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. Abstract. A general form of minimax principle involving two
functions with one of them majorizing the other is established.. When
the two functions coincide, Sion’s version of Von Neumann’s minimax
theorem is obtained. Applications to systems of inequalities, Sup Inf Sup
inequality and fizxed points are also considered.

1. The purpose of this note is to prbve a general form of
minimax principle:

THEOREM 1. Let E be a real 'Hausdorﬁ‘ topological wvector space
and F a real vector space, and let X and Y be nonemply convex
subsets of E and F respectively, of which X is assumed to be compact.
Suppose that | and g are two real-valued functions defined on X X Y
with the following properties:

1) f(z,9)<9(x,y) forall (x,y) € X XY, ,

(2) x— f(x, y) is lower semicontinuous on X for each y of Y ;

(3) y— f(x, y) is quasi-concave on Y for each x of X;

4) x—9(x, ¥) is quasi-convex on X for each y of Y ; and

(5) yw—9(x, v) is upper semicontinuous on convex hulls of finite
subsets of Y for each x of X. ;

Then Infsex Subyey f(2, ¥) < Supyey Infrex g(x, ¥).

We recall that a function f defined on a convex set is said to
 be quasi-concave (quasi-convex) if {x:f(x)>ea} ({z:f(x)<al)
is convex for each real number «. We also note that since any
Hausdorff topology which makes a finite-dimensional vector space a
topological vector space is necessarily the euclidean topology, we
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~ adopt the convention of endowing any finite-dimensional subspace
of a vector space with the euclidean topology. Therefore condition
(5) in Theorem 1 makes sense. :

When f =¢, Theorem 1 reduces to the Von Neumann-Sion
minimax theorem [8], for in this case the opposite inequality of
that in the conclusion of Theorem 1 holds trivially.

To show the merit of Theorem 1, we also consider in this note
its applications to systems of inequalities, Sup Inf Sup inequalities,
and fixed points. '

The auther wishes to expresé his sincere thanks to Ky Fan for
introducing him to minimax principles, and for many helpful dis--
cussions. |

2. Our proof of Theorem 1 .-follows the line of arguments as
presented in Ky Fan’s proof of the Von Neumann-Sion minimax
theorem when both X and Y are compact [5]. For this purpose,
we consider in this section an intersection theorem of ‘Ky Fan [5]
(see also [7]) with slightly relaxed conditions in the case when
only two sets are involved. k

THEOREM 2. Let E, F, X and Y be as in Theorem 1, and let A
and B be two subsets of X X Y. Suppose that -

(1) B®) ={yeY: (z, ¥) € B} is nonemply convex for each
z0f X and B(y)={x = X: (», ¥) € B} is open in X for each vy of -
Y. -

(2) A(y)={re X: (x, y) € A} is nonempty convex for each y
of Y and Alx)={yeY: (x, y) € A} is open in comvex hulls of
finite subsets of Y. :

Then AN B+ &.

Proof. Since X = U.ex Uyenw B(¥) = User B(y), and since
X is compact, there are ¥, -+, ¥» of ¥ such that ¢ = {B(y1), -,
B(¥y,)} is a finite open covering of X {p:}i-1 be a paftition of
unity of X with respect to ¢, i.e., each ¢; 1s non-negative con-
tinuous on X, Yo:(x) =1, and ¢:(z)>0=x < B(y:). Let H be
the convex hull of {yi,-:-, ¥4}, and define a mapping T: x—H by
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T(zx)=Y oix)y:, ze€X.
‘Since ¢i(x)>0=>2x € B(y:) = ¥: € B(x), and since B(x) is convex,
we have _ ;
T(x) e B(x) for all z€ X.

Now, as above, H = U.ex (A(x) N H). Since, by our assump-
tion, each A(x) N H is open in H, and since H is compact, there
are &y, -+, £m of X such that + = {A(x;) N H}%, is a finite
open covering of H in H. Let {&:}7: be a partition of unity of
H with respect to v, i.e., each &; is non-negative continuous on
H X&) =1, &(y)>0=>ye< A(x:) N H Let K be the convex
- hull of {xy,-:-, n} and define a mapping S : H—> K by

s =Y awa,  yeH.
Then
- Sw) e A(y) forallye H.
Now deﬁné a self mapping U of K x H into itself by

Uz, ) = (S(y), T(x)), (x, y)eKxH.
Obviously U is continuous; therefore, by Brouwer’s fixed point
theorem, there is (2, %) € K %x H such that (&, %) = (S(%),
T(xy)) or xo=S(y) and 9, = T (&), which implies that (xo, ¥o)
cANB. qg.e.d ' '
3. We are now gbing' to prove Thedrem 1. If either

Inf,ex Sup,ey (2, ¥) = — © or Supyey Infrex 9(x, ¥) = + ©,
then the theorem holds. We therefore assume that '

InfxeXSllDerf(x ?/) > — oo and Super Infrex g(x, Z/) <+ 0,
Let 2, # be any two finite real numbers such that

1 < Inf,ex Subsey f(, ¥) and z > Sup,ey Infacx 9(x, ¥) .

~“We need only prove that z > . '

Let B={(x,y) eX xY: f(x, y) > 1} and
’_‘{(xy v)EXXY. g(x7 ’!/)<ﬂ}-
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From the choice of 1 and g, it is obvious that A, B satisfy the
conditions of Theorem 2. Therefore thereis (o, %) € A N B. Con-
-sequently,

A< f (2o, Yo) < 9(20, ) <u,

' v which proves Theorem 1.

REMARKS. (1) Since Supyey f(2, %) is lower semicontinuous on
X, the conclusion of Theorem 1 is actually '

MinxeX SuPer flxe, ¥) < Super Inf,ex g(x, ¥).

(2) If, in Theorem 1, E is a real vector space which contains
X as its convex subset, while F is a real Hausdorff topological
space with Y its compact convex subset, and if conditions (2) and
(5) are replaced by

(2) x- f(x, y) is lower semicontinuous on convex hulls of
finite subsets of X for each y of Y;

(5) y—g(x, ¥) is upper semicontinuous on Y for each x of
X, respectively, then the conclusion becomes ’

Inf,cx Supyey f(x, y) < MaXer Infrex g(“f', 'y) .

4. We consider in this section some applications of Theorem 1.

I. Systems of inequalities. The following theorem generalizes
a theorem of Ky Fan [4]:

THEOREM 3. Let X be a nonempty compact convex set in a real
Hausdorff topological space. Lot fi,---, f be n real-valued lower
semicontinuous functions defined on X. Suppose that there arve n real-
valued convex functions @, ---, 0. defined on X such that fi(x)
<gix),xzc X i=1,---, n and such that for any n non-negative
numbers o; with Xiao; =1, there is a poini x € X for whick
Sraai0:(2) 0. Then there is xy € X such that '

filz) £0, i=1,---, n.
Proof. Let Y={y=(y, -~ %) ER: 4: =0, T,y =1}
Define f and ¢ on X XY by :

f@, ) = 3 i fil)
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oz ) =D yig:(x).
) i=1 .

Then the conditions of Theorem 1 are satisfied, consequenﬂy :
there is 2, such that

SuDer f(xo, ) = SuDer Z y:’f:’(wb)

< Supyey Infrex ,‘Y;' yi 0:i(x) .
"But from our assurription, for each ¥ of Y
Infiex Z:; v: 9:(x) <0,
therefore Suﬁyey Infrex 27w ¥: 9:(x) < 0. Since

SupyEY Z yt.fi(xo) S O y
i=1

~ we have necessarily fi(x,) <0, i=1-, n g.e.d.

II. SupInf Sup inequality.

THEOREM 4. Let X be a mnonempty compact convex subset of a
real Hausdorff topological vector space, and let Z be a nonemply

convex subset of a real vector space. Suppose that h is a real-valued
Junction defined on X x X X Z satisfying the following properties:

(1) x— k(x, x, 2) is lower semicontinuous on X for each z € Z ;

(2) z—> i(x, x, z) is quasi-concave on Z for each x < X;

3) x—h(x, vy, 2) is quasz'—co;wéx on X foreach (y, z) € X x Z;

(4) y— h(x, y, 2) is upper semicontinuous on X for each (x, z)
eX xZ; , :
and if nets {y,,} and {z,} converge, where {y.} is in X and {z2,} is
in the convex hull of a finite subset of z, then lim,sup {A(x, Ya, 2a)
— (x, Yo, lima 24)} < 0. Then there is xo in X such that

R(xo, X0, 2) < SuPzez Infrex Max,ey 2(%, ¥, 2)

for alZ zof Z-

Proof. Let f and g be functions on X X Z defined by
Hx, z) =hx, x, 2) ;
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g(x’ Z) = MaXyEXh(x’ y; z) .

Obviously, f and ¢ satisfy conditions (1), (2), (3) and (4) of
Theorem 1 if we let Y = Z. We will now show that condition (5)
of Theorem 1 is also satisfied. Let C be the convex hull of a finite
subset of Z, and let {z,} beanet in C converging to z such that
g(x, z,) converges. For each «, let ¥, be such that ¢(z, z.)
= h(x, Yu, 24). Consider a converging subnet of {y.} and denote k
it again by {¥.}. We have then

lim, 9(x, 2,) < lim, sup k(x, Ya, 2)
+ lim, sup {(®, Ya, 2a) — B(Z, Ya, 2)}
< limg sup 2(x, Yq, 2)
< h(z, liMy Y, 2)
<9z, z),
which shows that ¢(x, z) is upper semicontinuous on C. We may
then apply Theorem 1 to conclude the proof. qg.e. d. '

COROLLARY 1. Let X be a nonempty compact convex subset of a
real Hausdorff topological vector space E. Let f be a continuous
mapping from X into E’, the topological dual of E with strong
topology relative to the bilinear canonical pairing <+, +> between E’
and E. Then there is xo € X such that

@), z— 2> <0
for all z of X. |
Proof. Apply Theorem 4 with Z =X and with % defined by
n(z, 9, 2) =<{f(¥), z—x>. q.ed

Corollary 1 is due to Browder [2, Theorem 3]. It is useful in
nonlinear functional analysis. = This kind of variational inequality
also follows directly from Ky Fan’s minimax inequality [6]. (See
also H. Brezis [1].) '

COROLLARY 2 [Tychonoff]. Let X be a nonemply compact convex
subset of a real locally bonvex Hausdorff topological vector space E,
and let T be a continuwous mapping of X into X. Then T has at
least one fixed point. ‘ '
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Proof. Applying Theorem 4 with Z = E’ and with % defined
by '

h(z, y, 2) =<z, T(y) — x>,
we conclude that there is x, € X such that
{2, T(6) — 24> < Subsep: Infrex Maxyex <z, Tz, T(y) — &> < 0

for all 2 € E’, which necessarily forces x, to be a fixed point of
IT.. q.ed.

1II. Fixed points. Our proof of Theorem 1 relies on Brouwer’s
fixed point theorem; here we illustrate the possible application of
Theorem 1 to iixed points by showing that Ky Fan’s generalization
[3] of Tychonoff’s fixed point theorem follows easily from Theorem 1.

THEOREM 5. Let X be a nonempty compact convex subset of a
real Hausdorff locally convex topological vector space E. Let T be a
set-valued upper semicontinuouns mapping from X inio itself such that
Jor each x of X, T(x) is a nonemply closed comvex subset of X.
Then there is x, in X such that x, € T (x,).

Proof. For =z in X and_ y in E’, the topological dual of E,
let '

f(xy ?I) = MianT(x) <’!/, 2 — $> ’
g(z, ¥) = Max.ex<¥, z — z).

It is easily checked that f, ¢ satisfy the conditions of Theorem 1;
there is, therefore, &, of X such that

Supyez: f (20, ¥) < Supyep: Infrex {(Max:ex<y, 2 — 20}
~ But for each %, there is = such that
¥, > = Maxzex<¥, 27,
that is,
Infrex (Maxzex<y, 2 — 2>} <0 for all y E'.

... We have then

flxo, ) £0 for all ¥y € E’,

that is,
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MinzéT(xo) <’!/, g x0> <0 for all y S ’

which implies that x necessarily'belongs to T (xy). g.e.d.
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