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Abstract. Let (X, »2>1) be a sequence of independent, identically
distributed random variables with EX;=1, BE(X;—1)%=062< o0,
and Sp=X3+---+ Xy, and let 0<e<l. We oprove that
n* Ui (maxjenSij~%—Sen=9->0 a.e. and n¢~U2(S, =9 —inf;jm>, S7j~)->0
a.e. From these results, we derive the law of iterated logarithm for
maXjenSij~ % infjz,S;jj~% T, and N, where Tc=inf {#>1 : Sp>cn%}
and N, =inf{n>1:S,<cn¢} for ¢>0.

1. Introduction. Let (2, &, P) be a prdbability space and
(X», #>1) be a sequence of independent random variables with
EX,=1 for every . Put S,=X;+---+ X,. Since EX, =1, there-
fore max;j<.S; and inf;>,S; should be close to S; in some sense.
In §2, we will prove some limiting theorems about the differences
maxjesSjj~¢ — Sp 7% and inf;>, 87 ¢ — S, ¢ for 0<a<1 and
apply them to obtain convergence in distribution theorems and law
of iterated logarithm for maxj<.S;j ¢ and inf;j=,S;j % A central
limit theorem for max;<.Sjj~“ has been recently obtained by Teicher
[10]. Our approach is different. ' ”

For ¢>0 and 0<a<1, define the first passage time T,
=inf {#>1:S,>cn*}. A central limit theorem for 7. as ¢ — o
has been given by Siegmund [8]. His result follows easily from the
results about maxj<.S;jj ¢ — S, %< -

 In §3, based on the results of max;<.S;j ¢ we obtain the law
of iterated logarithm for T,, which in case of @« =0 has been
obtained by Vervaat [11]. If N.=sup{n>1:S,<cn?} and U,
= ¥ Its,<cne3, similar results hold for N. and U. also.
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9. Limiting behavior of maxjz,S;j~¢ and infjzsS;j~% Let
(X, #>1) be a sequence of independent random variables, EX,=1
and S, =Xi+---+ X, Since EX,>0, therefore max;<,S; — Sa
and S, —inf;j=,S; should be small in comparison with S, when #
is large and their limiting behavior could be obtained from those of
Sa. ‘

TueoreM 2.1. Let (X, #>1) be a sequence of independent,
identically distributed random variables, EX; =1 and let (b, n= 1)
be a sequence of positive numbers such that b, —> © as n—> . Then
as n—> oo, "

(2.1) bt (max S; — S ) 0,
isn
(2.2) b7 (S» — inf S £50.
j=n .

Proof. For ¢>0, by the i.i.d. property and the strong law of
large numbers, as 7 — ©,

P[maxS; -—Sn>b,,s] P[max-— (S, —-S)>b,,e]

i<n ]_.n

= P[max — S, ,>b,,e:\ P[max—S >b,,e]~+0,

j=n

vielding (2.1). Similarly for (2.2).
In the next theorem we shall assume only the independence
(without common distribution) and the proof becomes slightly harder.

TuEOREM 2.2. Let (X, #=1) be a sequence of' independent
random variables with EX, =1, sup,=1 E| X, —1|? < C< @ for some
1<p=<2 and for some distribution function F let

(2.3) w? (S, — n) ——> F

Then for 0 <a<1 and n— o,

(24) #~'* (max S;j=¢ — S, n~w) %50,
<j<n ’
(2,5) : n-1» (S,‘, nt— 1nf S; i ) £50.

Proof. Put Y,= Xn-—l,“ Wo=Yi+- -+ Y and Wj,n=War;j— Wj.
Then ' ’
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(2.6) Sjj ¢ —=Syn¢=W;j¢— Wyn ¢ —nl-¢ 4 jl-e .
Let ¢>0, 1>48>0 and 7= (1—8'"¢)/2. For pm>j>1,
CSjje = S,w e < Wijme — Won® — 2r ple

< (W; = 7j)/j* = (W, + rm)/me .
Since sup,>1 E | X,|? <oo, by a strong law of large numbers
of Loéve [7, p. 241], } W./n—0 a.e. as #— o, and therefore
maXigj<pn (Sj 7% — Sy %) > —© a.e,

(2.7 P[max (Sjj=¢ — S, m %) > ¢ ntl?- “]———>0 as m—co.

1=j=p

For pn<j<m,

Sjj e —=Spn = Wo(j~¢ — 0 %) — Wjp-jj ¢ — nl~¢ + ji-e
' Wl —n ) + [ Wjujlj=.

Hence
[/ a 1/p—a »
P[ﬂl&&})ﬁn (S,] S, 1) > 2 n :I
< P[ max W,(j¢ —n¢) >¢ n”l"“]
pn<j<n
+ P| max | W; .- > e ptlt-e
(2.8) [ﬂn J-—’ll =il 7 ¢ ]

< P[W,> s nV'2/(8~ — 1)]

+ P max |Wj .=l > ¢ B n''?
[ﬁn<JXn[ e l[ Eﬂ ]

= In + IIn )
say. By (2.3),

L-31—F(e/(8~«—1)) 250

and by Doob’s inequality [2, p. 314] and the inequality of Marcin-
kiewicz and Zygmund [5 or 6], for some constant A, ‘

I, < (¢ 89) 20 E | Wepazet, n-rpma-11?

SAcelga)—-pn—lE( Z Yf)ﬂz
Jj=[pni1+1
SA(ep) P E > |Y|2 < AC(e )2 (1 — B) —> 0

F=1pnl+1

as A#—1. Hence as #— oo,

(2.9) P[ max (Sjj=¢ — S,%n"¢) > 2 %1'15— ]_..> 0,
. pn<ljsn
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yielding (2.4) by reason of (2.7).

The proof of (2.5) is similar. i

If the random variables X, in Theorem 2.2 are 1ndependent and
identically d1str1buted the convergence in probability can be improved
to a.e. convergence as follows: :

THEOREM 2 3. Le (X,,, w>1) be a sequence of "inrde_bendent
identically distributed random variables with EX:=1 and E [Xllf‘< o
~ for some 1<p<2 Then for 0 <a<1, as n— oo, '

(210) = me-ie (max S;57¢ — S, n"‘) —>0 a.ec,
<j<n
(211) . pemis (s e —inf ;i) —>0 ae. '

To prove Theorem 2.3, we need the following lemma of [1].

LEMMA 24. Let (Y, #>1) be a sequence of independent,
identically distributed mndom varviables with EY, =0, E|Yi|? <o
for some p=>1, Wo=Y1i+ -+ Y, and Wjn=Wjrn— Wj. Then for
1<p<2 as n— o, ' ‘

(2.12) ’n”i’maxIW,,,l——-eO a.e.,
: 1<].._n
(2.13) Y max | We-;, ,[ ——>0 a.e.,
s 1S jsn~1

and for p=>2 and 0<p<min (1, 2/11),43,%—-)@,

(2.14) #Y? max W, jl—>0 a.e,
1Sj<n
(2.15) " #Y? max [Way-j, il —>0 a.e.
. L. 1=j<n ’

Proof. (2.12) and (2.14) have been established in [1] and their
proofs hold for (2.13) and (2.15) also. Actually (2.13) follows easily
by noting that, as #-—> 0, h B

max |[Wu-;;il <  Jnax [ Wa-jl + [Wnl

1€jsn-—1 <jsn—-1 .
= max |W;l + |W,] = o(n''?) ra:s.
1€ j<n—1

by the Marcinkiewicz-Zygmund strong law of large numbers [5 or.7,
p. 242] and therefore (2.15) is a simple consequence of (2.14) as
follows: if m = [#f]+ 1, then
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B Wn-j,j = Wn—m,m—«Wn—m,m—-j ,i

max |Wy-j,jl < | Wo-mm! + max | Wazim, m—;] —o(n”l’) a.e.

1<j<m 1€ j<m

by (2.13) for A<a<min (1, 2/p) and 1<j<n?, m+]<2m<(n—-—m)d
for all large #.

Proof of Theorem 2.3. We shall prove (2.11) only and oﬁrif the
proof of (2.10), which is similar. Put Y.= X,, 1, Wao=Y1+---+Y,
and Wj,n= Wys; — W;. Then |
(216)  Sume —Sjj ¢ = Wyn« — W;j=¢ — =« + ni=e |

For 1<p<2 let 1>F>max (@, 1/p) and for p=1, let #=1
Put m = [#*]. Then for j=#n+ m and # large,

- jlme — glma = ji=c {1 - (1 _J o ”)1_“}
] R

>U-a)je— =1 ey 1= g,
( )i ”n-+ m 2 J 2 I

Hence for # large,

.Sup (Sam= — S;j=¢) < | Wal 57 + (lel j"f’-'l;“)i”““-

By the Marcinkiewicz- Zygmund strong law of large numbers [5 or
7, p. 242], Wyn"'"?—>0 a.e. and therefore

(2.17) lim sup (S,#7¢—S;j ¢)*=0 a.e.

n>® jERut+m

For n<j<m+m and all large %,

—d . & —a — » _ﬂ —<d‘
e <N fi-(1+ n) }
< 2umetht - if 1<p<2,
<ne(l—29)<2en et if p=1.
Choose r—l/;b+1—/9 Then for n<]<n+m ,
(218) ’ Sn” ¢ — 1.7 e — Wn.]-n% + W(n_d ""'.7—“)
Since
max | W;l (%‘ —j “)<2a:n"°‘+ﬁ -1 max |W;l-

(219) nsi<n+m - n<1<n+m.

< 2T @ yt/r¢ max [W; -7 =o(n'#-%) a.e.
n=j<lntm s : . : :
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by the Marcinkiewicz-Zygmund- strong law of large numbers [5], and

maX [ Wn,j-—nl ne
nEj<ntm

(2.20) ,
L = pt/r-c (n“”f’ max IW,,,j_,,l) = o(n'?-¢) a.e.

* n<j<n+m

by (2.12) and (2.14).

From (2.18)-(2.20), as 7 —> o,

(2.21) o max ne-Us (S, ¢ —8;j7¢)—>0 a.e,
. n=jlnt+m

vielding (2.11) by noting (2.17). .

From Theorems 2.1-2.3, we can easily obtain the limiting theorems
for max;<,S;j~¢ and inf;>, S;j~ from the corresponding theorems
for S,n¢. To clarify the point, we mention the following:

COROLLARY 2.5. Let (X, n>1) be a sequence of independent
random . varzables wzth EX, = 1 and suDn21 E | X, 11’ < oo for some
1< p < 2.

(i) If for some distribution function F
n-t12(S, — n) —> F,

then for 0 <a<l1l, as n— oo,

(2.22) ) . n‘t"llﬁ (max S]. j—:z — nl-—d) —d‘%F,
1=j<n

(2.23) N ne—ls (mf Sjj=¢ — n'~ “) =5 F.
n<j

(ii) If the random variables X, have the same distribution and
E(X;i—1)2= <o, then for 0<a<1, as n— o,

(2.24) hm max S; j‘“ - nl‘“)/(ZnI‘Z“ log log n)”2 = * c; a.e.,

_J_n

(2.25) lim (lnf Sjj¢ —nt- "‘)/(2%1 -2 Jog log#)2 = + ¢ a.e,

and with probability One, the sets of all limit points of the sequences
(maxic;j<aSjj=% — 12-2) (2n' -2 log log #) ~'/? and (inf;j=,S;j ¢ —n'~¢)
«(2nt~2%¢ log log #) "2 coincide with the interval [—o, o].

Proof. (i) follows immediately from Theorem 2.2 and (ii)
follows from Theorem 2.3 and the iterated logarithm theorems of
Hartman-Wintner [4] and Strassen [9].
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REMARK. When p =2 and F is the distribution of an N(0, o)
random variable, (2.22) has been established by Teicher [10] by
using the method of stopping times.

3. Limiting behavior of first passage times. Let (X, » _>_ 1)
be a sequence of independent random variables with EX, =1 and
=X;+---+X, For ¢>0 and 0<a<1, define T.=inf fn>1-
S,>cn*}, N.=supin=>1:S,<cn*}, and U.= >0 Is 1. In
1968 Siegmund [8] proved that if E(X,—1)?=o¢*<o for each
#>1 and (S, 72>1) obeys the central limit theorém, then T¢
obeys the central limit theorem, and in 1972 Vervaat [11] proved
that if ¢ =0, E(X;—1)?< o and the random variables are identi-
cally distributed, then 7. obeys the law of iterated logarithm. The
results of §2 yield central -limit theorems and iterated logarithm
theorems for T., N. and U, as ¢— o (and therefore new proofs of
the theorems of Siegmund and Vervaat).

THEOREM 3.1. Let (X, #=>1) be a sequence of independent
random variables with EX, =1, E(X,— 1) =*< and

(3.1) 72 (S, — n) —> N(0, o) .

Then as ¢ — o,

(3.2) (1 — @) c7M2= (T, — V=) —> N(0, o),
(33) (1= @) A9 (N, — cifeo0) < N(o, o),
B4 @ —a) c-1'2<1 (U, — ¢!0-9) = N(0, o) .

Proof. (3.2) is due to Siegmund [8] and can be proved in the
same manner as (3.3). To prove (3.3), for ¢>0 and —o<r<<ox,
let # = n — Ua-a 4 ox(l — &)t 2@~ Then as c— oo,
B~ '~ (¢ — nt=2)/(on'* ) ~ —x and

PL(1 — &) =9 (N, — ¢/0=2) > oz
= P[N. 2 n] = P[inf §;j* < ¢]
= P[(inf ;57 — #'=¢) /(o n) < (= =)/ (o #*)]
= P[(?gﬂ Sjje — n““)/(o 7wi2e) < — (1 + 0(1))] —> 0(—x).

=1-—0(x),
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by Corollary 25 (1) Where @(a:) (1/1/27r)f ““Za,’t

Since T:—1<U. < Nc; (3.2) and (3.3) imply (3.4). _
For the law of iterated logarithm for 7., N: and U,, we need
the following lemma, part (i) of which is due to Gut [3]. -

LemMmA 3.2. Let (Xi, n=>1) be a sequence of independent, zdentz
cally distributed random variables with EX,=1. Then as ¢ — 00,

(85) (i) MO T, —>1 ae, cUa- “)N —1 ae
(ii) If EX2<oo then as ¢— o,

(3.6) 7 "’2(ST —cT?) —> 0 ae,

(3.7) N2 (eNE — SN )—>0 a.e

Proof. The proof of (i) can be found in Theorem 3.3 of [3]
For (3.6), from the definition

o< (ST —¢TP) T'7¥¢ = (STc —1 +’.XT0>-"' CTcw) T
<X, T —0 a.e,

since EXi<<oo. Similarly for (3.7).

THEOREM 3.3. Let (X,, n=>1) be a sequence of independent,
identically distributed random variables with EXi=1 and E (X1 1)2

=d*<co. Then as ¢— o,

(38) lm@1—w) (T — cta- ‘“)/(201’(1 2 Iog Iogc)”2 =*0 a é |
(39) lim (1 — @) (N — cl’(l“"‘))/(2cl’(1 %) Jog Iog M= +4 g e. '
(3.10) hm (1—-ea) (U — c”“*"“)/(Zc”(1 ) log log c)”2 =*o ae

Proof. By the Hartman Wintner law of 1terated Iogarlthm [4]
as n-—> o,

” - Sn
— (2zlog log n)'/2

=+0 ae
Since T.— @ a.e. as ¢— @

1m L — ST <" a
K .. -
(2T, log log o)z — % &€

and by the déﬁnifion of T. and (3.6) .
(3.11) lim (T. — ¢T¢)/(2T. loglog T,)'* <o ale.

l



1976} LIMITING BEHAVIOR AND PASSAGE TIMES 43
As ¢— oo, by (35)
Tc __CZ-‘;s = Tc{l"“ (1+ cl’(d-—l) TC—1)¢_1} .

(3.12) = T.(1 — &) (V@D T, — 1) (1 + o(1))
= (1 —a)(Te— e’ 2) (1 +0(1)) ae

From (3.11) and (3.12),
(3.13) - Tim (T. — 0=} /(2 A= Iog log AP <o/(1—a) a.e.

For 0<¢<1,. put 7= [c”(1 @ + £0(2M -2 Jog log ¢)*/2/ (1 — w)]
Then as ¢— 0o,
c"“*‘ﬂ =9 — Ea(2n loglog#)Y2 (1 — )™t (1 + 0(1))

C= n'=*{1 — (2 log log #)'"* n*(1 — w) A +oe(1))e
= 9t-¢§1 — £o(21log log #) 212 (1 + o(1))}
= n'=¢ — £0(2n' 2« log log n)1’2(1*+ 0(1)).
P[T. — ¢! > (1— o)t Eo(2c=9 log logc‘)“2 i o:] R
_P[Tc>n10]-—P 1max.S,] ‘tSc;i.o.] '
, SES
(3.14) = P[max S;jj~ ¢

1<j<n
; < n'-¢ — £6(2n 2% log log 7) /% (1 + o(1)) i. 0.]
1 , oo ‘
by (2.24), and (3.8) follows immediately from (3.13) and (3.14).
Similarly we can prove (39). Since T.—1<U.< N, (3.10)
follows from (3.8) and (3.9) at once.
Theorem 3.3 yields a rather suprising result:

COROLLARY 3.4. Under the same hypothesis as Theorem 3.3, as
c— o,

(3.15) lim (S, — T.)/(2T:loglog T)'* = = 0 a.e,
(3.16) lim (Sy, — Nc)/(2N.log log N)Y"2 =0 a.e.
Proof. By (3.6) and (3.12), with probability one

Sr— T. = Sr, — cT¢ +¢T? — T.
= o(T¥) + (1 — @) (T — ¢'®=) (1 + 0(1)) .

HenceAby (3.5) with-probability one as ¢— <o,
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ii;__:n (STL_ —_ Tc)/(2Tc IOg log Tc)”z
Z (1 — w) (T — - m))/(zcll(l @) log Iogc)llz =+,

vielding (3.15). Similarly for (3.16).
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