &) as n— . | ~
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Proof. - Since S, is included in S,.; the sequence {d(f, S,)}
is decreasing; since S, is included in 9¢, d(f, &) is a lower
bound for it. Suppose d(f, O¢) + 6 were a lower bound for some
~0>0. By the lemma there exist N and % with % in S, for »
>N and d(k )<<d8/2. Then d(k, f)<dk, X))+ d(f, O0)
< d(f, &¢) + 8/2. This contradiction shows that d(f, 9¢) is the.
greatest lower bound for {d{f, Su)}, “and from this the result
follows. ‘

COROLLARY 26. Put P,=Ps. If f is an element éf L?(u) ,
then P,(f)— P(f) in L*(z) as n— oo,

Proof. The proof of this is given on page 111 of [8].

COROLLARY 2.7. If f is an element of O, thew P,(f)— f in
L*(y) as m— oo. ' -

Proof. This follows because P(f) =f.
~ The preparation for the final result is complete. Put f, = P.(fe):
note that f, is an element of = £¢ and that as a consequence of
Corollary 2.7 {f,} converges in measure [2] to fs. Lemma 21
then applies to show that {G,} given by G, = K-!f, is a desired
sequential estimator of G. We collect these results as a theorem.

THEOREM 2.8. Let (A1), (A2), and (A3) obtain. ~Then {G.)
given by G, = K-'P,(fs) converges completely to G.

If it happens that G & () (i.e., we have not made a good choice
of (7)), Corollary 2.6 shows that the sequence {G,}— G* = K- P(f¢).

- G* 1sa cdf in (J and can be considered a “best approximation”
to G out of (J in the sense that for every H e (), H+# G*,
\fe — KG*|,< |f¢ = KH|,. In practical applications it often suffices
to let () = Pr for some sufficiently large R since a priori bounds
~on the support of the prior could be rationally chosen. ,
Since P,(f;) is represented as a convex corribination of {ey,---,
e,}, K-'P,(f¢) is a convex combination (with the same cbeﬁiciehts)
of {Ey---, E,}. Once again if @ = Q@ the situation is particularly

nice because in that case the E,’s are unit step functions and G,
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is a step function with at most #z points of discontinuity.

We have thus reduced the problem to the computation of the
metric projection of fg on S, This is the simplest possible kind
of convex programming problem, and many good methods are
available for its solution. When p = 2, it is possible to take advan-
tage of the Hilbert space structure of L*(u). “The method of [14]
is applicable in this case; a similar but improved method is under
development and will be published elsewhere [17]. This new method
gives a procedure for the computation of the metric projection on a
polytope in a Hilbert space by the solution of only a finite number of
consistent systems of linear algebraic equations. Thus it enables one
to compute P,(f¢) (incase p =2) by a procedure which is linear
and terminates after a finite number of steps, in contrast to many
other iterative schemes for solving linear and nonlinear programming
problems. Thus the procedure given here for estimation of G is‘
certainly as simple as any other in the literature, and is often
simpler. It has the further advantage that its development is com-
pletely obvious from elementary geometric considerations.

3. Estimation of G in case f is unknown. In this section we
shall discuss the modifications necessary to the procedure in §2 in
case fg is unknown. We shall suppose that there is a sequence
{fa} of density estimators of ‘fc,'- constructed from the independent
observations %, Z,--- from X. The modification is essentially to
put f, = P,(f,) instead of P,(f¢) and proceed naturally.

LeMMA 31. Suppose (fa} converges to f in Li( ). Then Pa(f.)
= P(f) in L¥z) as n— o,

Proof. By Lemma A of [8] for each ¢>0 there is a §>0
such that |P.(f) —P.(f)] <e whenever |[f —f'|<<é. The
remainder of the proof uses Lemma 2.3. '

LEMMA 3.2. Supﬁose (A3") holds, {f.} c L*(n), and fo—f iiz
measure [n]. Put f,= min{fs, B,}. Then fa— f in L2(p).

Proof. This is a consequence of the Lebesgue dominated -con-
vergence theorem.
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Observe that putting £, equal to the minimum of f, and the
function of (A3"") would also work. ‘

THEOREM 3.3. Let (Al), (A2), and (A3) oblain. Suppose {f,} is
a sequence of density estimates of fc which convergesto fe in L*(u)
 almost surely. Then the sequence {G,} defined by G,= K-'P,(f.)
converges completely to G with probability 1.

Proof. Let @ be a fixed element of the set of probability 1 on
‘which {f.} converges to fz. By Lemma 3.1 and the fact that P(f¢)
= fc we obtain for the corresponding sequence {f.(*; w)} the con-
vergence of {P,(fu(*; ®))} to f¢ in L?(x), and hence in measure
- [l BY Lemma 2.1 we obtain the complete convergence of {G,}
defined by G.(z; o) = K“‘P,,(f,,({; 0))(x) to G, and this completes
the proof. | |

COROLLARY 3.4. Let (Al), (A2), and (A3’) obtain. Suppose {f.}

is @ sequence of density estimates of fe which converges to f¢ in

measure [ 1] almost surely. Put f, = min{ Juy B3}, Then the sequence

{Ga} defined by G,=K-'P,(f,) comverges completely to G with
probability 1.

Proof. This follows from Theorem 3.3 and Lemma 3.2.

Thus it is seen that the methods of §2 carry over completely to
this case with only minor changes. The most significant 'differencé
is that the result obtained is probabilistic because the convergence

of the density estimators to f¢ is probabilistic. k )

' Most. often in practical applications this method will be employed
with § =R and x = m, Lebesgue measure.. The reason one might
wish to use another. measure space (S, 3, z) instead is that the
treatment of various kinds of rate of convergence (of {G,} to G)
problems may be facilitated 'by a suitable choice of (S, F, ). We
will discuss this problem in general in the next section and give an
example in §5.

 4. Rate of convergence of the estimating sequence. In this
section we give a general framework for studying the rate of con-
vergence of {G,} to &. We shall restrict ourselves to the case
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P =2 in order to take advantage of the fact that in a Hilbert space
~the metric projection on a closed convex subset is Lipschitz with
constant 1. Unfortunately this happy property does noet carry over
fo even"the nicest'Banach‘ spaces, even if the ‘Lipschitz constant is
allowed to vary from point to point [10]. We will first use the
Lipschitz property of metric projections in L*(x) to get some
information about the estimators {f,} in terms of the estimators {f,}.

THEOREM 4.1. Suppose {f,} C Lz(u) cé;;werges to f;;\ in L*(z).
Then |P(f.)—Jfcle < |fa—FSele

Proof. [P — fuls = 1PU) — PUo)la < I — Fols.

COROLLARY 4.2. . .Suppose that sup{|P,(f) — P(f)ls: fin X} =
and that (A3') holds with p=2. Let {f.) converge in measure [u]
to fo and put f,, = min{f,, Bz Then |P.(f.) = fels < |fu —fela
4 oc,, : ’ '

A result about the rate of convergence of {G,} to G is next.

"THEOREM 4.3. Let (Al) and (A2) obtain, and let (A3) hold with
Pp=2. Let X be a normed linear space comtaining (. Suppose
“1: OC > X is bounded on span(9(), i.e. sup{|K-'f|x|f s [ in
span(&X), f#0} = £ < co. Suppose {f,} comverges to fc in L*(u)
with probability 1. Then {G,} defined by G,= K-'P(f,) has the
property that for each n, |G, — Glx < elf. — fcl. with probability 1.

Proof. Let o be a fixed element of the set of probability one
on which {f,} converges in measure to fs. For the corresponding
So=Fa(*; @) and G, = Gu(+; 0) we have |G, — Glx= K (P(fa)
—fe)lx = K- (P(f)—P(fe))|x < &| P(fa) — P(fe)le < £l fu— Folar

and this cempleteé the proof.

| COROLLARY 4.4. Suppose that sup{ lP,,( ) —=P()ls: f in 6}
= &y, Then under the same conditions as Theorem 4.3, {G,} defined

by Gu.=K-P,(f,) has the property that for each n, |G.— G|x<
lfe — fele + @ with probability 1.

- REMARKS 1. @, is certainly always bounded by the diameter of
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£X. Using the compactness of £ it can be shown‘ that in fact
o,—0 as m—oo. If one can compute P(f,) directly then the
inconvenience of the «, is avoided. '

" 2. Results analagous to Corollary 3.4 are obtained if we suppose
that (A3’) holds instead of (A3). ‘

3. The only difference between Corollary 4.2 and Theorem 3.3
is the hypothesis of the boundedness of K-! on span(&(). Certainly
K-' is well-defined on span(&X) because (A2) implies that K is
‘injective on span((), and K-! islinear. To get some boundedness
of K-! we may employ the freedom of choice we have of (S, Zu)
and X Of course this freedom is not unlimited when ¢ is given
because (A1), (A2), and (A3) must continue to be satisfied. The
example we will give in §5 shows how a balance can be struck
among these conflicting requirements in case ¢ arises from a location
parameter family of N(0,1) densities. Broadly speaking what needs
to be done is to make the topology of L?*(x) strong enough (by
choosing S, £, and ) and the topology of X weak enough (by
choosing the measure of the rate of convergence of {G,} to G) so
that K becomes an open mapping on span ((J)). Of course the
~ choice of X depends also on what kind of rate of convergence
result is desired for {G,} (e.g. V(G,— G)—0, |G, — Glg—» 0,
etc.), and the corresponding L?(z) tells us how strong the conver-
gence of the estimators of f; needs to be to obtain this rate of
convergence. ’

5. Example. In this section we give an example which illustra-
tes many of the points of the previous development. We' considAer
(1.1) with a location parameter family of N(0, 1) densities. . Thus
the equation we consider is

51) f(@)=(2m)710 7 et aGw) .

To determine the set (J) we will use in this example we choose s
linearly independent c¢df’s G,---, G° having finite second ‘moments
and let s = co{G,---, G¢}. This is a kind of parametric assumption
and is an expression of a belief that the prior distribution G is
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* made up of the components G'--:, G° in varying amounts. We
wish to stress that this kind of assumption is not required in general
for the procedure in §§2 and 3, but was chosen in order to have a
relatively simple example of the rate of convergence result in §4.
As a rule the inverse of the integral operator K defined on the
set of all cdf’s by

(52) KG(x) = (2)1 [ o691 4G (u)

while it will be well-defined because the normal family is identifiable
(see also Theorem VIIL 7.5 of [7]), will net have good boundedness
properties‘on any infinite-dimensional subset of its range. For an
indication of why this should be so, consider. K;: BC(R)— BC(R)
defined by ’

Ku(z) = 2m)10 [ e () du.
Because of the identity

o0
e—n212 einr = (277:)—1/2 f e-—-(x——u)zlz e dy ,

it is seen that for =0, 1,---, e~"/? is an eigenvalue of K; of
(real) multiplicity at least 2. These eigenvalues have a limit point
at zero, and so zero must be in the spectrum of K:. However, zero
"-is not an eigenvalue of K; [7, Theorem VIIL 6. 3], so it must belong
to either the continuous or the residual spectrum of K, In either
case Ki' exists but is unbounded on the range of K.

In this example we shall measure the rate of convergence of
{G.} to G by V(G,— G), where V(G) stands for the total varia-
tion of G on the real line. Thus we shall consider K operating
in the Banach space NBV(R) of functions of bounded variation
on the real line, normalized to zero at — oo, with |G| =V (G).
We will also denote ‘this norm by | |v. Note that the set of c¢df’s
~is a convex subset of the unit sphere of this space. We shall want .
the image &¢s of (Js under K to lie in some L?*(u), and this
will be accomplished by a suitable choice of (S, 2, #). Before
proceeding with this we wish to observe that while the above
“argument does not- deal directly with the question of unboundedness
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of K-1: span(O(s) — span{({s), it does serve to indicate that K-!
will probably fail to be bounded on the range of K.

Choose S = C, the complex plane, ¥ the o-algebra of Borel-
measurable _subsets of €, and u = wdm, where m; is Lebesuge
measure on € and w is a weight function given by w(z, ¥)
= (1+ 22)(1+9*)"te". Then (Al) is clearly satisfied. Suppose
KG, and KG, are equal a.e. [£]. Then they are equal everywhere
on C because they are ‘continuous, and in particular KG.(x)
= KG,(x) for all real x. It then follows from Theorem VIIL7.5
of [7] that (A2) is satisfied. For (A3), let z=x + iy be a com-
plex number. Then for every G in (J;, there are nonnegative
numbers #i,---, £, summing to 1 for which G = Xj..¢; G’, and

[ 18z 61 aa2) < (Var2) [(5/4) + max [ wrd6i ),

which is finite and independent of G. Thus (A3) is also satisfied.
Incidentally this is an example in which (A3’’) fails to be satisfied.

Let {f.} € L*(#) be any sequence which converges to f¢ in
L*(x) (for example, {f,} might be some suitably chosen sequence
of density estimators converging to fe with probability 1). We
may dispense with the approximating projections P, in this example
because &, is itself a simplex and P(f,) = Px (f,) can be com-
puted directly by the methods of [14] or [17]. Then Theorem 3.3
with P, = P for every # tells us that {G,} givenby G,=K"*P(f,)
converges completely to G (with probability 1 if appropriate).
However, we are also interested in a rate of convergence result
about |G, — G|y (this is the reason for all the additional structure),
and this, together with the inversion of K, is discussed below.

‘Let {es} be a sequence of positive numbers tending to zero as
n— co, and let {fi} © O, A = KG,. Then for 1G, — Gly <<e, it
is necessary and sufficient that

(5.2) NE o =) jryy < em 0<t<1,
[7, theorem VIIIL. 10. 3], where

53)  Ef(@) = @) o flz + iyddy, 0<t<1.

OCs is a subset of the class A of Hirschman and Widder, so that
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if f is an element of Q{s ‘then E:f is given by (5.3) [7, p.180].
The operator E; is the e—*?* of [7, Chapter VIII], and [7, Theorem
VIII.7.5] shows that lims.;-E; properly interpreted, inverts (5.1).
‘With the additional structure we have imposed we will be able to
. show that (5.2) holds. '

PROPOSITION 5.1. span(9{s) C L*(x).
Proof. It suffices to show that KG’ & L*(»), j=1,--:, s. We
have : 2

L 1KGI ()1 u(az)
[m e—(a+iy—wtrz dGi(u) g

e
: 0 A+ 2)A + ) e dr dy

< —;— f : f :e-w—wz dGi(u) (1+a*) da

< Ve [70(5) +wldein < .

~ PROPOSITION 5.2. For 0<t<1, E; is a bounded linear operator
Srom L*(n) into L'(m).

Proof. Let f be an element of L?(x). Then
CE S 1w |
= (2nt)*”2j:m’f_°°e-y“2’f(x +éy) dy|dx

< @et)=2 [ 7w, 9) 12 | £ (@ + i) | e w(a, y) 1 dy d

N @ ) 172
<1 L@ty (7 [ 111+ 29 (1 + 4?) dy dn)
= constant X #~Y4(1 — )34 | f| 12, . ~ -

Thus |E:| < constant x =41 — £)~¥* for 0<?<1.

In order to satisfy (5.2) we need the bound on |FE;| independent
of £. This cannot be done over all of L?>(x), but making use of
the finite dimensionality of the subspace span(&(,) this property
can be obtained on span(&(;). We shall write E; for E:|span(9(s),
i. e. the restriction of E; to the subspace span(&¥s). ‘

. PROPOSITION 5.3. sup{l|E7|: 0< t<¢1} =B < oo,
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Proof.
NE: KG | 11w
) oo 5] . o -
_ (27[15112)_1/ lf e_yzlztf e~ +ir-012 dGi(u) dy| da
-0 |/ =0 ~co

fmfwe-(“-f”zm2 €% dy e~ dGi(z +v) dar
—co v/ ~o0 : t

= (2nt1’2)—1[:
= @@ =) [ [ emtemtn0- dp aGi(w) = 1.

Thus if f = Xja12; KG7 we have |E;f|iim < Zjal2;] for all ¢
in 10, 1[. By Proposition 5.2 and because span(9(;) is finite-dimen-
sional, hence closed, the resonance theorem [5, Corollary IL 3.21]
applies to give the result. ‘ ‘ ‘

The rate of convergence result we have been preparing for is
the following. :

THEOREM 5.4. If {f.} comvergesto fo in L*(n) (with probability
1) then G,= K~'P(f,) satisfies |G, — G|y < Blfy — felrxw (with
Drobability 1). ‘

Proof. |E:(P(f,) —fe)liiem
= |E{(P(fa) — P(fe)) I rrcm>
< B|P(fa) — P(fe) 12w
< Blfs — felr2wm:

“The result now follows from (5.2).

» REMARKS., 1. The restriction of finite second moments of Gt,---,
(¢ is not essential. With suitable modifications of the following
development it can be replaced by conditions like finite 7th moments
for some 7 >1 or compact support of all the G',---, G*. . '

2. Theorem 54 tells us that V(G, — G) is controlled by the
rate of convergence of {f,} to f¢ in L%*(gx). It would be of some
interest to know‘exacytly what B is, but this is not easy to discover ~
in general because the proof of the resonance theorem is not con-
structive. Experiments with some special cases indicate that B
behaves like s |

. 6. Concluding remarks. ‘The principal advantages we wish to
claim for our methods are two. The first is that only fairly “weak”
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convergences of the estimators {f.} to f¢ are required. In general
we require onljr a convergence of averages in the x-domain . (the
a.s. L*(p) convergence), in contrast to, for example, the much
stronger a.s. uniform convergence in the x-domain required for
the method of [1]. In fact if (A3’) holds all that is required is
convergence in measure (in the x-domain) almost surely. What we
give up to. gain this are simple proofs of the consistency and
asymptotic unbiasedness of the estimators P,,(f,,). These problems
are connected with some deeper unanswered questions in approxima-
tion theory, such as the uniform or a.e. convergence of {P,(f,)} to
f¢ when {fs} converges uniformly or a.e. to f¢.- The second
advantage is ease of computation. The principal tool we use is the
metric projection on a simplex. In a Euclidean or Hilbert space it
is shown in [14] and [17] that this is a computationally reasonable
procedure, with the method in [17] actually carrying out the solution
(of this convex programming problem) by a completely linear
procedure. " |

The applications of the estimation of the prior distribution are
numerous in the literature. We mention only a few, including those
found in [2]. [4], [6] and [15] and applications to the empirical
Bayes decision theory problem of Robbins described in [1] [12], and
[13]. Our method is apphcable to all these cases, with appropriate

adjustments.
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