LIMITING BEHAVIOR OF $\max_{j \le n} S_j j^{-\alpha}$ AND THE FIRST PASSAGE TIMES IN A RANDOM WALK WITH POSITIVE DRIFT

BY

Y.S. CHOW AND AGNES CHAO HSIUNG

Abstract. Let $(X_n, n \ge 1)$ be a sequence of independent, identically distributed random variables with $EX_1 = 1$, $E(X_1 - 1)^2 = \sigma^2 < \infty$, and $S_n = X_1 + \cdots + X_n$, and let $0 \le \alpha < 1$. We prove that $n^{\alpha - 1/2}(\max_{j \le n} S_j j^{-\alpha} - S_n n^{-\alpha}) \to 0$ a.e. and $n^{\alpha - 1/2}(S_n n^{-\alpha} - \inf_{j \ge n} S_j j^{-\alpha}) \to 0$ a.e. From these results, we derive the law of iterated logarithm for $\max_{j \le n} S_j j^{-\alpha}$, $\inf_{j \ge n} S_j j^{-\alpha}$, T_c and N_c , where $T_c = \inf\{n \ge 1 : S_n > cn^\alpha\}$ and $N_c = \inf\{n \ge 1 : S_n \le cn^\alpha\}$ for c > 0.

1. Introduction. Let (Q, \mathcal{F}, P) be a probability space and $(X_n, n \geq 1)$ be a sequence of independent random variables with $EX_n = 1$ for every n. Put $S_n = X_1 + \cdots + X_n$. Since $EX_n = 1$, therefore $\max_{j \leq n} S_j$ and $\inf_{j \geq n} S_j$ should be close to S_n in some sense. In §2, we will prove some limiting theorems about the differences $\max_{j \leq n} S_j j^{-\alpha} - S_n n^{-\alpha}$ and $\inf_{j \geq n} S_j j^{-\alpha} - S_n n^{-\alpha}$ for $0 \leq \alpha < 1$ and apply them to obtain convergence in distribution theorems and law of iterated logarithm for $\max_{j \leq n} S_j j^{-\alpha}$ and $\inf_{j \geq n} S_j j^{-\alpha}$. A central limit theorem for $\max_{j \leq n} S_j j^{-\alpha}$ has been recently obtained by Teicher [10]. Our approach is different.

For c>0 and $0 \le \alpha < 1$, define the first passage time T_c = inf $\{n \ge 1 : S_n > cn^{\alpha}\}$. A central limit theorem for T_c as $c \to \infty$ has been given by Siegmund [8]. His result follows easily from the results about $\max_{j \le n} S_j j^{-\alpha} - S_n n^{-\alpha}$.

In §3, based on the results of $\max_{j\leq n} S_j j^{-\alpha}$, we obtain the law of iterated logarithm for T_c , which in case of $\alpha=0$ has been obtained by Vervaat [11]. If $N_c=\sup\{n\geq 1: S_n\leq cn^\alpha\}$ and $U_c=\sum_1^\infty I_{[S_n\leq cn^\alpha]}$, similar results hold for N_c and U_c also.

Received by the editors October 20, 1975.

2. Limiting behavior of $\max_{j\leq n} S_j j^{-\alpha}$ and $\inf_{j\geq n} S_j j^{-\alpha}$. Let $(X_n, n\geq 1)$ be a sequence of independent random variables, $EX_n=1$ and $S_n=X_1+\cdots+X_n$. Since $EX_n>0$, therefore $\max_{j\leq n} S_j-S_n$ and $S_n-\inf_{j\geq n} S_j$ should be small in comparison with S_n when n is large and their limiting behavior could be obtained from those of S_n .

THEOREM 2.1. Let $(X_n, n \ge 1)$ be a sequence of independent, identically distributed random variables, $EX_1 = 1$ and let $(b_n, n \ge 1)$ be a sequence of positive numbers such that $b_n \to \infty$ as $n \to \infty$. Then as $n \to \infty$,

$$(2.1) b_n^{-1} \left(\max_{j \le n} S_j - S_n \right) \xrightarrow{P} 0,$$

$$(2.2) b_n^{-1} \left(S_n - \inf_{j \geq n} S_j \right) \xrightarrow{P} 0.$$

Proof. For $\varepsilon > 0$, by the i. i. d. property and the strong law of large numbers, as $n \to \infty$,

$$P\left[\max_{j\leq n} S_{j} - S_{n} > b_{n} \,\varepsilon\right] = P\left[\max_{j\leq n} - (S_{n} - S_{j}) > b_{n} \,\varepsilon\right]$$

$$= P\left[\max_{j\leq n} - S_{n-j} > b_{n} \,\varepsilon\right] = P\left[\max_{j\leq n-1} - S_{j} > b_{n} \,\varepsilon\right] \to 0,$$

yielding (2.1). Similarly for (2.2).

In the next theorem we shall assume only the independence (without common distribution) and the proof becomes slightly harder.

THEOREM 2.2. Let $(X_n, n \ge 1)$ be a sequence of independent random variables with $EX_n = 1$, $\sup_{n\ge 1} E|X_n - 1|^p \le C < \infty$ for some 1 , and for some distribution function <math>F let

$$(2.3) n^{-1/p} (S_n - n) \stackrel{d}{\longrightarrow} F.$$

Then for $0 \le \alpha < 1$ and $n \to \infty$,

(2.4)
$$n^{-1/p} \left(\max_{1 \leq j \leq n} S_j j^{-\alpha} - S_n n^{-\alpha} \right) \stackrel{P}{\longrightarrow} 0,$$

(2.5)
$$n^{-1/p} \left(S_n n^{-\alpha} - \inf_{j \geq n} S_j j^{-\alpha} \right) \stackrel{P}{\longrightarrow} 0.$$

Proof. Put $Y_n = X_n - 1$, $W_n = Y_1 + \cdots + Y_n$, and $W_{j,n} = W_{n+j} - W_j$. Then

$$(2.6) S_{j} j^{-\alpha} - S_{n} n^{-\alpha} = W_{j} j^{-\alpha} - W_{n} n^{-\alpha} - n^{1-\alpha} + j^{1-\alpha}.$$

Let $\varepsilon > 0$, $1 > \beta > 0$ and $r = (1 - \beta^{1-\alpha})/2$. For $\beta n \ge j \ge 1$,

$$S_j j^{-\alpha} - S_n n^{-\alpha} \leq W_j j^{-\alpha} - W_n n^{-\alpha} - 2r n^{1-\alpha}$$

$$\leq (W_j - r_j)/j^{\alpha} - (W_n + r_n)/n^{\alpha}.$$

Since $\sup_{n\geq 1} E |X_n|^p < \infty$, by a strong law of large numbers of Loève [7, p. 241], $W_n/n \to 0$ a.e. as $n \to \infty$, and therefore $\max_{1\leq j\leq p_n} (S_j j^{-\alpha} - S_n n^{-\alpha}) \to -\infty$ a.e.,

$$(2.7) P\left[\max_{1 \leq j \leq \beta n} (S_j j^{-\alpha} - S_n n^{-\alpha}) > \varepsilon n^{1/p-\alpha}\right] \longrightarrow 0 \text{as} n \to \infty.$$

For $\beta n < j \le n$,

$$S_j j^{-\alpha} - S_n n^{-\alpha} = W_n (j^{-\alpha} - n^{-\alpha}) - W_{j,n-j} j^{-\alpha} - n^{1-\alpha} + j^{1-\alpha}$$

 $\leq W_n (j^{-\alpha} - n^{-\alpha}) + |W_{j,n-j}| j^{-\alpha}.$

Hence

$$P\left[\max_{\beta n < j \leq n} (S_{j} j^{-\alpha} - S_{n} n^{-\alpha}) > 2\varepsilon n^{1/p - \alpha}\right]$$

$$\leq P\left[\max_{\beta n < j \leq n} W_{n}(j^{-\alpha} - n^{-\alpha}) > \varepsilon n^{1/p - \alpha}\right]$$

$$+ P\left[\max_{\beta n < j \leq n} |W_{j, n - j}| j^{-\alpha} > \varepsilon n^{1/p - \alpha}\right]$$

$$\leq P[W_{n} > \varepsilon n^{1/p}/(\beta^{-\alpha} - 1)]$$

$$+ P\left[\max_{\beta n < j \leq n} |W_{j, n - j}| > \varepsilon \beta^{\alpha} n^{1/p}\right]$$

$$= I_{n} + II_{n},$$

say. By (2.3),

$$I_n \xrightarrow{n \to \infty} 1 - F(\varepsilon/(\beta^{-\alpha} - 1)) \xrightarrow{\beta \to 1} 0$$

and by Doob's inequality [2, p. 314] and the inequality of Marcin-kiewicz and Zygmund [5 or 6], for some constant A,

$$\begin{split} & \text{II}_{n} \leq (\varepsilon \, \beta^{\alpha})^{-p} \, n^{-1} \, E \, | \, W_{\lfloor \beta n \rfloor + 1, \, n - \lfloor \beta n \rfloor - 1} |^{p} \\ & \leq A(\varepsilon \, \beta^{\alpha})^{-p} \, n^{-1} \, E \, \Big(\sum_{j = \lfloor \beta n \rfloor + 1}^{n} Y_{j}^{2} \Big)^{p/2} \\ & \leq A(\varepsilon \, \beta^{\alpha})^{-p} \, n^{-1} \, E \, \sum_{j = \lfloor \beta n \rfloor + 1}^{n} | \, Y_{j} |^{p} \leq AC(\varepsilon \, \beta^{\alpha})^{-p} \, (1 - \beta) \longrightarrow 0 \end{split}$$

as $\beta \to 1$. Hence as $n \to \infty$,

(2.9)
$$P\left[\max_{\beta n < j \leq n} (S_j j^{-\alpha} - S_n n^{-\alpha}) > 2\varepsilon n^{1/p-\alpha}\right] \longrightarrow 0,$$

yielding (2.4) by reason of (2.7).

The proof of (2.5) is similar.

If the random variables X_n in Theorem 2.2 are independent and identically distributed, the convergence in probability can be improved to a.e. convergence as follows:

THEOREM 2.3. Let $(X_n, n \ge 1)$ be a sequence of independent, identically distributed random variables with $EX_1 = 1$ and $E|X_1|^p < \infty$ for some $1 \le p \le 2$. Then for $0 \le \alpha < 1$, as $n \to \infty$,

$$(2.10) n^{\alpha-1/p} \left(\max_{1 \leq j \leq n} S_j j^{-\alpha} - S_n n^{-\alpha} \right) \longrightarrow 0 \quad a.e.,$$

(2.11)
$$n^{\alpha-1/p} \left(S_n n^{-\alpha} - \inf_{j \geq n} S_j j^{-\alpha} \right) \longrightarrow 0 \quad a. e.$$

To prove Theorem 2.3, we need the following lemma of [1].

LEMMA 2.4. Let $(Y_n, n \ge 1)$ be a sequence of independent, identically distributed random variables with $EY_1 = 0$, $E|Y_1|^p < \infty$ for some $p \ge 1$, $W_n = Y_1 + \cdots + Y_n$ and $W_{j,n} = W_{j+n} - W_j$. Then for $1 \le p < 2$, as $n \to \infty$,

$$(2.12) n^{-1/p} \max_{1 \leq j \leq n} |W_{n,j}| \longrightarrow 0 a.e.,$$

$$(2.13) n^{-1/p} \max_{1 \leq j \leq n-1} |W_{n-j,j}| \longrightarrow 0 a.e.,$$

and for $p \ge 2$ and $0 < \beta < \min(1, 2/p)$, as $n \to \infty$,

$$(2.14) n^{-1/p} \max_{1 \le j \le n^{\beta}} |W_{n,j}| \longrightarrow 0 a.e.,$$

(2.15)
$$n^{-1/p} \max_{1 \leq j \leq n^{\beta}} |W_{n-j,j}| \longrightarrow 0 \quad a.e.$$

Proof. (2.12) and (2.14) have been established in [1] and their proofs hold for (2.13) and (2.15) also. Actually (2.13) follows easily by noting that, as $n \to \infty$,

$$\max_{1 \leq j \leq n-1} |W_{n-j,j}| \leq \max_{1 \leq j \leq n-1} |W_{n-j}| + |W_n|$$

$$= \max_{1 \leq j \leq n-1} |W_j| + |W_n| = o(n^{1/p}) \quad \text{a. s.}$$

by the Marcinkiewicz-Zygmund strong law of large numbers [5 or 7, p. 242] and therefore (2.15) is a simple consequence of (2.14) as follows: if $m = [n^{\beta}] + 1$, then

$$W_{n-j,j} = W_{n-m,m} - W_{n-m,m-j}$$
,

$$\max_{1 \leq j \leq m} |W_{n-j,j}| \leq |W_{n-m,m}| + \max_{1 \leq j \leq m} |W_{n-m,m-j}| = o(n^{1/p}) \quad \text{a. e.}$$

by (2.13) for $\beta < \alpha < \min(1, 2/p)$ and $1 \le j \le n^{\beta}$, $m+j \le 2m \le (n-m)^{\alpha}$ for all large n.

Proof of Theorem 2.3. We shall prove (2.11) only and omit the proof of (2.10), which is similar. Put $Y_n = X_n - 1$, $W_n = Y_1 + \cdots + Y_n$ and $W_{j,n} = W_{n+j} - W_j$. Then

$$(2.16) S_n n^{-\alpha} - S_j j^{-\alpha} = W_n n^{-\alpha} - W_j j^{-\alpha} - j^{1-\alpha} + n^{1-\alpha}.$$

For $1 , let <math>1 > \beta > \max(\alpha, 1/p)$ and for p = 1, let $\beta = 1$. Put $m = [n^{\beta}]$. Then for $j \ge n + m$ and n large,

$$j^{1-lpha}-n^{1-lpha}=j^{1-lpha}\left\{1-\left(1-rac{j-n}{j}
ight)^{1-lpha}
ight\} \ \geq (1-lpha)\,j^{1-lpha}\,rac{m}{n+m}\geq rac{1-lpha}{2}\,j^{1-lpha}\,n^{eta-1}\geq rac{1-lpha}{2}\,j^{eta-lpha}\,.$$

Hence for n large,

$$\sup_{j\geq n+m}\left(S_n\,n^{-\alpha}-S_j\,j^{-\alpha}\right)\leq |W_n|\,n^{-\alpha}+\left(|W_j|\,j^{-\beta}-\frac{1-\alpha}{2}\right)j^{\beta-\alpha}.$$

By the Marcinkiewicz-Zygmund strong law of large numbers [5 or 7, p. 242], $W_n n^{-1/p} \rightarrow 0$ a.e. and therefore

(2.17)
$$\lim_{n\to\infty} \sup_{j\geq n+m} (S_n n^{-\alpha} - S_j j^{-\alpha})^+ = 0 \quad \text{a. e.}$$

For $n \le j \le n + m$ and all large n,

$$n^{-\alpha} - j^{-\alpha} \le N^{-\alpha} \left\{ 1 - \left(1 + \frac{m}{n} \right)^{-\alpha} \right\}$$

$$\le 2\alpha \, n^{-\alpha + \beta - 1} \qquad \text{if } 1
$$\le n^{-\alpha} \, (1 - 2^{-\alpha}) \le 2\alpha \, n^{-\alpha + \beta - 1} \qquad \text{if } p = 1.$$$$

Choose $r = 1/p + 1 - \beta$. Then for $n \le j \le n + m$,

$$(2.18) S_n n^{-\alpha} - S_j j^{-\alpha} \leq -W_{n,j-n} n^{-\alpha} + W_j (n^{-\alpha} - j^{-\alpha}).$$

Since

(2.19)
$$\max_{n \leq j < n+m} |W_{j}| (n^{-\alpha} - j^{-\alpha}) \leq 2\alpha n^{-\alpha+\beta-1} \max_{n \leq j < n+m} |W_{j}| \\ \leq 2^{1+\tau} \alpha n^{1/p-\alpha} \max_{n \leq j < n+m} |W_{j} j^{-\tau}| = o(n^{1/p-\alpha}) \text{ a. e.}$$

by the Marcinkiewicz-Zygmund strong law of large numbers [5], and

(2.20)
$$\max_{n \leq j < n+m} |W_{n,j-n}| \, n^{-\alpha} \\ = n^{1/p-\alpha} \left(n^{-1/p} \max_{n \leq j < n+m} |W_{n,j-n}| \right) = o(n^{1/p-\alpha}) \quad \text{a. e.}$$

by (2.12) and (2.14).

From (2.18)-(2.20), as $n \to \infty$,

(2.21)
$$\max_{n \leq j < n+m} n^{\alpha-1/p} \left(S_n n^{-\alpha} - S_j j^{-\alpha} \right) \longrightarrow 0 \quad \text{a. e.,}$$

yielding (2.11) by noting (2.17).

From Theorems 2.1-2.3, we can easily obtain the limiting theorems for $\max_{j\leq n} S_j j^{-\alpha}$ and $\inf_{j\geq n} S_j j^{-\alpha}$ from the corresponding theorems for $S_n n^{-\alpha}$. To clarify the point, we mention the following:

COROLLARY 2.5. Let $(X_n, n \ge 1)$ be a sequence of independent random variables with $EX_n = 1$ and $\sup_{n\ge 1} E |X_n|^p < \infty$ for some 1 .

(i) If for some distribution function F

$$n^{-1/p}(S_n-n)\stackrel{\mathrm{d}}{\longrightarrow} F$$
,

then for $0 \le \alpha < 1$, as $n \to \infty$,

(2.22)
$$n^{\alpha-1/p} \left(\max_{1 \leq j \leq n} S_j j^{-\alpha} - n^{1-\alpha} \right) \xrightarrow{d} F,$$

(2.23)
$$n^{\alpha-1/p} \left(\inf_{n \leq j} S_j j^{-\alpha} - n^{1-\alpha} \right) \xrightarrow{d} F.$$

(ii) If the random variables X_n have the same distribution and $E(X_1-1)^2=\sigma^2<\infty$, then for $0\leq\alpha<1$, as $n\to\infty$,

$$(2.24) \quad \overline{\underline{\lim}} \left(\max_{1 \leq j \leq n} S_j j^{-\alpha} - n^{1-\alpha} \right) / (2n^{1-2\alpha} \log \log n)^{1/2} = \pm \sigma \quad a. e.,$$

$$(2.25) \quad \overline{\lim}_{j\geq n} \left(\inf_{j\geq n} S_j j^{-\alpha} - n^{1-\alpha}\right) / (2n^{1-2\alpha} \log \log n)^{1/2} = \pm \sigma \quad a. e.,$$

and with probability one, the sets of all limit points of the sequences $(\max_{1 \le j \le n} S_j j^{-\alpha} - n^{1-\alpha}) (2n^{1-2\alpha} \log \log n)^{-1/2}$ and $(\inf_{j \ge n} S_j j^{-\alpha} - n^{1-\alpha}) \cdot (2n^{1-2\alpha} \log \log n)^{-1/2}$ coincide with the interval $[-\sigma, \sigma]$.

Proof. (i) follows immediately from Theorem 2.2 and (ii) follows from Theorem 2.3 and the iterated logarithm theorems of Hartman-Wintner [4] and Strassen [9].

REMARK. When p=2 and F is the distribution of an $N(0, \sigma)$ random variable, (2.22) has been established by Teicher [10] by using the method of stopping times.

3. Limiting behavior of first passage times. Let $(X_n, n \ge 1)$ be a sequence of independent random variables with $EX_n = 1$ and $S_n = X_1 + \cdots + X_n$. For c > 0 and $0 \le \alpha < 1$, define $T_c = \inf \{n \ge 1 : S_n > cn^{\alpha}\}$, $N_c = \sup \{n \ge 1 : S_n \le cn^{\alpha}\}$, and $U_c = \sum_1^{\infty} I_{CS_n \le cn^{\alpha}}$. In 1968 Siegmund [8] proved that if $E(X_n - 1)^2 = \sigma^2 < \infty$ for each $n \ge 1$ and $(S_n, n \ge 1)$ obeys the central limit theorem, then T_c obeys the central limit theorem, and in 1972 Vervaat [11] proved that if $\alpha = 0$, $E(X_1 - 1)^2 < \infty$ and the random variables are identically distributed, then T_c obeys the law of iterated logarithm. The results of §2 yield central limit theorems and iterated logarithm theorems for T_c , N_c and U_c as $c \to \infty$ (and therefore new proofs of the theorems of Siegmund and Vervaat).

THEOREM 3.1. Let $(X_n, n \ge 1)$ be a sequence of independent random variables with $EX_n = 1$, $E(X_n - 1)^2 = \sigma^2 < \infty$ and

(3.1)
$$n^{-1/2} (S_n - n) \stackrel{d}{\longrightarrow} N(0, \sigma)$$
.

Then as $c \to \infty$,

$$(3.2) (1-\alpha) c^{-1/2(1-\alpha)} (T_c - c^{1/(1-\alpha)}) \xrightarrow{d} N(0, \sigma),$$

(3.3)
$$(1-\alpha) c^{-1/2(1-\alpha)} (N_c - c^{1/(1-\alpha)}) \xrightarrow{d} N(0, \sigma) ,$$

$$(3.4) (1-\alpha) c^{-1/2(1-\alpha)} (U_c - c^{1/(1-\alpha)}) \xrightarrow{d} N(0, \sigma).$$

Proof. (3.2) is due to Siegmund [8] and can be proved in the same manner as (3.3). To prove (3.3), for c>0 and $-\infty < x < \infty$, let $n = n_x = c^{1/(1-\alpha)} + \sigma x(1-\alpha)^{-1} c^{1/2(1-\alpha)}$. Then as $c \to \infty$, $n \sim c^{1/(1-\alpha)}(c-n^{1-\alpha})/(\sigma n^{1/2-\alpha}) \sim -x$ and

$$P[(1-\alpha) c^{1/2(1-\alpha)}(N_c - c^{1/(1-\alpha)}) \ge \sigma x]$$

$$= P[N_c \ge n] = P\left[\inf_{j \ge n} S_j j^{-\alpha} \le c\right]$$

$$= P\left[\left(\inf_{j \ge n} S_j j^{-\alpha} - n^{1-\alpha}\right) / (\sigma n^{1/2-\alpha}) \le (c - n^{1-\alpha}) / (\sigma n^{1/2-\alpha})\right]$$

$$= P\left[\left(\inf_{j \ge n} S_j j^{-\alpha} - n^{1-\alpha}\right) / (\sigma n^{1/2-\alpha}) \le -x(1+o(1))\right] \longrightarrow \emptyset(-x)$$

$$= 1 - \emptyset(x),$$

by Corollary 2.5 (i), where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$.

Since $T_c - 1 \le U_c \le N_c$, (3.2) and (3.3) imply (3.4).

For the law of iterated logarithm for T_c , N_c and U_c , we need the following lemma, part (i) of which is due to Gut [3].

LEMMA 3.2. Let $(X_n, n \ge 1)$ be a sequence of independent, identically distributed random variables with $EX_1 = 1$. Then as $c \to \infty$,

(3.5) (i)
$$c^{-1/(1-\alpha)} T_c \longrightarrow 1$$
 a.e., $c^{-1/(1-\alpha)} N_c \longrightarrow 1$ a.e.

(ii) If
$$EX_1^2 < \infty$$
, then as $c \to \infty$,

$$(3.6) T_c^{-1/2}(S_T - cT_c^{\alpha}) \longrightarrow 0 a.e.,$$

$$(3.7) N_c^{-1/2}(cN_c^{\alpha}-S_{N_c}) \longrightarrow 0 \quad a.e.$$

Proof. The proof of (i) can be found in Theorem 3.3 of [3]. For (3.6), from the definition

$$0 \leq (S_{T_c} - cT_c^{\alpha}) T_c^{-1/2} = (S_{T_c} - 1 + X_{T_c} - cT_c^{\alpha}) T_c^{-1/2}$$

 $\leq X_{T_c} T_c^{-1/2} \longrightarrow 0 \text{ a. e.,}$

since $EX_1^2 < \infty$. Similarly for (3.7).

THEOREM 3.3. Let $(X_n, n \ge 1)$ be a sequence of independent, identically distributed random variables with $EX_1 = 1$ and $E(X_1 - 1)^2 = \sigma^2 < \infty$. Then as $c \to \infty$,

(3.8)
$$\underline{\lim} (1-\alpha) (T_c - c^{1/(1-\alpha)})/(2c^{1/(1-\alpha)} \log \log c)^{1/2} = \pm \sigma \quad a.e.,$$

(3.9)
$$\underline{\lim} (1-\alpha)(N_c-c^{1/(1-\alpha)})/(2c^{1/(1-\alpha)}\log\log c)^{1/2}=\pm \sigma \quad a.e.,$$

(3.10)
$$\overline{\lim} (1-\alpha) (U_c - c^{1/(1-\alpha)}) / (2c^{1/(1-\alpha)} \log \log c)^{1/2} = \pm \sigma \quad a.e.$$

Proof. By the Hartman-Wintner law of iterated logarithm [4], as $n \to \infty$,

$$\overline{\lim} \frac{n - S_n}{(2n \log \log n)^{1/2}} = \pm \sigma \quad \text{a. e.}$$

Since $T_c \to \infty$ a.e. as $c \to \infty$

$$\overline{\lim} \frac{T_c - S_{T_c}}{(2T_c \log \log T_c)^{1/2}} \leq \sigma \quad \text{a. e.}$$

and by the definition of T_c and (3.6)

(3.11)
$$\overline{\lim} (T_c - cT_c^{\alpha})/(2T_c \log \log T_c)^{1/2} \leq \sigma \quad \text{a. e.}$$

As $c \to \infty$, by (3.5)

(3.12)
$$T_{c} - cT_{c}^{\alpha} = T_{c}\{1 - (1 + c^{1/(\alpha - 1)} T_{c} - 1)^{\alpha - 1}\}$$

$$= T_{c}(1 - \alpha) (c^{1/(\alpha - 1)} T_{c} - 1) (1 + o(1))$$

$$= (1 - \alpha) (T_{c} - c^{1/(1 - \alpha)}) (1 + o(1)) \quad \text{a. e.}$$

From (3.11) and (3.12),

(3.13)
$$\overline{\lim} (T_c - c^{1/(1-\alpha)})/(2c^{1/(1-\alpha)}\log\log c)^{1/2} \le \sigma/(1-\alpha)$$
 a.e.

For $0 < \xi < 1$, put $n = [c^{1/(1-\alpha)} + \xi \sigma (2c^{1/(1-\alpha)} \log \log c)^{1/2}/(1-\alpha)]$. Then as $c \to \infty$,

$$c^{1/(1-\alpha)} = n - \xi \sigma (2n \log \log n)^{1/2} (1-\alpha)^{-1} (1+o(1)),$$

$$C = n^{1-\alpha} \{1 - \xi \sigma (2 \log \log n)^{1/2} n^{-1/2} (1-\alpha)^{-1} (1+o(1))\}^{1-\alpha}$$

$$= n^{1-\alpha} \{1 - \xi \sigma (2 \log \log n)^{1/2} n^{-1/2} (1+o(1))\}$$

$$= n^{1-\alpha} - \xi \sigma (2n^{1-2\alpha} \log \log n)^{1/2} (1+o(1)).$$

Hence

$$P[T_{c} - c^{1/(1-\alpha)} > (1-\alpha)^{-1} \xi \sigma(2c^{1/(1-\alpha)} \log \log c)^{1/2} \text{ i. o.}]$$

$$= P[T_{c} > n \text{ i. o.}] = P\left[\max_{1 \le j \le n} S_{j} j^{-\alpha} \le c \text{ i. o.}\right]$$

$$= P\left[\max_{1 \le j \le n} S_{j} j^{-\alpha} \le c \text{ i. o.}\right]$$

$$\leq n^{1-\alpha} - \xi \sigma(2n^{1-2\alpha} \log \log n)^{1/2} (1 + o(1)) \text{ i. o.}$$

by (2.24), and (3.8) follows immediately from (3.13) and (3.14).

Similarly we can prove (3.9). Since $T_c - 1 \le U_c \le N_c$, (3.10) follows from (3.8) and (3.9) at once.

Theorem 3.3 yields a rather suprising result:

COROLLARY 3.4. Under the same hypothesis as Theorem 3.3, as $c \to \infty$,

$$(3.15) \qquad \overline{\lim} (S_{T_c} - T_c)/(2T_c \log \log T_c)^{1/2} = \pm \sigma \quad a. e.,$$

(3.16)
$$\overline{\lim} (S_{N_c} - N_c)/(2N_c \log \log N_c)^{1/2} = \pm \sigma \quad a. e.$$

Proof. By (3.6) and (3.12), with probability one

$$S_T - T_c = S_{T_c} - cT_c^x + cT_c^x - T_c$$

= $o(T_c^{1/2}) + (1 - \alpha)(T_c - c^{1/(1-\alpha)})(1 + o(1))$.

Hence by (3.5) with probability one as $c \to \infty$,

$$\frac{\overline{\lim}}{\overline{\lim}} (S_{T_c} - T_c)/(2T_c \log \log T_c)^{1/2}$$

$$= \overline{\lim} (1 - \alpha) (T_c - c^{1/(1-\alpha)})/(2c^{1/(1-\alpha)} \log \log c)^{1/2} = \pm \sigma,$$

yielding (3.15). Similarly for (3.16).

REFERENCES

- 1. Y.S. Chow (1973), Delayed sums and Borel summability of independent, identically distributed random variables, Bull. Inst. Math. Acad. Sinica 1, 207-220.
 - 2. J. L. Doob (1953), Stochastic Processes, John Wiley, New York.
- 3. A. Gut (1974), On the moments and limit distribution of some first passage times, Ann. of Probability 2, 277-308.
- 4. P. Hartman and A. Wintner (1974), On the law of the iterated logarithm, Amer. J. Math. 63, 169-176.
- 5. J. Marcinkiewicz and A. Zygmund (1937), Sur les fonctions indépendantes, Fund. Math. 29, 60-90.
- 6. ——— (1938), Quelques théorèmes sur les fonctions indépendantes, Studia Math. 7, 104-120.
 - 7. M. Loève (1963), Probability Theory, 3rd ed., D. Van Nostrand, Princeton, N. J.
- 8. D.O. Siegmund (1968), On the asymptotic normality of one-sided stopping rules, Ann. Math. Statist. 39, 1493-1497.
- 9. V. Strassen (1964), An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3, 211-226.
- 10. H. Teicher (1973), A classical limit theorem without invariance or reflection, Ann. of Probability 1, 702-704.
- 11. W. Vervaat (1972), Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23, 245-253.

DEPARTMENT OF MATHEMATICAL STATISTICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027, U.S.A., AND ACADEMIA SINICA, TAIPEI CORNELL UNIVERSITY, ITHACA, NEW YORK 14850, U.S.A.