SOME APPLICATIONS OF δ -PREOPEN SETS IN TOPOLOGICAL SPACES

BY

M. CALDAS, T. FUKUTAKE, S. JAFARI AND T. NOIRI

Abstract. In 1993, Raychaudhuri and Mukherjee [10] introduced the notions of δ -preopen sets and δ -preclosure. In this paper, we introduce some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator.

1. Introduction. Mashhour et al. [7] introduced preopen sets and precontinuous functions in topological spaces. On the other hand, Veličko [13] introduced the notion of δ -open sets which are stronger than open sets. Since then, δ -open sets have been widely used in order to introduce new spaces and functions. Recently, Raychaudhuri and Mukherjee [10] have introduced the notions of δ -preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than that of preopen sets. By using δ -preopen sets, in [11], they introduced and investigated δp -closed spaces.

In this paper, we introduce some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. We show that (δ, p) - T_1 spaces, (δ, p) - R_0 spaces and (δ, p) -symmetric spaces are all equivalent. The following property is fundamental and important: a subset A of a topological space (X, τ) is δ -preopen in (X, τ) if and only if it is preopen in (X, τ_s) , where τ_s is the semi-regularization of τ . This fact plays an important role in the sequel.

Received by the editors April 07, 2003 and in revised form November 19, 2004. AMS 2000 Subject Classification: 54B05, 54C08.

Key words and phrases: δ -preopen, sober (δ, p) - R_0 , $D_{(\delta, p)}$ -set, (δ, p) - D_0 , (δ, p) - D_1 , (δ, p) - D_2 .

2. Preliminaries. Let (X,τ) (or X) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be regular open if Int(Cl(A)) = A. A point x of X is called a δ -cluster point of A if $A \cap V \neq \emptyset$ for every regular open set V containing x. The set of all δ -cluster point of A is called the δ -closure of A and denoted by $Cl_{\delta}(A)$. If $Cl_{\delta}(A) = A$, then A is said to be δ -closed [13]. The complement of a δ -closed set is said to be δ -open. The union of all δ -open sets contained in A is called the δ -interior of A and is denoted by $Int_{\delta}(A)$. It is well-known that the family of regular open sets in a topological space (X,τ) is a base for a topology which is called the semi-regularization of τ and is denoted by τ_s . The family of all δ -open sets in (X,τ) forms a topology which is weaker than τ . Actually this topology coincides with τ_s .

Definition 1. A subset A of a topological space (X, τ) is said to be δ preopen [10] (resp. preopen [7]) if $A \subset Int(Cl_{\delta}(A))$ (resp. $A \subset Int(Cl(A))$).

The complement of a δ -preopen (resp. preopen) set is said to be δ -preclosed (resp. preclosed). The family of all δ -preopen (resp. δ -preclosed, preopen, preclosed) sets in a topological space (X, τ) is denoted by $\delta PO(X, \tau)$ (resp. $\delta PC(X, \tau)$, $PO(X, \tau)$, $PC(X, \tau)$).

Definition 2. Let A be a subset of a topological space (X, τ) . The intersection of all δ -preclosed (resp. preclosed) sets containing A is called the δ -preclosure [10] (resp. preclosure [3]) of A and is denoted by $pCl_{\delta}(A)$ (resp. pCl(A)).

Definition 3. Let (X,τ) be a topological space. A subset U of X is called a (δ,p) -neighbourhood of a point $x\in X$ if there exists a δ -preopen set V such that $x\in V\subseteq U$.

In [3], basic properties of the preclosure are obtained. Moreover, for the δ -preclosure the following properties are shown in [10]:

Lemma 2.1. (Raychaudhuri and Mukherjee [10]). For the δ -preclosure of subsets A, B in a topological space (X, τ) , the following properties hold:

- (1) A is δ -preclosed in (X, τ) if and only if $A = pCl_{\delta}(A)$,
- (2) If $A \subset B$, then $pCl_{\delta}(A) \subset pCl_{\delta}(B)$,
- (3) $pCl_{\delta}(A)$ is δ -preclosed, that is, $pCl_{\delta}(A) = pCl_{\delta}(pCl_{\delta}(A))$,
- (4) $x \in pCl_{\delta}(A)$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta PO(X, \tau)$ containing x.

Lemma 2.2. For a family $\{A_{\alpha} \mid \alpha \in \triangle\}$ of subsets a topological space (X, τ) , the following properties hold:

- (1) $pCl_{\delta}(\cap \{A_{\alpha} : \alpha \in \Delta\}) \subset \cap \{pCl_{\delta}(A_{\alpha}) : \alpha \in \Delta\}.$
- (2) $pCl_{\delta}(\cup \{A_{\alpha} : \alpha \in \Delta\}) \supset \cup \{pCl_{\delta}(A_{\alpha}) : \alpha \in \Delta\}.$

Proof. (1) Since $\cap_{\alpha \in \triangle} A_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \triangle$, by Lemma 2.1 we have $pCl_{\delta}(\cap_{\alpha \in \triangle} A_{\alpha}) \subset pCl_{\delta}(A_{\alpha})$ for each $\alpha \in \triangle$ and hence $pCl_{\delta}(\cap_{\alpha \in \triangle} A_{\alpha}) \subset \cap_{\alpha \in \triangle} pCl_{\delta}(A_{\alpha})$.

(2) Since $A_{\alpha} \subset \bigcup_{\alpha \in \triangle} A_{\alpha}$ for each $\alpha \in \triangle$, by Lemma 2.1 we have $pCl_{\delta}(A_{\alpha}) \subset pCl_{\delta}(\bigcup_{\alpha \in \triangle} A_{\alpha})$ and hence $\bigcup_{\alpha \in \triangle} pCl_{\delta}(A_{\alpha}) \subset pCl_{\delta}(\bigcup_{\alpha \in \triangle} A_{\alpha})$.

Lemma 2.3. (Veličko [13]). For a subset A of a topological space (X, τ) , the following properties hold:

- (1) If A is open in (X,τ) , then $Cl_{\delta}(A) = Cl(A)$,
- (2) If A is closed in (X, τ) , then $Int_{\delta}(A) = Int(A)$.

Lemma 2.4. Let A be a subset of a topological space (X, τ) . Then the following properties hold:

(1) If A is preopen in (X,τ) , then it is δ -preopen in (X,τ) ,

- (2) A is δ -preopen in (X, τ) if and only if it is preopen in (X, τ_s) ,
- (3) A is δ -preclosed in (X, τ) if and only if it is preclosed in (X, τ_s) .
 - *Proof.* (1) This is obvious since $Cl(A) \subset Cl_{\delta}(A)$ for any subset A of X.
- (2) Since $Cl_{\delta}(A)$ is closed in (X, τ) , this property follows from Lemma 2.3 and the fact that $Int(Cl_{\delta}(A)) = Int_{\delta}(Cl_{\delta}(A)) = \tau_s Int(\tau_s Cl(A))$, where $\tau_s Int(A)$ (resp. $\tau_s Cl(A)$) denotes the interior (resp. the closure) of A in the space (X, τ_s) .
 - (3) This is obvious by (2).
- **Lemma 2.5.** (Maki et al. [6]). Let (X, τ) be a topological space. For each point $x \in X$, $\{x\}$ is preopen or preclosed.

3. $D_{(\delta,p)}$ -sets and associated separation axioms.

Definition 4. A subset A of a topological space (X, τ) is called a $D_{(\delta,p)}$ set (resp. D_p -set [1, 4]) if there are two $U, V \in \delta PO(X, \tau)$ (resp. $PO(X, \tau)$)
such that $U \neq X$ and $A=U \setminus V$.

It is true that every δ -preopen (resp. preopen) set U different from X is a $D_{(\delta,p)}$ -set (resp. D_p -set) if A=U and $V=\emptyset$.

Definition 5. A topological space (X, τ) is said to be

- (1) (δ, p) - D_0 (resp. pre- D_0 [1, 4]) if for any distinct pair of points x and y of X there exist a $D_{(\delta,p)}$ -set (resp. D_p -set) of X containing x but not y or a $D_{(\delta,p)}$ -set (resp. D_p -set) of X containing y but not x,
- (2) (δ, p) - D_1 (resp. pre- D_1 [1, 4]) if for any distinct pair of points x and y of X there exist a $D_{(\delta,p)}$ -set (resp. D_p -sets) of X containing x but not y and a $D_{(\delta,p)}$ -set (resp. D_p -set) of X containing y but not x,

(3) (δ, p) - D_2 (resp. pre- D_2 [1, 4]) if for any distinct pair of points x and y of X there exists disjoint $D_{(\delta,p)}$ -sets (resp. D_p -sets) G and E of X containing x and y, respectively.

Definition 6. A topological space (X, τ) is said to be

- (1) (δ, p) - T_0 (resp. pre- T_0 [5, 8]) if for any distinct pair of points x and y in X, there exist a δ -preopen (resp. preopen) set U in X containing x but not y or a δ -preopen (resp. preopen) set V in X containing y but not x,
- (2) (δ, p) - T_1 (resp. pre- T_1 [5, 8]) if for any distinct pair of points x and y in X, there exist a δ -preopen (resp. preopen) set U in X containing x but not y and a δ -preopen (resp. preopen) set V in X containing y but not x,
- (3) (δ, p) - T_2 (resp. pre- T_2 [5, 8]) if for any distinct pair of points x and y in X, there exist δ -preopen (resp. preopen) sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

Remark 3.1.

- (i) If (X, τ) is (δ, p) - T_i , then it is (δ, p) - T_{i-1} , i = 1, 2.
- (ii) If (X, τ) is (δ, p) - T_i , then (X, τ) is (δ, p) - D_i for i = 0, 1, 2.
- (iii) If (X, τ) is (δ, p) - D_i , then it is (δ, p) - D_{i-1} , i = 1, 2.

By Remark 3.1, we have the following diagram:

Theorem 3.2. For a topological space (X, τ) , the following properties hold:

- (1) (X, τ) is (δ, p) - D_2 (resp. (δ, p) - D_1) if and only if (X, τ_s) is pre- D_2 (resp. pre- D_1),
- (2) (X, τ) is (δ, p) - T_2 (resp. (δ, p) - T_1) if and only if (X, τ_s) is pre- T_2 (resp. pre- T_1).

Proof. This follows easily from Lemma 2.4(2).

Theorem 3.3. For a topological space (X, τ) , the following statements are true: (X, τ) is (δ, p) - D_1 (resp. pre- D_1) if and only if it is (δ, p) - D_2 (resp. pre- D_2).

Proof. We prove only the first statement, the second being given in [1, 4].

Sufficiency. This follows from Remark 3.1(3).

Necessity. Suppose X is a (δ, p) - D_1 . Then for each distinct pair $x, y \in X$, we have $D_{(\delta, p)}$ -sets G_1, G_2 such that $x \in G_1, y \notin G_1$; $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 \setminus U_2$, $G_2 = U_3 \setminus U_4$. From $x \notin G_2$ we have either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

- (1) $x \notin U_3$. From $y \notin G_1$ we have two subcases:
 - (a) $y \notin U_1$. From $x \in U_1 \setminus U_2$ we have $x \in U_1 \setminus (U_2 \cup U_3)$ and from $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. It is easy to see that $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \emptyset$.
- (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, $y \in U_2$ and $(U_1 \setminus U_2) \cap U_2 = \emptyset$.
- (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$, $x \in U_4$ and $(U_3 \setminus U_4) \cap U_4 = \emptyset$.

From the discussion above we know that the space X is (δ, p) - D_2 .

Definition 7. A point $x \in X$ which has only X as the (δ, p) -neighborhood is called a (δ, p) -neat point.

Theorem 3.4. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (δ, p) - D_1 ;
- (2) (X, τ) has no (δ, p) -neat point.
- *Proof.* (1) \to (2). Since (X, τ) is (δ, p) - D_1 , so each point x of X is contained in a $D_{(\delta,p)}$ -set $O=U\setminus V$ and thus in U. By definition $U\neq X$. This implies that x is not a (δ, p) -neat point.
- $(2) \to (1)$. By Lemma 2.5 for each distinct pair of points $x,y \in X$, at least one of them, x(say) has a (δ,p) -neighborhood U containing x and not y. Thus U which is different from X is a $D_{(\delta,p)}$ -set. If X has no (δ,p) -neat point, then y is not a (δ,p) -neat point. This means that there exists a (δ,p) -neighborhood V of y such that $V \neq X$. Thus $y \in (V \setminus U)$ but not x and $V \setminus U$ is a $D_{(\delta,p)}$ -set. Hence X is (δ,p) - D_1 .

Definition 8. A topological space (X, τ) is (δ, p) -symmetric if for x and y in X, $x \in pCl_{\delta}(\{y\})$ implies $y \in pCl_{\delta}(\{x\})$.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (δ, p) -symmetric;
- (2) For each $x \in X$, $\{x\}$ is δ -preclosed;
- (3) (X, τ) is (δ, p) - T_1 .
- *Proof.* (1) \rightarrow (2): Let x be any point of X. Let y be any distinct point from x. By Lemma 2.5, $\{y\}$ is preopen or preclosed in (X, τ) .
- (i) In case when $\{y\}$ is preopen, put $V_y = \{y\}$ then $V_y \in \delta PO(X,\tau)$. (ii) In case when $\{y\}$ is preclosed $x \notin \{y\} = pCl(\{y\})$ and $x \notin pCl_{\delta}(\{y\})$. By (1), $y \notin pCl_{\delta}(\{x\})$. Now put $V_y = X \setminus pCl_{\delta}(\{x\})$. Then $x \notin V_y$, $y \in V_y$ and $V_y \in \delta PO(X,\tau)$. Therefore, we obtain that for each $y \in X \setminus \{x\}$ there exists $V_y \in \delta PO(X,\tau)$ such that $x \notin V_y$, $y \in V_y \in \delta PO(X,\tau)$. Hence

 $X\backslash\{x\}=\bigcup\limits_{y\in X\backslash\{x\}}V_y\in\delta PO(X,\tau).$ This shows that $\{x\}$ is $\delta\text{-preclosed}$ in $(X,\tau).$

- $(2) \to (3)$: Suppose $\{p\}$ is δ -preclosed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a δ -preopen set containing y but not containing x. Similarly $X \setminus \{y\}$ is a δ -preopen set containing x but not containing y. Accordingly X is a (δ, p) - T_1 space.
- (3) \to (1): Suppose that $y \notin pCl_{\delta}(\{x\})$. Then, since $x \neq y$, by (3) there exists a δ -preopen set U containing x such that $y \notin U$ and hence $x \notin pCl_{\delta}(\{y\})$. This shows that $x \in pCl_{\delta}(\{y\})$ implies $y \in pCl_{\delta}(\{x\})$. Therefore, (X, τ) is (δ, p) -symmetric.

Definition 9. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be

- (i) δ -precontinuous if for each $x \in X$ and each δ -preopen set V containing f(x), there is a δ -preopen set U in X containing x such that $f(U) \subset V$,
- (ii) δ^* -almost-continuous [9] if $f^{-1}(V) \in \delta PO(X, \tau)$ for each $V \in \delta PO(Y, \tau)$,
- (iii) preirresolute [12] if $f^{-1}(V) \in PO(X, \tau)$ for each $V \in PO(Y, \tau)$.

Lemma 3.6. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (i) f is δ -precontinuous;
- (ii) f is δ^* -almost-continuous;
- (iii) $f:(X,\tau_s)\to (Y,\sigma_s)$ is preirresolute.

Theorem 3.7. If $f:(X,\tau)\to (Y,\sigma)$ is a δ -precontinuous surjective function and E is a $D_{(\delta,p)}$ -set in Y, then the inverse image $f^{-1}(E)$ is a $D_{(\delta,p)}$ -set in X.

Proof. Let E be a $D_{(\delta,p)}$ -set in Y. Then there are δ -preopen sets U_1 and U_2 in Y such that $E = U_1 \setminus U_2$ and $U_1 \neq Y$. By the δ -precontinuity of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are δ -preopen in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is a $D_{(\delta,p)}$ -set.

Theorem 3.8. If (Y, σ) is (δ, p) - D_1 and $f: (X, \tau) \to (Y, \sigma)$ is a δ -precontinuous bijection, then (X, τ) is (δ, p) - D_1 .

Proof. Suppose that Y is a (δ, p) - D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is (δ, p) - D_1 , there exist $D_{(\delta,p)}$ -sets G_x and G_y of Y containing f(x) and f(y), respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 3.7, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $D_{(\delta,p)}$ -sets in X containing x and y, respectively, such that $y \notin f^{-1}(G_x)$ and $x \notin f^{-1}(G_y)$. This implies that X is a (δ, p) - D_1 space.

Theorem 3.9. A topological space (X,τ) is (δ,p) - D_1 if and only if for each pair of distinct points $x,y \in X$, there exists a δ -precontinuous surjective function $f:(X,\tau) \to (Y,\sigma)$ such that f(x) and f(y) are distinct, where (Y,σ) is a (δ,p) - D_1 space.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a δ -precontinuous, surjective function f of a space X onto a (δ, p) - D_1 space Y such that $f(x) \neq f(y)$. By Theorem 3.3, there exist disjoint $D_{(\delta,p)}$ -sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is δ -precontinuous and surjective, by Theorem 3.7, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $D_{(\delta,p)}$ -sets in X containing x and y, respectively. Hence by Theorem 3.3, X is a (δ, p) - D_1 space.

4. Sober (δ, p) - R_0 spaces.

Definition 10. Let A be a subset of a topological space (X, τ) . The δ -prekernel (resp. prekernel) of A, denoted by $pKer_{\delta}(A)$ (resp. pKer(A)), is defined to be the set $pKer_{\delta}(A) = \cap \{O \in \delta PO(X, \tau) \mid A \subset O\}$ (resp. $pKer(A) = \cap \{O \in PO(X, \tau) \mid A \subset O\}$).

Lemma 4.1. Let (X, τ) be a topological space and $x \in X$. Then $pKer_{\delta}(A) = \{x \in X \mid pCl_{\delta}(\{x\}) \cap A \neq \emptyset\}.$

Proof. Let $x \in pKer_{\delta}(A)$ and suppose $pCl_{\delta}(\{x\}) \cap A = \emptyset$. Hence $x \notin X \backslash pCl_{\delta}(\{x\})$ which is a δ -preopen set containing A. This is absurd, since $x \in pKer_{\delta}(A)$. Consequently, $pCl_{\delta}(\{x\}) \cap A \neq \emptyset$. Next, let x be such that $pCl_{\delta}(\{x\}) \cap A \neq \emptyset$ and suppose that $x \notin pKer_{\delta}(A)$. Then, there exists a δ -preopen set D containing A and $x \notin D$. Let $y \in pCl_{\delta}(\{x\}) \cap A$. Hence, D is a (δ, p) - neighborhood of y which does not containing x. By this contradiction $x \in pKer_{\delta}(A)$ and the claim is shown.

Definition 11. A topological space (X, τ) is said to be sober (δ, p) - R_0 if $\bigcap_{x \in X} pCl_{\delta}(\{x\}) = \emptyset$.

Theorem 4.2. A topological space (X, τ) is sober (δ, p) - R_0 if and only if $pKer_{\delta}(\{x\}) \neq X$ for every $x \in X$.

Proof. Suppose that the space (X, τ) be sober (δ, p) - R_0 . Assume that there is a point y in X such that $pKer_{\delta}(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every δ -preopen set V containing y and hence $y \in pCl_{\delta}(\{x\})$ for any $x \in X$. This implies that $y \in \bigcap_{x \in X} pCl_{\delta}(\{x\})$. But this is a contradiction.

Now assume that $pKer_{\delta}(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \bigcap_{x \in X} pCl_{\delta}(\{x\})$, then every δ -preopen set containing y must contain every point of X. This implies that the space X is the unique δ -preopen set containing y. Hence $pKer_{\delta}(\{y\}) = X$ which is a contradiction. Therefore (X, τ) is sober (δ, p) - R_0 .

Definition 12. A function $f: X \to Y$ is called δ -preclosed if the image of every δ -preclosed subset of X is δ -preclosed in Y.

Theorem 4.3. If $f: X \to Y$ is an injective δ -preclosed function and X is sober (δ, p) - R_0 , then Y is sober (δ, p) - R_0 .

Proof. Since X is sober (δ, p) - R_0 , $\bigcap_{x \in X} pCl_{\delta}(\{x\}) = \emptyset$. Since f is a δ -preclosed injection, we have $\emptyset = f(\bigcap_{x \in X} pCl_{\delta}(\{x\})) = \bigcap_{x \in X} f(pCl_{\delta}(\{x\})) \supset \bigcap_{y \in Y} pCl_{\delta}(\{y\})$. Therefore, Y is sober (δ, p) - R_0 .

Theorem 4.4. If a topological space X is sober (δ, p) - R_0 and Y is any topological space, then the product $X \times Y$ is sober (δ, p) - R_0 .

Proof. we show that
$$\bigcap_{(x,y)\in X\times Y} pCl_{\delta}(\{(x,y)\}) = \emptyset$$
. We have:

$$\bigcap_{(x,y)\in X\times Y} pCl_{\delta}(\{(x,y)\}) \subset \bigcap_{(x,y)\in X\times Y} (pCl_{\delta}(\{x\})\times pCl_{\delta}(\{y\}))$$

$$= \bigcap_{x\in X} pCl_{\delta}(\{x\})\times \bigcap_{y\in Y} pCl_{\delta}(\{y\})\subset \emptyset\times Y = \emptyset.$$

5. (δ, p) - R_0 spaces.

Definition 13. A topological space (X, τ) is said to be a (δ, p) - R_0 (resp. pre- R_0 [2]) if every δ -preopen (resp. preopen) set contains the δ -preclosure (resp. preclosure) of each of its singletons.

Theorem 5.1. A topological space (X, τ) is (δ, p) - R_0 if and only if (X, τ_s) is pre- R_0 .

Proof. By Lemma 2.4, we have the facts that: (i) a subset A of X is δ -preopen in (X, τ) if and only if A is preopen in (X, τ_s) ; (ii) for any $x \in X$, $pCl_{\delta}(\{x\}) = \bigcap \{F/x \in F \in \delta PC(X, \tau)\} = \bigcap \{F/x \in F \in PC(X, \tau_s)\} = \tau_s$ - $pCl(\{x\})$. The proof follows immediately from the facts stated above.

Theorem 5.2. A topological space (X, τ) is (δ, p) - R_0 if and only if it is

 (δ, p) - T_1 .

Proof. Necessity. Let x and y be any distinct points of X. For any point $x \in X$, $\{x\}$ is preopen or preclosed by Lemma 2.5.

(i) In case when $\{x\}$ is preopen, let $V = \{x\}$ then $x \in V$, $y \notin V$ and $V \in \delta PO(X,\tau)$. Moreover, since (X,τ) is $(\delta,p) - R_0$, we have $pCl_{\delta}(\{x\}) \subset V$. Hence $x \notin X \setminus V$, $y \in X \setminus V$ and $X \setminus V \in \delta PO(X,\tau)$. (ii) in case when $\{x\}$ is preclosed, $y \in X \setminus \{x\}$ and $X \setminus \{x\} \in \delta PO(X,\tau)$. Hence since (X,τ) is (δ,p) - R_0 , $pCl_{\delta}(\{y\}) \subset X \setminus \{x\}$. Now, let $V = X \setminus pCl_{\delta}(\{y\})$, then $x \in V$, $y \notin V$ and $V \in \delta PO(X,\tau)$. Then, we obtain that (X,τ) is (δ,p) - T_1 .

Sufficiency. Let V be any δ -preopen set of (X,τ) and $x \in V$. For each $y \in X \setminus V$, there exists $V_y \in \delta PO(X,\tau)$ such that $x \notin V_y$ and $y \in V_y$. Therefore, we have $pCl_{\delta}(\{x\}) \cap V_y = \emptyset$ for each $y \in X \setminus V$ and hence $pCl_{\delta}(\{x\}) \cap (\bigcup_{y \in X \setminus V} V_y) = \emptyset$. Since $y \in V_y$, $X \setminus V \subset \bigcup_{y \in X \setminus V} V_y$ and $pCl_{\delta}(\{x\}) \cap (X \setminus V) = \emptyset$. This implies that $pCl_{\delta}(\{x\}) \subset V$. Hence (X,τ) is (δ,p) - R_0 .

Corollary 5.3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is (δ, p) - R_0 ;
- (2) (X, τ) is (δ, p) - T_1 ;
- (3) (X, τ) is (δ, p) -symmetric.

Proof. This is an immediate consequence of Theorems 3.5 and 5.2.

Remark 5.4. Observe that by using Theorem 3.5 and Corollary 5.3, we have: (X, τ) is (δ, p) -Ro if and only if for each $x \in X$, $\{x\}$ is δ -preclosed.

Corollary 5.5. Every (δ, p) - R_0 space (X, τ) is sober (δ, p) - R_0 , where we suppose that X has at least two points.

Proof. Let x and y be any distinct points of X. Since (X, τ) is (δ, p) - R_0 , by Theorem 5.2 it is (δ, p) - T_1 . Hence by Theorem 3.5 $pCl_{\delta}(\{x\}) = \{x\}$ and $pCl_{\delta}(\{y\}) = \{y\}$ and hence we obtain $\bigcap_{p \in X} pCl_{\delta}(\{p\}) \subset pCl_{\delta}(\{x\}) \cap pCl_{\delta}(\{y\})$ = $\{x\} \cap \{y\} = \emptyset$. This shows that (X, τ) is sober (δ, p) - R_0 .

As we have stated above, the following properties hold:

 $\delta PO(X,\tau) = PO(X,\tau_s), \ \delta PC(X,\tau) = PC(X,\tau_s), \ pCl_{\delta}(\{x\}) = \tau_s$ - $pCl(\{x\})$ and $pKer_{\delta}(\{x\}) = \tau_s$ - $pKer(\{x\})$ for each point x of a topological space (X,τ) . Therefore, we obtain the following important characterizations of (δ,p) - R_0 spaces which are modifications of theorems obtained in [2].

Question 5.6. Is there any example showing that the converse of Corollary 5.5 is not true?

Theorem 5.7. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a (δ, p) - R_0 space;
- (2) For any nonempty set A and $G \in \delta PO(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \delta PC(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subset G$;
- (3) Any $G \in \delta PO(X, \tau)$, $G = \bigcup \{ F \in \delta PC(X, \tau) \mid F \subset G \}$;
- (4) Any $F \in \delta PC(X, \tau)$, $F = \cap \{G \in \delta PO(X, \tau) \mid F \subset G\}$;
- (5) For any $x \in X$, $pCl_{\delta}(\{x\}) \subset pKer_{\delta}(\{x\})$.

Theorem 5.8. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a (δ, p) - R_0 space;
- (2) If F is δ -preclosed, then $F = pKer_{\delta}(F)$;
- (3) If F is δ -preclosed and $x \in F$, then $pKer_{\delta}(\{x\}) \subset F$;
- (4) If $x \in X$, then $pKer_{\delta}(\{x\}) \subset pCl_{\delta}(\{x\})$.

6. (δ, p) - R_1 spaces.

Definition 14. A topological space (X, τ) is said to be (δ, p) - R_1 if for x, y in X with $pCl_{\delta}(\{x\}) \neq pCl_{\delta}(\{y\})$, there exist disjoint δ -preopen sets U and V such that $pCl_{\delta}(\{x\})$ is a subset of U and $pCl_{\delta}(\{y\})$ is a subset of V.

Definition 15. A topological space (X, τ) is said to be pre- R_1 [2] if for x, y in X with $pCl(\{x\}) \neq pCl(\{y\})$, there exist disjoint preopen sets U and V such that $pCl(\{x\})$ is a subset of U and $pCl(\{y\})$ is a subset of V.

Theorem 6.1. A topological space (X, τ) is (δ, p) - R_1 if and only if (X, τ_s) is pre- R_1 .

Proof. This follows from the facts that $\delta PO(X, \tau) = PO(X, \tau_s)$ and $pCl_{\delta}(\{x\}) = \tau_s - pCl(\{x\})$ for each $x \in X$.

Theorem 6.2. A topological space (X, τ) is (δ, p) - R_1 if and only if it is (δ, p) - T_2 .

Proof. Necessity. Let x and y be any distinct points of X. By Lemma 2.5, each point x of X is preopen or preclosed.

- (i) In case when $\{x\}$ is preopen, since $\{x\} \cap \{y\} = \emptyset$, $\{x\} \cap pCl_{\delta}(\{y\}) \subset \{x\} \cap pCl(\{y\}) = \emptyset$, and hence $pCl_{\delta}(\{x\}) \neq pCl_{\delta}(\{y\})$.
- (ii) In case when $\{x\}$ is preclosed, $pCl_{\delta}(\{x\}) \cap \{y\} \subset pCl(\{x\}) \cap \{y\} = \{x\} \cap \{y\} = \emptyset$ and hence $pCl_{\delta}(\{x\}) \neq pCl_{\delta}(\{y\})$. Since (X, τ) is (δ, p) - R_1 , there exist disjoint δ -preopen sets U and V such that $x \in pCl_{\delta}(\{x\}) \subset U$ and $y \in pCl_{\delta}(\{y\}) \subset V$. This shows that (X, τ) is (δ, p) - T_2 .

Sufficiency. Let x and y be any points of X such that $pCl_{\delta}(\{x\}) \neq pCl_{\delta}(\{y\})$. By Remark 3.1, every (δ, p) - T_2 space is (δ, p) - T_1 . Therefore, by Theorem 3.5 $pCl_{\delta}(\{x\}) = \{x\}$ and $pCl_{\delta}(\{y\}) = \{y\}$ and hence $x \neq y$. Since (X, τ) is (δ, p) - T_2 , there exist disjoint δ -preopen sets U and V such that

 $pCl_{\delta}(\{x\}) = \{x\} \subset U$ and $pCl_{\delta}(\{y\}) = \{y\} \subset V$. This shows that (X, τ) is (δ, p) - R_1 .

Corollary 6.3. Every (δ, p) - R_1 space (X, τ) is (δ, p) - R_0 .

Proof. Since every (δ, p) - T_2 space is (δ, p) - T_1 , this is an immediate consequence of Theorems 5.2 and 6.2.

Example 6.4. The converse of Corollary 6.3 need not be true. Let the set X be the union of any infinite set N and two distinct one point sets x_1 and x_2 . If we topologize X by taking any subset of N open and taking any set containing x_1 and x_2 open if and only if it contains all but a finite number of points in N, then X is (δ, p) - R_0 but not (δ, p) - R_1 .

Also take X to be $R \times R$, where R is the set of real numbers. Let τ consists of \emptyset and all subsets of X whose complements are subsets of a finite number of lines parallel to the x-axis. Then this space is (δ, p) - R_0 but not (δ, p) - R_1 .

The following theorem is a modification of Theorem 4.3 in [2].

Theorem 6.5. For a topological space (X, τ) , the following statements are equivalent:

- (1) (X, τ) is a (δ, p) - R_1 ;
- (2) If $x, y \in X$ such that $pCl_{\delta}(\{x\}) \neq pCl_{\delta}(\{y\})$, then there exists δ -preclosed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Acknowledgment.

The authors are very grateful to the referee for his observations which improved the value of this paper.

References

- 1. M. Caldas, A separation axiom between $pre-T_0$ and $pre-T_1$, East West J. Math., $\mathbf{3}(2)(2001)$, 171-177.
- 2. M. Caldas, S. Jafari and T. Noiri, Characterizations of pre- R_0 and pre- R_1 topological spaces, Topology Proc., **25**(2000), 17-30.
- 3. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, *On p-regular spaces*, Bull. Math. Soc. Sci. Math. R.S. Roumanie, **27**(75)(1983), 311-315.
 - 4. S. Jafari, On a weak separation axiom, Far East J. Math. Sci., 3(5)(2001), 779-787.
- 5. A. Kar and P. Bhattacharyya, *Some weak separation axioms*, Bull. Calcutta Math. Soc., **82**(1990), 415-422.
- 6. H. Maki, J. Umehara and T. Noiri, Every topological space is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser. Math., 17(1996), 33-42.
- 7. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47-53.
- 8. T. M. J. Nour, Contributions to the theory of bitopological spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
- 9. S. Raychaudhuri, Concerning δ^* -almost continuity and δ -preregularity, Bull. Calcutta Math. Soc., **85** (1993), 385-392.
- 10. S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, **21**(1993), 357-366.
- 11. S. Raychaudhuri and M.N. Mukherjee, δ_p -closedness for topological spaces, J. Indian Acad. Math., **18**(1996), 89-99.
- 12. I. L. Reilly and M. K. Vamanamurthy, On α -continuity in topological spaces, Acta Math. Hungar., 45(1985), 27-32.
- 13. N. V. Veličko, H-closed topological spaces, Mat. Sb. 70(1966), 98-112; English transl., in Amer. Math. Soc. Transl., 78(2)(1968), 102-118.

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n, 24020-140, Niteroi, RJ Brasil.

E-mail: gmamccs@vm.uff.br

Department of Information Education, Fukuoka University of Education, 729-1 Akama, Munakata City, Fukuoka Pref., 811-4192 Japan.

Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark.

E-mail: sjafari@ruc.dk

Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan.

E-mail: noiri@as.yatsushiro-nct.ac.jp