AN n-CUBE-FILLING CURVE

BY

RONG-SONG JIH

Abstract. We give a concrete *n*-cube-filling curve for $n \ge 2$.

- 1. Introduction. Ever since Peano constructed the first curve which fills $[0, 1] \times [0, 1]$, various square-filling-curves have been presented by Hilbert, Moore-Schoenflies, Lebesgue, Schoenberg and Munkres etc. Schoenberg's method is the most interesting and simplest among them. It is also known that there exist n-cube-filling curves (e.g. see [1, p. 105] for the proof of existence). In this article we modify Schoenberg's formulas to construct a rather concrete example of such a curve, i.e. we give a continuous surjection from [0, 1] to $\Pi^n[0, 1]$.
- 2. Generalized Schoenberg's method. Let $n \ge 2$ be a fixed integer and ϕ the even continuous function on R with period 2 which satisfies

$$\phi(t) = k \qquad \text{if} \quad \frac{2k}{2n-1} \le t \le \frac{2k+1}{2n-1},$$

$$\text{where} \quad k \in \{0, 1, 2, \dots, n-1\},$$

$$= (2n-1)t - k - 1 \quad \text{if} \quad \frac{2k+1}{2n-1} \le t \le \frac{2k+2}{2n-1},$$

$$\text{where} \quad k \in \{0, 1, 2, \dots, n-2\}.$$

Define $\vec{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ by $\alpha_j(t) = \sum_{i=1}^{\infty} (\phi[(2n-1)^{ni-n+j-1}t]/n^i)$, $j=1,2,\cdots,n$. The inequalities $0 \le \phi(t) \le n-1$ imply $0 \le \alpha_j(t) \le 1$ as well as the uniform convergence of all series, and hence imply the continuity of all α_j . We claim that $\vec{\alpha}$ maps [0,1] onto $\prod^n [0,1]$. Let (x_1,\dots,x_n) be a point in $\prod^n [0,1]$ with each x_j written in the n-ary expansion: $x_j = \sum_{i=1}^{\infty} (x_i^{(j)}/n^i)$, where $x_i^{(j)} \in \{0,1,2,\dots,n\}$

Received by the editors March 23, 1977.

n-1, $j=1, 2, \dots, n$. Set $S_0 = 2 \sum_{i=1}^{\infty} (S_i/(2n-1)^i)$, where $S_{ni-n+j} = x_i^{(j)}$; then $0 \le S_0 \le 1$ and $(2n-1)^r S_0 =$ an even integer $+2 \sum_{i=r+1}^{\infty} (S_i/(2n-1)^{i-r})$. If $S_{r+1} = k$, then

$$\frac{2k}{2n-1} \le 2 \sum_{i=r+1}^{\infty} \frac{S_i}{(2n-1)^{i-r}}$$

$$\le \frac{2k}{2n-1} + 2 \sum_{i=r+2}^{\infty} \frac{n-1}{(2n-1)^{i-r}}$$

$$= \frac{2k+1}{2n-1},$$

and hence $\phi[(2n-1)^r S_0] = S_{r+1}$ for $r = 0, 1, 2, \cdots$. Thus we have

$$lpha_{j}(S_{0}) = \sum_{i=1}^{\infty} \frac{\phi[(2n-1)^{ni-n+j-1}S_{0}]}{n^{i}}$$

$$= \sum_{i=1}^{\infty} \frac{S_{ni-n+j}}{n^{i}}$$

$$= x_{j} \quad \text{for} \quad j = 1, 2, \dots, n.$$

i.e. $\vec{\alpha}$ maps [0, 1] onto $\Pi^n[0, 1]$.

REFERENCES

- 1. J. Dugundji, Topology, Allyn & Bacon, Boston, Mass., 1964, pp. 104-105.
- 2. I. J. Schoenberg, On the Peano curve of Lebesgue, Bull. Amer. Math. Soc. 44 (1938), 519.

INSTITUTE OF MATHEMATICS, NATIONAL TSING HUA UNIVERSITY, HSINCHU, TAIWAN 300, R.O.C.