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Abstract.  The distribution of the resolvent set and the continuous
spectrum of a selfadjoint operator reduced from an exterior problem
for some symmetric hyperbolic system with dispersion term is charac-
terized by the set of real roots of the polynomial symbol for the un-
perturbed system considered in the same -exterior domain and with
star-like analytic wave fronts; there is no need of assuming -convexity
and nonvanishing curvature. Moreover, the continuous spectrum is
absolutely continuous. However, an ambiguity in classification occurs
for a finite number of points on the real line, whose locations are
determined by the dispersion term of the unperturbed system. On the
other hand, if any eigenvalues exist for either the perturbed or the
unperturbed system, they  belong to that finite number of points.
Boundary conditions are the same for both systems. The perturbation
-arises not at the boundary but anywhere in the exterior domain and
diminishes quickly enough at infinity.

1. Introduction and main result. Let 2 be a ‘domain in R¥
with a bounded simply connected complement and piecewise C!-
boundary 92. With the imposed conditiors listed below, consider
the reduced differential operator of the exterior problem

. N
Liu(z) = Ad'(%) > Ai;(2) D; u(x)

(1) . ‘ -
+ Ax'(x) A, v () #(z) on £ (=0, 1);
(2 B(ﬁ:)’u(x) =b(x) #{z) on 02  (almost everywhere),

for some symmetric hyperbolic system of ‘N’ first order partial
differential equations with dispersicn term Ax'(z) A: n+1(2):

o Assumption (a) For i=0, 1, matrices A;j(#) are Hermitian
Received by the editors October 15, 1975.

(1) Some of the results were announced at the 1674 International Congress of
Mathematicians at Vancouver, Canada. - '
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symmetric and of order N >1, j=0,-", V; Aoj(z) = Ao; are
constant matrices, j = 0,---, N+1; Ax(x) are positive definite and
uniformly bounded:

Colyl? < An(z) y - y* < Cilyl?  (yeRM\{0}; G, Ci: constants);

Ag, ner(2) is continuous almost everywhere; and L; are formally

selfadjoint:
N
> D; Aij(®) = Asnei(x) — Alna1(2) on 2,
i=1 :

where D; = —v —1 0/0x; and A¥% is the adjoint of Aij.

Assumption (b) For 1<j< N, A;j(x) — Ao; are continuous
almost everywhere on the closure 2 of 2 (then A;;(x)= Ao; on 02
a.e.); for each unit inward normal #2(x) of 92 at x where 92 is
C!, let b(z) be a scalar real-valued function and let B(x) be an
N’ x N’ matrix such that B(z) — b(x) I is integrable on 92 and

3 B@)—B(@) = =V =13 Aunsl).

Denote by T(2) the matrix 1A — Ao, n+1, by S the set of real
1 at which T(1) is singular, by (¥, 1) the product of all irreducible
factors on the real number field in (¥, 2) of the determinant of
SV Ay, T-H(2) y; — I, and by N(b(+, 1)) the real null set of
b(+, 1) : N(b(+, 1)) = {yeR¥ : b(y, 2) = 0j. ‘

Assumption (¢) When 1¢S and is real, N(b(-, 2)) is bounded
and v - grad,b(y, 1) =0 on N(b(-, 2))\{0}. .

Assumption (d) For a>N, let C be a constant such that
(4); |Ayj(2) — Aojl <C(A + |z])7® on £ (0ZKj<N+1);
(W) IDAR@) | <C1+x))® on 2 (1<E<N).

(Here restriction (4)7* is removed if Ao(x) = A on £.)
The operators L; are studied in the Hilbert spaces H;. with

norms | +l|;, induced by the inner products

(5) (2, v);,c=fu(x) (Wi e(@) v(2)]*de (z€f),
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with weight W; .(x) = (1 + |z|)° A;,o(x). The index ¢ will be
deleted if ¢ = 0. -

~ MAIN TEEOREM. 1. Under assumptions (a) and (b), L: is @ self-
adjoint operator in the Hilbert spcce H: with domain

D(L:;) = tu:D*ueH, |la| <1, ueH/(32)

6) |
(6) & [B(w) —b (@) Nu(x) =0 on 20}

II. Suppose assumptions (a), (b), (c), end (d) with constert C in
(d) not greater than a constant r which depends only on a, N, C,, C;
and the matrices Aoj, 1<j<N+1 (cf. Theorem 25). Suppose that
the kernel ker (b(x) I— B(z)) of b(z)I— B(z) is included in that
of b(x)I—B*(x) for almost all z€02. Then the set C, of complex
numbers 2¢S suck that N(b(-, 1)) is contained in {0}, including
nonreal complex numbers, belongs to the rvesolven! set of L;; the set
S contains all the eigenvalues of L; whenzver they exist; the set C,
of real numbers 1¢S with N(b(-, 2}) consisting of more than onz
element is a part of comtinuous spectvum and is absolutely continuous.

It is important to make the following remark‘s‘. The character,
actually the claésiﬁcation, of the set § is not clear through the
employed argument. However, it can be clarified by an entirely
different apprecach. The set R\S may not just consist of the con-
tinuous spectrum of L; and may include parts of the resolvent set
of L; for a particular problem, say the Dirac system. Here the
possibility of Ao,n+1=0 or 92 = @ is not excluded; even then § is
still not empty and equal to {0}. The boundary operator B(z) is
not uniquely determined.  The boundary condition. (2) is so general
that it includes - conditions of Neumann type, Robin type, or those
combined with Dirichlet type for a group of differential equations
in physics. The details are stated in the Appendix §4 at the end
of the paper. ,

The spectral theory for the reduced operator of a symmetric
hyperbolic system of the first order has been studied by Mochizuki
[6], Schulenberger and Wilcox [9], Wilcox [10], and many others
referred to in their bibliographies. But for the perturbed system,
they considered either the whole space problem, or a perturbation
on the leading coefficient A;(x) only, or a perturbation on a finite
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region. For the unperturbed system, they cors’dered a whole space
problem irstead of an exterior problem as here and either proved
or assumed the convexity and nonvanishing curvature of N( b( ;1))
and the ccerciveness inequality which are not. used here. . The
assumption @ > N and smallness of C can be omitted for @ > 1 and
any C>0 through another approach ina forthcommg article; other
 problems with @¢>1, in particular second order equations, have been
studied by Agmon [1], Ikebe-Uchiyama [4], Mochizuki [7], all of
whom give more detailed references. The cendition that N™>2 is
essential for uniqueness of the solution to the free-space problem
satisfying a certain radiation condition. In other words, the problem
considered heré is at least either that of a system of two first order
equations or a second order scalar equation. v
The rest of the paper is designed as follows: In the next section
the spectral theory for the operator L; is clarified by the properties
of a certain elementary solution of the free space unperturbed
system. Actually, the system with ronhomogeneous boundary con-
dition (i.e. more general than in the main theorem) is studied in
detail in that section. The elementary solution is discussed in §3.
Finally, in the Appendix the Dirac system aud a system form of the -
wave equation are discussed as examples. .

2. Spectral theory and inhomogeneous boundary value problem.
‘The problem with inhomogeneous boundary cendition,

(2.1); , Liv=2v+f on £, |
(22) B(x)v(z) =>b=x)v(x) +g(x) on 02 (geL'(d2)), .

is studied through an integral equation with the benefit of explicit
properties qu some elementary solution related to the unperturbed
operator Lo considered on the whole space RN o
Let 7 be the characteristic function of the set £. Denote by
5(082) the Dirac-delta function with support 92. |

LeMMA 2.1. Under assumptions (a) and (b), if veD(L;) is a
solution to system (2.1): end (2.2), them w = yv is a soluticn of the
Sfollowing distribution equation:

(23); (L:—Nw=yf—08(02){[b(x)[—B*(x)]lv+g(x)} ocn R,
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Conversely, if weD(L;) is a solution of system (2.3);, then w is a
solution of (2.1);: cnd (2.2). ‘

~ Proof. Assume veD(L;) is a solution of (2.1); and (2.2). Then,
for any CP-function ¢, :

((Li — A w, ¢) = (w, (L¥ —2I)¢)
= [w(@) - [(Lf =D ¢(@)" dw  (we).

Let 2, ={zxe®: |z < 7. ‘Then by the divergence theorem

((Le— 2D w, ¢)
= limfv(x) (LF =) $(x) T dz (m€l, r—o )
20 ,‘=f(L,-‘—H) v(@) - ¢* (@) dr  (ve0)
| + fk’l/—-—_l ivl: Aojnj(x) v(x) * ¢* (@) dx  (x€02)
= (x(Li — AT) v] ¢) — (6(62) [B(x) —B*(x)]v, #)
= (2f, ¢) — (8(82) {{6(x) I — B*(x)]v(x) + g(x)i, ).

This gives the relation (2.3):.
Conversely, assume we€D(L;) is a solution of (2.3);. Let v=w

on 2. Then on £ we have (2.1);. For any Cy-function ¢ we have
relation (2.4). On the other hand,

(zf — 6(02){[b(x) T— B*(x)]v + g(=x)}, ¢)
= (x(L; — ) v, ¢)
— (6(82){[b(x) v + g(x)] — B*(x) v}, ¢).

This and relation (2.4) imply
(0(02) B(&?) v, ¢) =’(5(3-Q) fo(x) v + g(x)}, ¢4) ,

which vields (2.3). The proof is complete.

System (2.2) has a solution if and only if ¢(z) is orthogonal to
the manifold M(B* —bI) of all solutions of the system B*(x) #(x)
= b(z) u(z). If g(x) is orthogonal to M(B* — bI), system (2.2)
may not have a unique solution and we denote by v, the general
solution to (2.2). Therefore, instead of (2.3), we consider from now
on the distribution equation
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(L; — AT) (xv)

(2:5); — 1f — 5(02)1[b(x) I — B*(@)]0,(x) + g(x)}] on R¥N:

- The expression (2.5): is equivalent to cither of the following
two relations:

(Lo — 21) (z0)
| = 1f —0(02)i[6f — B*]v, + g}
(26) AT Asn = Aw) AR | 3 Aoy Dy (0) + Aois (a0} |

+AB[ D Aoy = A1) D3 (0) + (Ao.yrs = Asiens) () |,

(Lo 21) (xv) : ‘
= Ayt A zf — 6(82) Aw' Ay {[6I — B*lv, + ¢}
N - ' :
+ Z Ayt [Aoj — A1;1D; (2v) + AR’ [Ap,Nﬂ — A1, n+1] (2v)
+ 2A7 [Aw — Aoo] (20),

(2.6)

which in furn have expressions as integral equations through some
eleméntary solution of 7.1 Ae; T71(2) D; —2I. Let us mention
here certain properties of the elementary soluticn that will be proved
in the next section.

.Let % denote a unit vector. For real 1€¢S, the eigenvalues of
the matrix

(2.7) Ao(®) T = i Aoy TH(0) &,
whenever they exist, can be listed as follows:
T(&; 2) > >Tal(E5 )
(2.8) 7i(—Z; 2) = —Tm—j%l(i; D, 1<j<m;
ri(F 2)=0 if m iscdd and j= (m+1)/2;

moreover, 7;({Z; 1) are homogeneous in ¢ of degree 1 and uniformly
continuous over any compact interval of the real line disjoint from
S. Denote by 7;j(Z; 1) the inverse of 7;(%;.1) for j=o= (m + 1)/2
and the O-function if 7 is odd and j=(m+1)/2; by P;(%; 1) the
projection of CM" onto the eigenspace relating to 7;(%; 2); and by
P.(Z; 2) =B P;(£Z; 2).
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LEMMA 2.2. Suppose assumptions (a) and (c).  Then there exists
one and only one elementary solution Ex; 2, 2) of 271 A6 T 1(3)D;~zI,
1€S, with the following properties:: ;. :

(a) E(x; 2, 2) is an analytic function in (RN\ 1) x (C\S)
x (C\R) '
(b) For each xaéo cmd any ffeal /Ief.S tke limits

(2.9) E(z, +2) =lmE(x; 2, 1+ vV=1:) (r— +0)

exist and the . convergence is uniform in _every cbmpact set of
(RNN\{04). % (R'\S)', Movreover, E(x; +21) are contmuouswfumtions of
(z, 2) in (RN\{0}) x (R\S). U

(c) For ¢S, E(x; 2,1+ vV ~11) behaves at infinity in. &
like

[=O(lz|a-27) ;

| 5= o || =M 12) if = *0;

(2.10)  E(x; 2, 14+ v —=11)
0(13,1—(1+N)12) ;

#o(|a|-a072)
if r= %0,

(211)+ [r— P+(x l)]E(x x 1+vV =1+ ){

uniformly in (2, ©) with |v|>¢ for any ¢ >0 and 2€[lo—e¢, o+ €]
which is small on an interval that is disjoint from S.

(d) For 2 such that Xq‘:S and N(b( ; 2))c {0}, E(e; 2) is
rapidly decreasmg and smooth.

() D,E(xz; 2,1+vV —11) also satisfy “the radiation conditions”
(2.10) and (211) for eack k=1,---, N. (The radiation conditions
(2.10) and (2.11) are first employed by Mochizuki [6].)

From the proof (in the next section) of the foregoing assertion,
it is easy to obtain the following result, which will be proved also
in the next section.

LEMMA 23. In addition to assumptions (a), (b), (c), and (d),
assume that the Fourier tvansform f~(&) of the force function xf and .
its derivatives D* f~(&), || < 2 ave locally integrable and dying out
at infinity or yfeH, . with ¢>2N—1. Then for every v,€L'(32),
system (2.1)o and (2.2), or eguivalently (25)s, has one and only one
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solution satisfying the incoming (+) (or outgoing (—)) radiation
conditions (2.10) and (2.11) ..

The uniqueness in Lemma 2.3 and assertion (¢) of Lemma 2.2,
in particular property (2.10), lead to the integral equation which
is another expression of (2.1); and (2.2) with solution considered
in D(L,). '

LEMMA 2.4, In addition to assumpiions (a) through (d), suppose
that feH,. with ¢>2N—1. Then for every v,€L'(32), system
(2.1)1 and (2.2) or equivalently system (2.6) (or (2.6)") has a solution
such that its first derivatives and itself fulfill the radiation condition
if and only if there is a solution satisfying either of the following
two systems |

xw=E(; 2) % (2f)* — E(+; 2) % (6(02){[6I — B*]vg + g})* |
- Z [D; E(+; 2)]#[An'(Ao; — Asj) (20)
(2.12) + Ap' (A — Aw) Az Ay (20) ]

+ E(«; 2) %[An' (Ao, n+1 — Afna1) (29)
+ A (Ao — Aoo) A7 Ao, v+1(x0)]*

N

+ B 02 ;43 Ayt |

20 =E(; 2) % (7Ax" Aw f)*
- —E(; 2) % (0(08) A% Awi[dl — B*lv, + g§)*
(2-12), + E(e; 1) % [A[,T,l{(Ao,NH — AfNni1) - A(Ap — As) i (x0)]*

S+ Z[DfE(-; D] [Ax(Ar; — Aoj) (20)]* .

Proof. Assume that v is a solution of (2.6) and satisfies the
radiation condition. Then, applying the elementary solution E(-; 1)
through convolution from the left on both sides of the adjoint of
(2.6) yields

aw=E(+; 2) % {zfi* — E(+; 2) = a(am [6] — B*) v, + gl}*
o+ Z [ EC—y; Dil45 Ay — A3 () A (2)])
(2.13) - D; v(y) *dy, (ye )

+ [ EC—y; DA W) — Aw] A5 Ao wes
+ Ayt [Ao, n+1 — A e (Y)To(y) 4*
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‘Every term on-the right s'de is well-defined because of (4); in
assumption (d), of Lemma 22(e), of the radiation condition in
Lemma 2.2(c) for E(-; 2), and of the radiation condition for v.
Conslder the first integrals 2s the limits when 7— o of the 1ntegrals
over the region £,. Then the divergence theorem formal self-
_AadJomtness of Ly in assumptlon (a), and assumption (b) and (d)
imply that

Z_ [ B =y D4R Ay — AT () A1 Do)t dy  (yEQ)

= —ZfD E(® —y; 1)1 4i(y) [y — Ay (y)]
+ AR (y) [An(y) — Aol A7 Aol v(y))* dy

+ [ B = 0 {310, A A o)} dy (e

+ [ B —y; D4R @) [Auwaly)
— A ()]0(9)1* & (ye2),

which along with (2.13) lead to expression (2.12).

" Conversely, assume v is a solution of (2.12). Then the expression
(2.12) itself and the radiation conditions for E(z; 2) imply that v
satisfies the related radiation conditions. Next, formal adjointness
for L, in assumption (a) and the application of L, — AI from the
left on both sides of (2.12) give relation (2.6). A similar argument
applies to equivalence between (2.6)° and (2.12)". This completes
the proof of the lemma.

Employment of the fixed point theorem affords the existence of
solutions to (2.12). The assertion is also true for (2.12)" provided
that Aj(x) = Ao, but condition (4);' can be dropped. This follows
from the proof of the theorem below.

‘ THEOREM 25. Suppose that assumptions (a) through (d) hold
with constant C < r where

£ =[2N(C: + 1)1 [{8® + 4(a — N) N(C} + 1) (CL Co) 12412 — b] 5

b= Co(N + 1) +C“Z | Ao; | +Z | Ao; 1% ;

and constant Cp is given in Theorem 3.1, and suppose that fe€H,.
with ¢>2N — 1. Then for every L'(082)-solution v, of (2.2), there
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exists onz and only onz solution to system (2.1); and (2.2) satisfying
the radiation conditions. '

Proof. For the case i=0, the last two terms on the right side
of (2.12) vanish. Relation (212) and Lemma 2.2 give the asserticn
(also of Lemma 2.3 with the second assumption fer f). Next assume
i=1 and show that integral equation (2.12) has exactly one solution
fulfilling the radiation condition. It suffices to argue that in the
Hilbert space Hp, -1-. the linear transformation £ with kernel

E(x, y; 1)
== W) D E@—y; )
« A (y) [1Ao; — Ay (9)} + {A10(y) — Aol Ax' A1 (y)]
+ 2 E(x—y; 2)
« A () [ Ao, ver — Ay, v+ 18 + {As(Y) — Aot Axt Ao, n+1]
+ > E(z —y; 2) [D; A7 ()] Aij(y) |

7=1

(2.14)

is a contraction mapping, since if there is a fixed point, expression
(2.12) and Lemma 2.2 imply the radiation condition for the solution.

Assume veH, ;.. Then, by inequality (4); and (4)7* in as-
sumption (d) and by estimate (2.10) and (2.11) in Lemma 2.2(c)
and {e) for E(x; 1), we have

(Bo@) | <C [ (1 + lyD= (L + [ — y1)-N-57 [o(y) | dy
‘ ‘ (yeRY) ;

(2.15)

N+

_ V N
(216) C=CCe{CN(G+1) + G(N+1) + G 14l + 3 (4u)}.

The following Peetre inequality is well known (cf. Friedrichs [2] or
Kumano-Go [5]):

A+fz) <@+ lz—yD" A+ lyl)* (ceR),

and together with the Schwarz inequality implies that

J @1y (1 + o — g9 o) | dy
G A+ (] )N

(c=2(N—a)—1+¢; ¢6>0). .
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Choose e =a — N We then obiain the estimate
lE7)”00<CC”2(a’—N) ol (c—N—a—l)

Therefore, E is a contraction mapping in the Hilbert space Ho 1ee
(¢ =a—N), provided CCY*<a — N, which follows from the constant
C in the hypothesis.

Proof of main theorem. Because the set of all functions # such
that DeuecH;, || <1 and #(z) =0 on 92 is dense in H;, the
domain D(L;) of L; given in (6) is dense in H;. By assumption
(a), the differential operators L; and Lf in terms of A’s are the
same for each =0, 1. The divergence theorem and assumption
(b) imply that D(L¥) = D(L;) and L;=Lf{. This is the first
asserticn. '

Because L; is selfadjoint in H;, nonreal complex numbers belong
to the resolvent set of L;. By Lemma 2.2(d) and proof of Theorem
25, the set of real 1¢S with N(b(-, 1)) c{0} is included in the
resolvent set of L: It suffices to consider the set R\(SuC,) that
is absolutely continuous with respect to L; in H;. Study now,
instead of problem (2.1); and (2.2), the corresponding problem with

homogeneous boundary condition:
(2.17); ' Liv=Jw+f on 2,
(2.18) B(z)v(z) =b(x)v(x) on 82,

with the assumption that every solution of (2.18) which is integrable
‘almost everywhere on 92 belongs to ker (B* () —b(x) I). There-
fore, because ¢ =0, the equivalent problem (2.5); is reduced to the
equation below, which is equivalent to (2.17); and (2.18):

' (2.19) . (Li— D) () = xf on R,

where 7 has value 1 on £ and 0 on the complement of 2. By
Theorem 25, system (2.19) has cne and only one solution satisfying
the radiation condition for each f in Hy., ¢>2N-—1, which is
dense in H:;. Hence R\(SuC,) is a subset of the continuous spec-
trum of L:;.. Moreover, since. the solution of (2.19) is obtained
through the contraction mapping E with kernel (2.14), which
depends on 2 ‘through the elementary function E(-, 1), and since
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by Lemma 2.2(c), the constant Cgz obtained from asymptotic pro-
perty (2.10) for E(-, 1) is independent of 2 (cf. Theorem 38.1), the
solution is differential in real 1 on each compact interval disjoint
from SuC,. Therefore, R\(SuC,) is absolutely continuous, and the
main theorem is proved. :

3. The elementary solution E(-, 1) of Ly — 2I. Under assump-
tions (a) and (c), property (2.8) and asserticns (a) through (e) in
Lemma 2.2 are proved. The fact that there is no need of assuming
N(b(+; 1)) to be convex and to have nonvamshlng curvature 1s'
demonstrated in detail here. '

Actually, after derivations of the property of eigenvahies for
matrix A (Z) T-'(2) 'in (27) and corresponding pro;ectlon the
following results are shown for the system B ’ '

(3.1) i Low=2u+f on RN,

THEOREM 3.1. Suppose assumptions (a) and (c).

(i) For every nonreal complex number 1 or every real number
2¢S with N(b(-, 2))c {0} (namely, 21€C,) and for feH,(RV),
system (3.1) has exactly one solution in H,(RN).

(ii) For real 1¢Su C,, if f is an Hy(RN)-function such that its
Fourier tramsform f~ vanishes om N(b(-, 1)), then system (3.1) has
onz and only onz solution in HO(RV) (The set of such functions f is
dense in H,(RV).) | |

(iii)  For rveal 2 ¢ SuC,, if f is a distribution such that D® f~
are integrable on RN and vanish at infinity for each o, |a| <2 and
F(¥)=0 on N(b(-; 1)), then there exists a unique incoming solution
u* (outgoing solution u~) to system (3.1) such that at infinity,

u*(x; 2, 2)
Im—2]
(21/—1) L p(—dzny/ —1 |z|)a-N/2 Z [+7’,(.x X)J(lvN)lz
(82) + exp {— 21/—1 el 7 (Z; )} T—l(,z) P; (+x' /1)
: f (—237;(&; J))H(sgnlm?') +0(lz|- <1va>'2) '
(3.2) _O(le(l M2y byt #O(L’Bl(l meydgf 2=1;

(33)  1I-Pu(@; 0} TW w(a; 4, 2) = O(jz[-0swm)
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wheve H(t) is the Heaviside function and sgnt=1 if t>0 and
sgnt=—1 if t<<0. Moreover, such functions u* salisfy the property
for E in Lemma 22(c). ‘

(iv) The constant Cgp in Theorem 25 is given by

Ce = (/2) (20)-M12 Max 3 [r;(%; 1)+
ST Pi(£F; 2) - (L0, DY,

where the maximum is taken on real 1¢S U0} and 3”0&1.8""‘1 and
the summation runs on j=1,---, [m/2].

It is clear that assertions in Lemma 2.2 are consequences of the
theorem by taking flx) = 6(x). Before the proof of the theorem,
we analyze the regularity of 7°(1) in terms of 2 and the eigenvalues
of matrix Ao(x) T-'(1) which is defined in (2.7). '

LEMMA 3.2. Suppose assumptions (a) and (c).

(i) The set S of wvalues for 2 such that T(1) is singular
consists of a finite number of real points (for the case Ao n+1=0,
S={0}.) -

(ii) For nonreal complex number 2, the matrix Ao(F) T71(2)
has no real eigenvalues.

(iii)  For real 1¢S, the eigemvalues 7;(F; 2) of Ao(Z) T'(2)
preserve property (2.8), are real-valued homogenzous in % of degree 1,
and are analytic in (%, 1) € SVN-1 x (R\S).

Proof. By the same argument for a Hermitian matrix posse'sf-
sing only real eigenvalues, the positive definiteness of Aq and the
Hermitian property of As and Ao n+1 lead to assertion (i). Similarly,
we have assertion (ii). Assume now that 1 is real and not in the
set S. Then, by the same argument of 7Y1), eigenvalues of matrix
Ao(y) T-1(2) are vreal-valued, whenever the eigenvalues ' exist.
Denote by b;(y, s; 2) the irreducible factors of (¥, s)-polynomial
det §Ao(y) T-1(2) —sI! with parameter 2 and by &(y, s; 2) the
product of these b;(y, s; 2). Then b(y; 2) =b(y, 1; 2). Because
det §Ao(y) T-*(2) — sI} is analytic in real 1¢S, the employment of
the argument by Wilcox [10, pp. 53-55] with b;(+; 2). and &(+; 2)
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replacing @; and Q, respec\t\ively, impliés the rest of the assertiomns.
The proof of the lemma is complete.

Proof of Theorem 3.1. For complex 2 such that N(b( 7))-§2§ .
the matrix Ao(y) — T(2) is regular and {A4o(y) — T(2)} 1=O({y["1)
at infinity. Hence, we have assertion (i) except the case with
N(b(+; 2)) =1{0}. Assume in the rest of the argument that 1¢S is
real and N(b(-; 1))+ D. Then matrlx Ao(y) -2, yESN 1, has

the following spectral representation:
(3.4) {Ao(9) T-1(2) — it = Z Pj(z7; Ari(y; 2) — 2],

However, the pfdjections P;i(y; 1) in CN cnto the elgenspaces relat-

ing the elgenvalues 7;(¥; 1) can be copstructed by
(3.5) Pj('g, ) =— (2 =1)1 § [Ao(y) T-1(2) —all'dz (z€rl;),

where I'; are small circles '.With centers 7;(¥; lﬁ). ‘Heﬁ“cé' P,(y, x)
are analytic in (y; 1) e‘(RN\§O}) x (C\S), homogenecus of degre’ev F‘O‘
in ¥ and '
Pi(—y; 2) = Ppu-ju1(y; U Pi(—y; 2) = Pi(y; 2).
as j=(m+1)/2 if m is cdd. - S
If N(b(«; 2)) = {0}, then m is cdd; 7j(y; 2)=%0 for -all
j=(m+1)/2; and 7;(y; 1) =0 as j= (m+1)/2. Thus relation-(3.4)
gives
[Ao(y) — 2T(2)]*
(3.6) = —T1(2) Ponroa (5 2) 271
| + 3 T B D rly; 2) — 21,
where the summation runs on j=1,---, m with j- (m + 1)/2;
moreover, o o ’
| T(2) Poreos(¥; 1).=0(1)
and e , : | R
T-1(2) Pi(y; A lri(y; 2) — 217 =00y] ") s
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at infinity for all complex numbers 2.  Therefore the smoothness
on the right side of (3 6) gives #e€ H,(RN) whenever feHo(RN) by
letting %~ “(y) = [A(y) — T(2)]*f~(y). This completes the proof
for assertlon (i) of the theorem.

Assume that N(b(-; 1)) consists of more than a point. The
‘summation on the right side of (3.6) with 2=1 and j+# (m + 1)/2
possesses singularity at N(7;(-; 2) — 1), which are the manifolds
with radius 7;(9; 1) = 1/7;(%; 2) at each direction yeSN-1, It
means that (3.6) has another expression o

[Ao(y) — 2T()1* w
(3.7) = —T7'(3) Pamsvyse(§; 2) 271

3T B Dl 2@ D1 (= 9).

If Ho‘(ylé”)-fuhetion f ‘has Fourier transform f~(y) vanishing on
N(b(-; 1)), the right side and then the left side of the following
expressmn is well-defined and belongs to Hy,(RN ) ‘

[Ao(77) -—z:rm] L~ ()
(3.8) = =T-'(2) Powe>ia (7 ) 2 )
| + Z 7i(F; 2) T-1() P;(3; 2) [r— zr,(y, DI y) .

Therefore, let # be its inverse Fourier transform with 2=1 and
then # is an Hy(R¥)-function and a solution to system (3. 1) That
is the existence part of assertion (ii).

Assume, in addition to N(&(+; 2)) consisting of more than a
point, that D« f~ are integrable on RY and vanish at infinity for
each &, |&|<1 and f~(¥)540 on N(b(-; 2)). Let # be the inverse
Fourier transform of [As(7§) — T(1)]* fN(rQN/) which is given in
(3.8) and has singularity, for each term under the summation, on
. the manifold {7;(¥; 2)Y¥}, j# (m+1)/2, if 2=1. The integrations
. are in the sense of Cauchy principal value. Denote by #; the inverse
Fourier transform-.of the jth term on the right side of (3.8). If m
~is odd and . j = (m + 1)/2, s ‘
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;e 2)= —2"1(2z)"N T-1(2)

B9os f exp (=1 Iz-9) P,(y, Df@a

o ‘ S . (yeRN)

By the analyticity of -Pwm+n;z and by conditic}n;s;on f?(y),' this re-

presentation’ gives %(m+n;z €Ho(RN). Assume j# (m + 1)/2. in the
‘rest.  Write #; in the following form:

(39); w2 = v,j‘(w;i'l,'z)' + w,(x na
w;(y; 2, 2) B ’
=271 (22) " [exp (~V=1x - s L

(3,10)]‘ o [r—er(y: Z)]— r](y, Z) Pj(y, /1)

%[f~(y) f”(yf,(y, 2)) (7;(¥; X)/lyl)N 1]
+[1 Bi(lyl, 91/~ (gri(y; l))(f:(y, l)/lyl)N Way
(yeRN)

(310; 0w 1, 2) = U [ T2 Uyl ina bem

Uilr; x, 2, 2) .. , . o
(312); —fexp V=1 1m~ 7 [r—zr,(y, l)] 1V(:t/, v, Dy
('yESN'l)

'(313), V(y, 7, 1) = (2)1 N[r,(y, DFPB@: Dby ¢ y)f~(ry)

where k; is a smooth function W1th hi(r,y)=0 for lr—7;(F; 2){>e
(e>0) .and &;(7;(¥; 2), ) =1 On w; in (3.10); for each j and
" on'w; in (8.11); for each j that #;(¥, 2) <0, the integrand is regular
= (in 'p’articular,’ on 7 =7;(¥; 2)). and vanishes faster_at infinity‘than
2f~ Hence w;eH,(RY) for all j-and. v,EHo(RN) for: ] such that
-'.~r](y, <0 S , S ,
 Without loss of generality, for j with- r;(’y, 1) >0 assume ‘that
%= 1(0,--+,0,1) and then Z%+%=7n. By Morse [8;-p: 179], there
- exists - the. local coordinate s = (si,*--, Sy-1). at £ Z 'such ' that

Gy = +£{1 — Z¥isi}. This region can be.chosen.so small that the
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Jacobian J(s") of the transformation 7 —s’ has values greater than
1/2 and 1 at +=%. Let ¢;(s) be a smooth functlon with values
between 0 and 1, supported on this reglon, and 1at + %; let
¥i(F) = 6;(s"(9)); and let ‘ :

(314); W-(s' 7,2) = V(?(S) 7, 2) ¢J(S)](S’)
Then (3 12), and (3 13) j 1mp1y

Uj(r; x, 2, z) ‘

=X;(r; =, %, z)-l-Y(r z, 2, z)

—exp{+1/ 1r|xl fexp{+1/ JIZ lers,,}

T | ', . WJ(s 7, ) [r —2r;(H(s); DItas

L @ [ exp =V ST B (s D BT 2
« r—eri(g; DI (F; )1 = v (9)]dy.

(8:15);

The upper sign-is for y(O) =Z and j<(m +1)/2 and the lower
sign is for ¥(0) = —% and j> (m +1)/2. By Taylors formula with
the remamder, with . D, = 8/0ss, ' :

W;(s; r, N [r — 27 (H(s'); DI
= V; (.77; 7, ) [r —ar; (%; )]

(3.16); " ' +ZSkZ:(f R Y S & a)
R (el =2 0<eai <1)

S B R) ST & 6 (181=38);

T Ze(ry X R)
[r-—zr,(x N [grade(x 7, l)'Dzzc’.Tl(O)
-+ gradz §gradz~VJ(?c, 7, 2) - D g(0)} - Dy §(0)]
‘ d—é[r—zr,(?c '/I)] 2
<V; (x rl)grad gradzr](x K Dk?/(O) Dk'y(O)
+V(x 7, 2) grad ri(@;-2) - D2(0)
<+ 2 fgradz 7;(%; 2) - D 5(0)}
"o f{grad; Vi(%; 7, 2) - D 4(0)1]
4+ 22%[r — 2 (F; DR V(E; 7, /1)
« [grad;7;(Z; 2) - De y(0)T.

(316); . -
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Relations. (3.15);, (3.16); and (3.16); give
| | X;(r, xz, 2, z) |

—[(+1/ 1[.27[1’)/7:](1 —N12 axp § +1/ lrlxl
{V,(+x 7, l)[r—-zr,(+x, NIt

+ [("‘1/ 1zl r)/n]"z[(+1/ 1 l$l r)”""?‘ (2/1/ )]
Z Zy(r; +Z, k)

+O([al- <8+N>'2r-2[r—zr,(+x 0T 1)}

(3.17);

~at infinity in (x| and 7, where we use the results that integrations
on the real line for exp {—s*}, sexp {—s?}, and s exp {—s*} ‘are
7% 0, and 2n‘1’2, réspectively, and where the upper sign is used
for j< (m + 1)/2 and the lower sign is used. for j> (m +1)/2.
In order to determine the asymptotic behavior of

(3.18); Violz; 2, 2) = (4n)~ 1fT W X(r; @, 4, 2)dr (rER),

defined through (3.11);, (3.15);, and (3. 17) is. recall the well-known
formulas (cf. Gel'fand-Shilov [3, p. 360]) for Fourier transforms as

below:

fexp\_-{i1/—_1rs} [r—(a+V—=10)1"dr - (r€R)
(3.19) = — v/ =1x(sgnd) H(F ssgnb)
‘ cexpit v —1[a+ vV—1b]s};

[exp = v=Irsilr—(a+vV=181"dr (reR, k>1)
(3200 =a=lsgnd) Isl (+ vV =1s)"2[(k—~ 1)1]"*
| sexp (xV=Is @+ V=10

Let foj(+; &) be the Fourler transform in- rER of the functlon

rA-M02 [y (%; l)]NP(x,\X)h (B F ) fri (s ) (=12 3) ‘be
~ those of products of 7~ a+m12 with coefficients of [r — 27;(%; 1)1,
z2lr —2r;(%; 2)17%, and 22%[r —27;(%; 2)]73, respectively. Using the
upper sign for 0<<ji<<(m+ 1)/2 and the lower sign for m>j
> (m + 1)/2 concludes the estimate at infinity in & for (3.18);
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vio(x; 2, 2) |
= F4Y T (2 4my 7T |3]) 608 T(2)
”{f_:"éxpi’{rri/f—”—lér,-(iz;_ N(lal =1}
- foilt, £3) df - [ H(% Tmar; (£ 1)]
o (D@ [ ep (/T ary (23 (ol — 1)
s Soit, £Z) dt - [FH(F Imar;(£7; 1))]
+2(xV =1z |2]) ‘
[ exp tF v L (28 D (lal - 1)
e fiilt, £3) @[ H(% Imer; (£5; 1)]
(3.21); +2(FV =1z |z])t (—1)@-vr
. fl:gxp (v —Tazr;(£%; ) (lz] — )}
« [1j(t, £%) dt « [FH(F Imazr;(£%; 1)]
wotErlaD) e [ exp 1TV STar (28 04
< [t foi(lw] — 8, £Z) dt ‘
i2ﬁ(iﬁnlxl)"1[:exp {ix/:iz%j(iz; 1)t}
- [t #fsi(lz] — 28, £7) at
C k22 =1l [ exp 1TV =Tan(£7; D4
C el - xR a) ‘
+ O(|z|~-G+Mi12)

Denote by v;:(x; 2, 2) the function defined in (3.18); with X
replaced by Y;. Applying the same argument of ;o to ;s and
taking into account 1—+v ;=0 on a small neighborhood of +%.lead
to the fact that ' AR

(3.22); . oplx; 2, 8) = O(|x|-GrWIe)

at infinity. Because fi;(¢, %) (i=1,2,3) decay at infinity 1n ¢ .W_ith
high -index, the asymptotic property of w;(-; 2, 2) and relations
(3.9);.and (3.21); imply
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u;(xz; 2, 2) o oy
= F27tav/ =1 (~4eny/ =1l N>’2[¢(+x e
gexp§ lzr,(+x ) lxl T-(2) Pi(+%; )

. f (+zxr,(+x /1))[+H(+ Imzr,(+x x))]
’ +4 19/ =1 (242v/ =1 @) 0N T*‘(x)
: {fnx exp §+1/ lzr,(+x t)(lxl -—t)
o fos(t, ix) dt[+H(+Imzr,(+x x))]
Lt (—1)<N-1>'2f|x exp 127 “Lar,(£3; 1) (12 = 1)}
- foilt, ix)dt[+H(+Imzr,(+x /I))]

‘F4av =1 1lxl‘1exp (Fv—1 Tzr;(£%; 2) |®l}
flj(+21’,(+x x) +x)[+H(+1mzr,(+x x)]

+ 22(7r [.z-l) 1f_“wexp +1/—1zr,v(~ix, ) t}
it fllal =t xRt
‘+'222‘(1/'——1 T Iw')”i‘]:wexp {$1/:Tzr,-_(ti; 2) ¢}

(3.23);

< 18 a1zl — 8, ix) dt} o

' +0(l-’L‘l (3+N)12)

at 1nﬁmty, Where the upper sign (lower 31gn) is used for 0<j
< (m+ 1)/2 ((m + 1)/2<]<m) Taking into’ account ri(+Z; 1)>0
if j<(m+1)/2 and 7;(£%, 1) <0 'if > (m +1)/2 yields assertion
(3.2)", which gives (3.2) by considering the coefficient of || -1z
as an almost periodic function. Relation (3.3) follows from expres-
sion (3.2)" and the properties of projections Pi(£Z;.2).

The constant Cr is finite and independent of ~2 since T(2)
= 0(121), 7;(& 2) =0(12]""), and P;(Z; 1) = O(1) for large (1]
uniformly in % and since these three funetions are smooth. -

Thus the assertions of Theorem 3.1 are proved except the parts
involving uniqueness. For uniqueness, assume # is a solution .of
Lo =% on RN. Then each entry of its Fourier transform #~ has
support contained in N(b(, 2)). -If N(b(-, 1)) = @, including the
case 1 is nonreal, then #~ =0 and so #=0. If N(b(-, 2)) = {0},
' then #~ is a linear combination of derivatives of the Dirac-delta
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function and # is a polynomlal which does ‘not belong to- Ho(RN )
except # = 0. Therefore, the * assertions’ “about’ unrqueness ‘in the
Whole theorem are reduced to the case that N(b('; 2)) includes
fnore than one pomt By’ ‘assumption” (d), the partitlon “of unity
relating to IN(b(+; 1)) implies that the support of #~ can be assumed
to be contained in an (IN—1)-dimensional mamfold M= yh(’.l/, 2},

say. Since the mamfold ‘is. compact, #~ can be’ a distribution of
finite order only Because other cases can be proved similarly, it
suffices to consider that w* is smooth and then Lz-mtegrable over
M. We claim that if #+0, then wé Ho, -1 (RN) but uGHo ~1-¢ (RN)
with any e >0, ('I’he followmg proof is essentially glven by S.
Agmon in 1971 Summer Institute -on Partial- Differential Equations
at Berkeley, Cahfornla) Wlthout loss of generahty, assume that M

has coordinates ¥~ ('yl, -, Yn-1) om which the Jacoblan J of the
tramsformation js smooth and regular. Denote by. v(y’) the.product
w”J in the coordinates %’. Then veHy(RN"') and = =~ -

[ 1w, s de' = [ o) Py (@ Y ERN),

Wh1ch 1s a nonzero-constant. Hence we have the claim.

On the other hand we clalm that if #* is an lncomlng (+) (or
outgoing (— )) solution of ’ (Lo——lI) u* =0 on RN, then #* belongs
to Hy(RN). Indeed; the proof can be seen from Mochizuki [6, pp.
238-239], which is recalled as follows. Since the argument for out-
going solutions ‘ is the same, . it suffices to -show the assertion for
incoming solutions. Put G, as the set -of x eRN such that |x|<7.
Then,dwith v=T-*2)u the divergence theorer_n‘»gives

0= f {3 4T T-1(2) D; o(@) - v* (@) — o()
- [ A T Dv(x)] Ydr  (zeG))

= Vl—leN: Ay T 1(1) % v(m) 2* () dS(x) (le —r)

Because - X, Aoj T‘l(l)‘ﬁé P; (£Z; 2= £l (F; DILP(EE; 1),
0<j<(m+1)/2; and =0'as j= (m+1)/2 if m is odd, and because
CPuE ) @ Pu(F; 2) =IO Pi(%; 2) (= (m+ 1)/2), it follows that
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SR 7Y o R . o
0="2_ [Iri(z DI P& 2)o(a) - 0*(2) dS(z)
j=1
Lm/23

;'—Z;f[r,(x NI Py(— % x)v(x) v*(m)dscx) Uzl=7)
=Ji~J:; B o

12 [ 1@ 1P ) o(a) - 0*(2) dS()

" za [ IP(Z 1) v(:c)zzdsch)  Usl=7),

Rs [ 15 D1 P Do) - 0*(2) dS(a)
< [ 17— P.(& N]o(x)|*dS(z)
= O(|x]|~1¢) at infinity (e>0),

where @ =[max7:(&; 1)I7*#0, £ =[min7z;(Z; )10, J——[m/2].
-Hence, by J1=Jz,

[ 1901 as(x)

= [ 1P(@ D 0(@) 1+ (= Pu(z; D)]o(@) 2dS(@)  ([z]=7)
<const*Ji + O(r '~°) = O(r~'=¢) at infinity r(g >0) .

Hence the second assertion is concluded by noting’ that T 1(2) is
“invertible for 1¢S.

The combination of the previous two claims leads to the fact
that all incoming (+) (outgoing (—)) solutions to (Lo — AT ) %=
on RN, with N(b(-, 2)) consisting of more than one point, vanish
identically. This furnishes the unlqueness, and the proof of Theorem
3.1 is complete. ‘

4. Appendix. The Dirac system and then a system form of the
wave equation in R® are studied to illustrate the boundary operator

and the radiation condition introduced in the previous sections. |

The Dirac system: Dyu=Lou= 3}, AvjDju + Ay u, where
D;=—v —108/0t, Dj=—v'—148/ox;, and the four 4X4 matrices are
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, 0.0 0-1 o o000 —17
-~ qoo10of .. -, —~lo. 0.1 0]
Aoy = : , A = /. Il ;
M Tlo1 0 0 A=Vl 10 0 |
1000 0o 0 0]
SRR [0 0:-71-0° 10 0 0
o lo e 0 =1 . 0t 0 "0
Aog = ’ A= —a ‘
ST 0 0 0 oo =1 o
0 -1 0 0 00 0-—1

with given constant @¢. Before spemfymg 1nterestmg cases, 1mpose
a general boundary operator as below:

311($) B1z($) Bys(x) YB14,(-T)

B (x) ng(-'b‘)‘ Bys(x) Bau(x) |
« B Bss(x) By (x)
7 ) m B44($)

(4.2) B=

where & = Bis(z) — ‘/jl,”f’('”)’ B = Bus(x) — ma(x) — vV =1 m(x),
7= Bu(@) + m:(x) — vV —1m(x), 6=Bau(x) + V_Tna(x) and where
n(x) = (18:(x), m:(x), ns(x)) is the unit normal of 2. at 2 and
B;j(x) (1<1i, j<3) are complex-valued functions with B (zx)
(1 =1, 2, 3) being real-valued. It is easy to give an example such
that the condition in the main theorem for the boundary operator
does not hold:

az ke (b(2) I~ B())  ker (b(2) 1= B*())
for almost all . x €02,

where b(x) is a'real-valued function on 82; say, B ()= Bu(z)=oy,
By3(x) = Bu(x) = a5 are real constants; Bu(x) =4 and Bu(x) =g
are complex constants, ‘By3(x), Bu(x), Bza(x), and ‘324(-?7) vanish;
and 5(x) is @ % f1 (or ap + ;) with B2~ (p — ey F £1)%. Then
vectors ¥ = (vy, vz, 3, 0s) with v5=0,=0 and fi[v: F %.]=0 are
elements of ker[b(x) I— B(x)]; vectors v with v = =0z =0 and
B2 {vs T 0,1 = 0 form the space ker[5(x) I B*(a:)] Both kernels are
nontrivial and intersect only at v = 0. :

Next let Bi=(2v —1)'n;(x), Bl4(x)——n2($)/2+(21/ 1)"‘%1($)
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Bs(x) = m(x)/2 + (2 1) m(x), Bu(x) = V=1m(x)/2, and let
all other B; ,(x) s vanish. The eigenyalueSfare +1/ —1/2 of; multipli-
city 2 Then choose b(:):) to be any complex constant not equal to
+ v — 1/2 For any boundary operator B(x) addlng any Herm1t1an
matrix to it will satisfy the relatlon (3) .between :the boundary
operator and the coefﬁc1ent matrices. { In- addition to this kind of
non-uni ueness for boundary operators; there are other types which
differ from the prev1ous one by a non-Hermitian matrix. For example,
choose Bi(z) (=1, 2, 3, 4) to be real constants C; such that
>4..C; =0 and sum of all triple-products of distinct elements of
them vanishes; Biz=Bu=0; Bu(x)= (21/:i)“1 #ns(x); Bulx)
= —m(@); Bu(x) =m(z); and Bu(z) =V —Im/2. The matrix
has no real constant eigenvalues. Set b(x) to be any real constant.
These examples of boundary operators 1nc1ude all three usual types
of boundary operators in phys1cs Dirichlet, Neumann, and Robin.
They deserve the names through the usual wave eQuatlon rewrltten
in the system form which will be discussed later. - - =

‘For the free space problem in the last. section’S = {*a}; -the
resolvent set of Lo is {C\R} Uil: —a<i<al; "and the continuous
spectrum consists of real 2 with [1] >a. Actual-'ly,i because the
determinant of X Ao; ¥; + Ao F al is just |y|%, the values 2= *a
belong to continuous spectrum of Lo. For radiation conditions it is
clear that 7;(y; ) = —n(y; 2) = sz—az/lyl for real 2: [2] > a.
Let d=1[(2 —-a)/(l + @)]*V2, Then P(¥y; ) =1I— Pg(y, 2) where

1 0 . Nsd 24
S 0 gedl
449 = P@ A= ! - b , o
| 0 ""'.lla/tﬂl. Oj 1 e
where @@= = (§,—V —1%)d, 8= (G:+vV —1%)d, 7= (271f1/;1172)/{f,
and 5——(y1+1/ —1%.)/d. B )
The wave equation in system Diuw=Liu= 23 Ao,D w Aom
with: ' = .(D; w, Dy w, D w, Ds w, aw) -and - ; :
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J

"0 D, D, Ds 0] [0 0.0 0 1]

o pio 0 0 o0f .fooo000
(45) > AyDi+Au=[D, 0 0.0 0f+al0 0 030 0],
77 2 IDy 0.0- 00 |0 00 00O
Lo o o o ol [100 00l

where w :satisﬁes the Klyein Gordon equation &%w/oi? = Aw = @* w.
This is Just the usual wave equation if ¢ =0. The reduced system
of (45) is then Lyv = lv with v = (i®, Dﬂ’/) D, ®, Dy #, a®) and

oS

w fulﬁlhng the equation A% = (a® — /12) #. " Relation (3) indicates
that Bn(x) Bij(x) — vV —1m;-1(x) (] 2,3, 4) and B;;(x) = Bj: ()
otherwise. Particularly, diagonal entries B,,(Jc) are real. The
following special choice satisfies condition (4.3) and is nontrivial:
Let Bij(z) = (2V=1)"'n;-1(x) (j=2, 3, 4); Bulx)=0b(z) (=1,
2,3,4,5); B:j(x)=0 otherwise. Then the kernel of b(zx)I— B(x)
is equal to that of &(x) I — B*(x), and comsists of #(x) such that
9(x) =0, (2.(x), v:(z), va(x)) is orthogonal to #(x), and vs(x)
has no further restriction. The kernel is of dimension 3. '
The following is the study of the boundary conditions for the
system relating to the Dirichlet, Neumann, Robin conditions, res-
pectively, for the Klein-Gordon equation. The Dirichlet boundary
condition w=0 on 92 implies D;w =0 and w=0 on 2. To fit
relation (3) the relating adjoint boundary condltlon is of Neumann
type, which is seen from the example mdlca_ted_ below, b(x) =0,

0 0000
: #(x) 0 0 0 O]
B=v=i|m() 0 0 0 of;
n(x) 00 0 0
L o0 0 0 0 O]
(4.6)
v 0 n(x) nm(x) n(x) 0]
- 0 0 0 0 0
B*=v-1l0 .0 0 0 0f.
0 0 0o 0 0
0 o 0 0 .0

This does not satisfy condition (4.3). Also, if the adjoiﬁt boundary
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opelr*;ator‘ is interchanged with the boundary operator, one case of
the ‘ENeumann boundary condition is obtained which does not satisfy
condition (4.3). However, in view of the fact that n(x) « Dw(x, )=10Q
on 92 for any ¢>0 implies #(x) - D; Dw(x, ¢) =0 for any £>0
or #(z)Dib(z, ) =0 for' 1%0 on 82, we have the following
bgundaty operator for _the system meeting condition (4.3):

- 1/1b(.7c) ”l(x) m(x)  ms(®) 4 7

.2 2 .
ﬂl(x_): 7 T - ) b o
(47 B=-v-1 % 0 VIibm o @;%J
| —”3(2””) 0 0 - V-1k@) ——m;f:’)
) mAdm(x) ~Am(®) —Ins(2) 1
- 0 . 2a. .2c‘z 2d 1/ lb(m)

For the Robiﬁ ‘boundary condition V- n(x) "Dw(x' t)l = ﬂw(x t)
on 92 for any 1>0, the SImxlar boundary operator can be chosen
as below

i Mm@ mm me) Vs

. 2 2 2 . 2a |}
___.”1(‘7’.) q : : i(x) |
T 2 1/ Lo o 0 2a
(48) B=-v-1 m(x) 0 V=1 b(z) 0 n(2x)
2 2a
M— _ lna(.’L')
o o ‘(‘) V-1b@) S5
VLR —im(z) mim(z) —i(o) o g
L 2a 2a 24 . 2a l

It is 1nterestmg to point out that both boundary operators in (4 7)
and (4.8) depend on the parameter 2 Wthh is treated as the variable
for the Laplacez transform corresponding to time variable £. Only
for system (4.5) of first order equations, without relating to the
single Klein-Gordon equation, there is a boundary operator satisfying
condition (4.3), which is a combination of Dirichlet and Neumann
boundary conditions;
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by "V olm@) VEm@) vViEm@

o
O T T e 2
’ﬂm b(x) 0 . .0 0 |
(49 B=|=/EAmla © o @) 0 0 |
[PAme o 0 a0
35 0o .0 ‘ o _v()' b(x)-

where £ is real.- The kernels of both boundary operators B— b(m)] '
and B* b(x) I cons1st of vectors. v—'(vl, Vs, Vs, 1)4, ¥s) Wlth % (x)=
and n(x) « (0:(2), v3(), va(2)) = 20/ =1 a5 () on 02 if a#0; and
with" vl(x) =0, #(x) orthogonal to (vg(x) va(x) 2(x)), and any vs
1f o =0. Th1s is a nontrivial example for condition (4.3). »

" For the free space problem, S= {0, =a}, which consists of only
one element 0 if @ =0. This is just the uncertainty situation for
‘the usual wave equation. If [1]|<e and 250 with ¢>0, the deter-
miﬁant of X Aoy + Awe— Al is %[a® — 22 + |x|*]#0. ‘Then
[—a, 0)u (0, @] is a subset of the resolvent set of the free space
problem for L,. Assume now that 2 is real and [2| >a. For the
radiation conditions, m =3 with 7(y; )= —n(y; )=yl (F*—a*)'?
of multiplicity 1 and 7:(y; 1) =0 of multiplicity 3. Let d=(1*—a®)'/%,
Then

2-1  _Fd22)t ~Fad(20)" ~Fed(22)71 0
~AF(2d)"Y 1-33/2  —F1Te/2 —F1Xsf2 —aXy(2d)7
I—P(7; 2)=|-2Z.2d)"" —-Z1%:/2 1-33/2 —Z3s/2 -aZ2d)71 | ;
AT ) T Fef2 —TaTa/2 1-73/2 -aZs(2d)7

0 0 0 0 1

2-1  Fd(22)"t Fd(22)t Fed(22)71 0

2% (2d)-t 1—33/2 —F1F/2 —F1%s/2 a%(2d)71

I—Py(; 1) =122:(2d)t —F15:/2 1—F/2 —Z:%:/2 aZ.(2d)7"|.

1%:(2d)"Y —F1 a2 —TaFs/2 1—F3/2 aZs(2d)7!
0 0 0 0 1

When ¢ =0, this is just a system form of the Sommerfeld radiation
condition in the usual sense for the wave equation. ‘
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