PROPER HOLOMORPHIC MAPPINGS OVER BOUNDED DOMAINS IN Cⁿ

BY

TAI-CHUNG LEE

Abstract. Let $a_i > 1$, $i = 1, 2, \dots, n$, be n real numbers such that $(\ln a_i)/(\ln a_i)$ are rational for $i, j = 1, \dots, n$, and let

$$U_{j}^{n} = \{z \in C^{n} | |z_{j}| < a_{j}, |z_{i}| < 1 \text{ for } i \neq j\}.$$

Let $\Omega(a_1, \dots, a_n)$ be the holomorphic envelope of $\bigcup_{j=1}^n U_j^n$. In this paper, we will determine all proper holomorphic mappings $\Phi: \Omega(a_1, \dots, a_n) \to \Omega(a_1^*, \dots, a_n^*)$.

Introduction. Consider the following problem: Given two bounded domains Ω and Ω' in C^n , determine all proper holomorphic mappings $\phi: \Omega \to \Omega'$. In this context, "proper" simply means that ϕ maps sequences in Ω converging to the boundary of Ω to sequences in Ω' converging to the boundary of Ω' .

In the case $\mathcal{Q}=\mathcal{Q}'=B_n$ (the unit ball in C^n), Alexander [1] showed that ϕ must be a biholomorphism. Combining the machinery of Chern and Moser [3] with the technique of Alexander [1], Burns and Shnider [2] proved that a proper self-mapping of a strictly pseudo-convex domain is a biholomorphism. On the other hand, Rudin [5] showed that all proper self-mappings of the polydisc are given by $(z_1, \dots, z_n) \to (\phi_1(z_{i_1}), \dots, \phi_n(z_{i_n}))$, where each ϕ_k , $1 \le k \le n$, is a finite Blaschke product in one complex variable and (i_1, \dots, i_n) is a permutation of $(1, 2, \dots, n)$.

In this paper we will determine all proper holomorphic mappings $\phi: \Omega \to \Omega'$ when Ω and Ω' are the special analytic polyhedrons to be defined in the following.

Let $a_j > 1$, $j = 1, \dots, n$, be n real numbers such that α_j/α_i are rational for $i, j = 1, \dots, n$, where $\alpha_j = \ln a_j$,

Received by the editors November 11, 1977.

$$U_i^n = \{z \in \mathbb{C}^n \mid |z_i| < a_j, |z_i| < 1 \text{ for } i \neq j\}.$$

It is well known that the holomorphic envelope $\mathcal{Q}(a_1,\dots,a_n)$ of $\bigcup_{j=1}^n U_j^n$ is given by

$$\Omega = \{ z \in C^{n} \mid |z_{j}| < a_{j}, \quad i = 1, \dots, n, \\
|z_{j}|^{\alpha_{i}} \mid |z_{i}|^{\alpha_{j}} < e^{\alpha_{i}\alpha_{j}}, \quad i \neq j, \quad i, j = 1, \dots, n, \\
|z_{i}|^{\alpha_{j}\alpha_{k}} \mid |z_{j}|^{\alpha_{i}\alpha_{k}} \mid |z_{k}|^{\alpha_{i}\alpha_{j}} < e^{\alpha_{i}\alpha_{j}\alpha_{k}}, \quad i \neq j \neq k, \quad i, j, k = 1, \dots, n, \\
\vdots \\
|z_{1}|^{\alpha_{2}\cdots\alpha_{n}} \mid |z_{2}|^{\alpha_{1}\alpha_{3}\cdots\alpha_{n}} \cdots |z_{n}|^{\alpha_{1}\cdots\alpha_{n-1}} < e^{\alpha_{1}\cdots\alpha_{n}} \}.$$

Since α_i/α_j are rational, we may consider that the 2^n-1 parts of the topological boundary of \mathcal{Q} are defined by 2^n-1 monomials ψ_j , $j=1,\cdots, 2^n-1$ of least degree and assume $\psi_j(z)=z_j$, $j=1,\cdots, n$. Our main result is the following theorem.

Main theorem.

1. THEOREM. Let $\Omega(a_1, \dots, a_n)$, $\Omega'(a'_1, \dots, a'_n)$ be two domains defined by (1) and let $\Phi = (\phi_1, \dots, \phi_n)$ be a proper holomorphic map from Ω onto Ω' . Then after a permutation among coordinates (in the target space), there are n real numbers $\theta_1, \dots, \theta_n$ and n positive integers m_1, \dots, m_n such that Φ is defined by

(2)
$$\phi_j(z_j) = e^{i\theta_j} z_j^{m_j}, \quad j = 1, \dots, n.$$

Before we carry out the proof of Theorem 1, let us write down a key lemma.

KEY LEMMA. Let $\{f_j\}_{j=1,2,3,...}$ be a countable family of holomorphic functions from U^n (polydisc in C^n) to U (unit disc in C). Let us denote $u \in C^n$ by u = (z, w), $z \in C$, $w \in C^{n-1}$. Suppose $L_j(\zeta) = \lim_{r \to 1} f_j(r\zeta, 0)$ exists for almost all $\zeta \in T$ (unit circle in C) and all j. Let $E_j = \{\zeta \in T | |L_j(\zeta)| = 1\}$, and suppose $\bigcup_{j=1}^{\infty} E_j$ covers T a.e. Then there is at least one j such that f_j depends on z alone.

Proof of the key lemma. Since the countable union $\bigcup E_j$ covers T a.e., one of the E_j must have positive measure say E_1 . For fixed $\zeta \in E_1$, 0 < r < 1, consider $f_1(r\zeta, w)$ as a family of holomorphic functions from U^{n-1} to U. Since $\lim_{r\to 1} f(r\zeta, 0) = L_1(\zeta) \in T$, by

7.3.2 of [5], $\lim_{r\to 1} f_1(r\zeta, w) = L_1(\zeta)$ uniformly on compact subsets of U^{n-1} . In particular, $\lim_{r\to 1} f_1(r\zeta, w) = L_1(\zeta)$ for all $w \in U^{n-1}$. Let $g_w(z) = f_1(z, w)$, then $g_w \in H^\infty(U)$ for all $w \in U^{n-1}$. For $w, w' \in U^{n-1}$, we have $\lim_{r\to 1} g_w(r\zeta) = \lim_{r\to 1} g_{w'}(r\zeta)$ for all $\zeta \in E_1$. Since E_1 has positive measure, $g_w(z) = g_{w'}(z)$, i. e., $f_1(z, w) = f_1(z, w')$. Which proves f_1 depends on z alone. Q. E. D.

Proof of the theorem. By the above lemma, there are n integers $1 \leq \sigma(1), \dots, \sigma(n) \leq 2^n - 1$ such that the holomorphic functions $\psi'_{\sigma(j)}(\emptyset(z))$ depend only on z_j , $j = 1, \dots, n$ (where ψ'_j are the monomials which define the boundary of \mathcal{Q}'). Then the proof consists of two steps.

Step 1. We show that after a permutation among coordinates (in the target space), $\psi'_{\sigma(j)} = \psi'_{j}$.

Step 2. From Step 1, we have

$$\Phi(z) = (\phi_1(z_1), \phi_2(z_2), \cdots, \phi_n(z_n)).$$

Now we show $\phi_j(z_j) = e^{i\theta_j} z_j^{m_j}$, which completes the proof.

Step 1. Let us assume $\psi'_{\sigma(1)} = \psi''_1 \psi'^s_2, \cdots$, where $r \ge 1$. Let $z^\circ = (z_1^\circ, z_2^\circ, \cdots, z_n^\circ)$ such that

$$\psi_{\sigma(1)}'(\varPhi(z^{\mathrm{o}})) = \psi_1''(\varPhi(z^{\mathrm{o}})) \, \psi_2''(\varPhi(z^{\mathrm{o}})) \cdots = 0$$
 .

Since $\psi'_{\sigma(1)}(\theta(z))$ depends only on z_1 , we have $\psi'_{\sigma(1)}(\theta(z_1^\circ, z'))$ = $\psi''_1(\theta(z_1^\circ, z')) \psi'^*_2(\theta(z_1^\circ, z')) \cdots = 0$ for all $z' \in C^{n-1}$ such that $(z_1^\circ, z') \in \mathcal{Q}$. Then at least one of the factors of $\psi'_{\sigma(1)}$ must vanish for all $(z_1^\circ, z') \in \mathcal{Q}$, and we may assume $\psi'_1(\theta(z_1^\circ, z')) = 0$ for all $(z_1^\circ, z') \in \mathcal{Q}$. We claim that ψ'_1 cannot be a factor of any $\psi'_{\sigma(j)}$, $j = 2, \cdots, n$. For instance, if $\psi'_{\sigma(2)} = \psi''_1 \psi''_2 \cdots$, where $t \geq 1$, let $|z_2| < 1$, then there are z_3, \cdots, z_n , such that $(z_1^\circ, z_2, z_3, \cdots, z_n) \in \mathcal{Q}$. Since

$$\psi'_{\sigma(2)}(\Phi(z_{1}^{\circ}, z_{2}, \dots, z_{n}))$$

$$= \psi'_{1}^{t}(\Phi(z_{1}^{\circ}, z_{2}, \dots, z_{n})) \psi'_{2}^{u}(\Phi(z_{1}^{\circ}, z_{2}, \dots, z_{n})) \dots$$

$$= 0$$

and $\psi'_{\sigma(2)}(\Phi(z))$ depends only on z_2 , we have $\psi'_{\sigma(2)} \circ \Phi(z_2) \equiv 0$, which is a contradiction. Since there are n such functions, hence

after a permutation among coordinates (in the target space), ψ'_{j} is the only factor of $\psi'_{\sigma(j)}$, $j=1,\dots,n$. So the only possibility is $\psi'_{\sigma(j)}=\psi'_{j}$, $j=1,\dots,n$. It follows that $\phi_{j}(z)=\psi'_{j}\circ \Phi(z)$ depends only on z_{j} , $j=1,\dots,n$. This completes Step 1.

Step 2. Let

$$U = \{z \in C | |z| < 1\},$$
 $rU = \{z \in C | |z| < r\}.$

From Step 1 we have

$$\Phi(z_1,\dots,z_n)=(\phi_1(z_1),\dots,\phi_n(z_n));$$

we first show that $\phi_j(\overline{U}) \supseteq \overline{U}$ and $\phi_j(a_j \overline{U} - \overline{U}) \subseteq a_j' \overline{U} - \overline{U}$, which will give us (2). Before we continue the proof, we have to make the following observation. If $|z_i^\circ| \leq 1$ then

If $1 < |z_1^{\circ}| < a_1$,

$$\mathcal{Q} \cap (\{z_{1}^{\circ}\} \times C^{n-1}) \\
= \{(z_{1}^{\circ}, z_{2}, \dots, z_{n}) | |z_{j}| < a_{j} | z_{1}^{\circ}|^{-a_{j}la_{1}}, \quad j = 2, \dots, n, \\
|z_{i}|^{a_{j}} |z_{j}|^{a_{i}} < e^{a_{i}a_{j}} | z_{1}^{\circ}|^{-a_{i}a_{j}la_{1}}, \quad i \neq j, \quad i, j = 2, \dots, n, \\
\vdots \\
|z_{2}|^{a_{3}\cdots a_{n}} |z_{3}^{\circ}|^{a_{2}a_{4}\cdots a_{n}} \cdots |z_{n}^{\circ}|^{a_{2}\cdots a_{n-1}} \\
< e^{a_{2}\cdots a_{n}} |z_{1}^{\circ}|^{-a_{2}\cdots a_{n}la_{1}} \}$$

$$\stackrel{\mathrm{def}}{=} \{z_{\mathbf{i}}^{\circ}\} \times \mathcal{Q}_{|z_{\mathbf{i}}^{\circ}|}.$$

It is clear that if $|z_1^\circ| > 1$, then $\mathcal{Q}_1 \supset \mathcal{Q}_{|z_1^\circ|}$. Coming back to the proof, let us suppose for some $z_1^\circ \in \overline{U}$ and $|\phi_1(z_1^\circ)| > 1$; then $\emptyset = (\phi_1, \dots, \phi_n)$ will map $\{z_1^\circ\} \times \mathcal{Q}$ properly onto $\{\phi_1(z_1^\circ)\} \times \mathcal{Q}'_{|\phi_1(z_1^\circ)|}$. Since (ϕ_2, \dots, ϕ_n) is independent of z_1 , then (ϕ_2, \dots, ϕ_n) will map \mathcal{Q}_1 properly onto $\mathcal{Q}'_{|\phi_1(z_1^\circ)|}$, which is a contradiction to the fact that $\emptyset = (\phi_1, \dots, \phi_n)$ maps \mathcal{Q} properly onto \mathcal{Q}' . That proves

$$\phi_1(\overline{U})\subseteq \overline{U}$$
 .

Suppose for some $|z_1^o| > 1$ and $|\phi_1(z_1^o)| \le 1$; then $\mathcal{O} = (\phi_1 \cdots \phi_n)$ will map $\{z_1^o\} \times \mathcal{Q}_{|z_1^o|}$ properly onto $\{\phi_1(z_1^o)\} \times \mathcal{Q}_1$, and hence (ϕ_2, \cdots, ϕ_n) will map $\mathcal{Q}_{|z_1|}$ properly onto \mathcal{Q}_1 . Then for some z_2 , $|z_2| = a_2 |z_1|^{-\alpha_2/a_1}$, any sequence $z_2^o \to z_2$, $\lim_{v \to \infty} |\phi_2(z_2^o)| = a_2'$. On the other hand, since $|z_2| < a_2$, we must have $|\phi_2(z_2)| < a_2'$, which is a contradiction. Hence we have

$$\phi_1(a_1\,\overline{U}-\overline{U})\subseteq a_1'\,\overline{U}-\overline{U}.$$

Consider ϕ_1 as a proper map from a_1U to $a_1'U$ and $\phi_1|U$ as a proper map from U to U, and let $\phi_1^{-1}(0) = \{w_1, \dots, w_m\}$. Then ϕ_1 can be written as

$$\phi_1(z_1) = a_1' e^{i\theta'} \prod_{j=1}^m \frac{z_1/a_1 - w_j/a_1}{1 - (\overline{w_j}/a_1)(z_1/a_1)}$$

and

$$\phi_1(z_1) = e^{i\theta} \prod_{j=1}^m \frac{z_1 - w_j}{1 - w_j z_1}.$$

In order to have the two expressions represent the same function, we should have $w_1 = w_2 = \cdots = w_m = 0$ and

$$\frac{a_1^{\prime} e^{i\theta^{\prime}}}{a_1^m e^{i\theta}} = 1,$$

i. e.,

$$\phi_1(z_1) = e^{i\theta} z_1^m.$$

Similarly we can prove

$$\phi_j(z_j) = e^{i\theta'} z_j^{m'}$$
. Q. E. D.

2. COROLLARY. Φ exists iff there is a permutation among $(1, \dots, n)$ and positive integers $m_1, \dots m_n$ such that

$$a'_{\sigma(j)} = a_j^{m_j}$$
.

3. COROLLARY. Let $P(\Omega)$ be the subgroup of $\operatorname{Aut}(\Omega)$ consisting of the elements of permutation among coordinates. Then

Aut
$$(\Omega)/P(\Omega) \simeq T^n$$
.

REFERENCES

1. Alexander, H., Proper holomorphic mappings in Cⁿ, Indiana Univ. Math. J. 26 (1977), 137-146.

- 2. Burns, D. Jr. and Shnider, S., Real hypersurfaces in complex manifolds, Proceedings of Symposia in Pure Math. Vol. 30, Part 2, pp. 141-168, Amer. Math. Soc., Providence, R. I., 1977.
- 3. Chern, S.S. and Moser, J.K., Real hypersurfaces in complex manifolds, Acta. Math. 133 (1974), 219-271.
 - 4. Lee, T.C., Ph. D. thesis, Univ. of Wisconsin, 1974.
 - 5. Rudin, W., Function theory on polydiscs, W. A. Benjamin, 1969.

Institute of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.