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Abstract. The notion of complex extensors in complex

Euclidean spaces was first introduced in [2]. The notion was

extended to complex extensors in indefinite complex Euclidean

spaces in [3]. In this article we classify totally geodesic complex

extensors in indefinite complex Euclidean spaces.

1. Complex extensors. Let Em
k denote the pseudo-Euclidean m-

space endowed with pseudo-Euclidean metric gk with index k given by gk =

−
∑k

j=1 dx2
j +

∑m
ℓ=k+1 dx2

ℓ .

The complex number m-space Cm with complex coordinates z1, . . . , zm

endowed with gm,k: the real part of the Hermitian form

bm,k(z,w) = −
k

∑

k=1

z̄kwk +
m

∑

j=k+1

z̄jwj , z, w ∈ Cm,(1.1)

is a flat indefinite complex space with complex index k. We simply denote

the pair (Cn, gm,k) by Cm
k which is called an indefinite complex Euclidean

m-space.

We recall the definition of complex extensors as follows:

Let G : Mn−1
t → Em

k − {0} be an isometric immersion of a pseudo-
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Riemannian (n−1)-manifold with index t into Em
k −{0} and let F : I → C∗

be a unit speed curve in the punctured complex plane C∗ := C−{0}. Then

we may extend the immersion G : Mn−1
t → Em

k to a map of I × Mn−1
t into

Cm
k = C ⊗ Em

k by

φ = F ⊗ G : I × Mn−1
t → Cm

k ,(1.2)

where F ⊗ G is the tensor product of F and G defined by

(F ⊗ G)(s, p) = F (s) ⊗ G(p), s ∈ I, p ∈ Mn−1
t .(1.3)

If φ = F ⊗ G is an immersion, we call such an extension F ⊗ G of the

immersion G a complex extensor of G via F (or of the submanifold Mn−1
t

via F ).

2. Totally geodesic complex extensors. The following result clas-

sifies totally geodesic complex extensors in indefinite complex Euclidean

spaces.

Theorem 1. Let G : Mn−1
t → Em

k − {0} be an isometric immersion of

a pseudo-Riemannian (n − 1)-manifold into Em
k − {0} and F : I → C∗ be a

unit speed curve. Then the complex extensor φ = F ⊗ G : I × Mn−1
t → Cm

k

is totally geodesic (with respect to the induced metric) if and only if one of

the following two cases occurs:

(a) G : Mn−1
t → Em

k is either totally geodesic or contained in an affine

n-subspace of Em
k , and F (s) = (s + a)c for some real number a and some

unitary complex number c.

(b) n = 2, F : I → C∗ is an arbitrary unit speed curve, and G is an

open portion of either a space-like line or a time-like line through the origin

o ∈ Em
k .

Proof. If G : Mn−1
t → Em

k − {0} is an isometric immersion of a pseudo-

Riemannian (n− 1)-manifold with index t into Em
k − {0}, then each normal
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space of G is definite.

For a given unit speed curve F : I → C∗, the complex extensor φ =

F ⊗ G : I × Mn−1
t → Cm

k satisfies

φs = F ′(s) ⊗ G, Y φ = F ⊗ Y,(2.1)

φss = F ′′(s) ⊗ G, Y φs = F ′(s) ⊗ Y,(2.2)

Y Zφ = F ⊗∇Y Z + F ⊗ hG(Y,Z),(2.3)

where φs = ∂φ/∂s, φss = ∂2φ/∂s2, ∇ denotes the Levi-Civita connection of

Mn−1
t , Y and Z vectors fields tangent to the second component of I×Mn−1

t ,

and hG the second fundamental form of the isometric immersion G : Mn−1
t →

Em
k .

We shall regard tangent vectors of Mn−1
t also as tangent vectors of the

product manifold I × Mn−1
t in a natural way. We shall also identify each

tangent vector of a submanifold with its image via the differential of the

immersion.

Since F : I → C is a unit speed curve in C, we have F ′′(s) = iκ(s)F ′(s),

where κ is the curvature function of F . Thus, for any unit normal vector ξ

of Mn−1
t in Em

k , the vector F ′′(s) ⊗ ξ is normal to I × Mn−1
t in Cm

k .

If the complex extensor φ = F ⊗ G is totally geodesic with respect to

its induced metric, then φss, Y φs and Y Zφ are tangent vectors of I ×Mn−1
t

in Cm
k by definition. So, it follows from (2.1) and (2.3) that F ⊗ hG(Y,Z) is

tangent to I × Mn−1
t . Hence we have

〈

F ′′(s) ⊗ ξ, F (s) ⊗ hG(Y,Z)
〉

= 0(2.4)

for any s ∈ I, any tangent vectors Y,Z of Mn−1
t , and any normal vector ξ of

G. From (2.4) we obtain 〈〈F ′′(s), F (s)〉〉 〈ξ, hG(Y,Z)〉 = 0 identically, where

〈〈 , 〉〉 is the canonical inner product of the complex plane. Since each normal

space of G is non-degenerate, 〈〈F ′′(s), F (s)〉〉 〈ξ, hG(Y,Z)〉 = 0 implies
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(i) G is non-totally geodesic at each point and 〈〈F ′′, F 〉〉 = 0 identically, or

(ii) G is a totally geodesic immersion.

Case (i): G is non-totally geodesic at each point and 〈〈F ′′, F 〉〉 = 0

identically. In this case, since F is a unit speed curve in C∗, we have F (s) =

α(s)F ′(s) for some nonzero real-valued function α defined on the open subset

I1 = {s ∈ I : κ(s) 6= 0}. So, after applying the Frenet formula, we have

F ′′(s) = 0 for s ∈ I1. On I − I1, we have F ′′ = 0 trivially. Hence, we have

F ′′(s) = 0 identically on I. Thus, by using the fact that F is unit speed, we

obtain F (s) = sc + b for some c, b ∈ C with |c| = 1. Therefore, we obtain

from (2.1), (2.2) and (2.3) that

φs = c ⊗ G, Y φ = (sc + b) ⊗ Y,(2.5)

φss = 0, Y φs = c ⊗ Y,(2.6)

Y Zφ = (sc + b) ⊗∇Y Z + (sc + b) ⊗ hG(Y,Z)(2.7)

for Y,Z tangent to Mn−1
t .

Since φ is totally geodesic, (2.5) and (2.6) imply that, for each tangent

vector Y of Mn−1
t , there is a tangent vector Z of Mn−1

t such that

c ⊗ (Y − αG) = (sc + b) ⊗ βZ(2.8)

for some real-valued functions α and β. But this is impossible unless b = ac

for some real number a. Therefore we have F (s) = (s + a)c. Consequently,

(2.5), (2.6) and (2.7) reduce to

φs = c ⊗ G, Y φ = c ⊗ (s + a)Y, φss = 0,(2.9)

Y φs = c ⊗ Y, Y Zφ = (∇Y Z)φ + c ⊗ (s + a)hG(Y,Z).(2.10)

Because φ is totally geodesic, (2.9) and (2.10) imply that, for any given
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tangent vectors Y,Z of Mn−1
t , we have

hG(Y,Z) = γG + δW(2.11)

for some tangent vector W of Mn−1
t and real-valued functions γ and δ. So, if

we denote by G⊥ the normal component of G in Em
k , then (2.11) implies that

hG(Y,Z) is in the direction of G⊥. Thus, the first normal space of G at each

point p ∈ Mn−1
t is one-dimensional, since G is non-totally geodesic at p by

assumption. Furthermore, by taking the covariant derivative of (2.11) with

respect to the normal connection and by applying (2.11) again, we also know

that the first normal bundle is parallel in the normal bundle (with respect to

the normal connection). Consequently, the reduction theorem implies that

Mn−1
t is immersed into some affine n-subspace of Em

k . Hence we obtain Case

(a) of the theorem.

Case (ii): G is a totally geodesic immersion. In this case, Mn−1
t is

immersed into an affine (n − 1)-subspace, say E, of Em
k . Also, it follows

from (2.3) that, for Y,Z tangent to Mn−1
t , Y Zφ is a tangent vector of the

complex extensor φ.

Case (ii-1): n ≥ 3. In this case, for each p ∈ G(Mn−1
t ) with G(p) 6= o,

there exists a nonzero vector Y ∈ TpM
n−1
t perpendicular to G(p). For

such Y , (2.1) and (2.2) imply that Y φs is parallel to Y φ. Hence, for each

s ∈ I, F (s) and F ′(s) are parallel. So, F (s) = α(s)F ′(s) for some real-

valued function α on I. Therefore, by applying the Frenet formula we obtain

F ′′(s) = 0 and α(s) = s + b for some real number b.

It follows from F ′′(s) = 0 that the unit speed curve F satisfies F (s) =

as + c for some a, c ∈ C with |a| = 1. Hence, by using α(s) = s + b and

F (s) = α(s)F ′(s), we obtain F (s) = (s + b)a. Consequently, we obtain Case

(a) as well.

Case (ii-2): n = 2. In this case, G is an open portion of a line, say L,

in Em
k .
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If line L passes through the origin o, we have Case (b) of the theorem.

If L does not pass through o, then, for a unit tangent vector Yp of L at

any given point p with G(p) 6= o, the vectors Yp and G(p) are independent.

Thus, it follows from (2.1) and (2.2) that, for each s ∈ I, F (s) and F ′(s)

are parallel. Consequently, the same method as Case (ii-1) yields Case (a)

of the theorem.

To prove the converse, first let us assume that Case (a) of the theorem

occurs. In this case, after applying a suitable translation in s, we have

F (s) = cs. Therefore, (2.1), (2.2) and (2.3) become

φs = c ⊗ G, Y φ = cs ⊗ Y, φss = 0,(2.12)

Y φs = c ⊗ Y, Y Zφ = cs ⊗∇Y Z + cs ⊗ hG(Y,Z),(2.13)

Since the complex extensor is an immersion, (2.12) shows that G is

transversal to submanifold G : Mn−1
t → Em

k at each point. Moreover, we

know from (2.12) and (2.13) that in order to prove the totally geodesicity of

the complex extensor, it suffices to show the following condition holds:

(A) For any point p ∈ Mn−1
t and vectors Y,Z ∈ Tp(M

n−1
t ), hG(Y,Z)

lies in the vector subspace of Em
k spanned by G(p) and G∗(Tp(M

n−1
t )).

When G is totally geodesic, we have hG = 0. So condition (A) holds

trivially. If G(Mn−1
t ) is contained in an affine n-space of Em

k , condition

(A) follows from the fact that G is transversal to its image at each point.

Consequently, the complex extensor is totally geodesic in either cases.

Next, let us assume that Case (b) of the theorem holds. In this case, we

may assume that G = tv for some space-like or time-like unit vector v ∈ Em
k .

Thus, (2.1), (2.2) and (2.3) reduce to

φs = tF ′(s) ⊗ v, φt = F ⊗ v, φss = tF ′′(s) ⊗ v,(2.14)

φst = F ′(s) ⊗ v, φtt = 0.(2.15)
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Clearly, it follows from (2.14) and (2.15) that, in order to show totally

geodesicity of φ, it suffices to prove that φss is a tangent vector of φ for each

s ∈ I.

If the curvature function κ is nonzero at some so ∈ I, then F ′′(so) and

F ′(so) are linearly independent over R, since F ′′ = iκF ′. In this case, we

may put F ′′(so) = c1F
′(so)+c2F (so) for some real numbers c1 and c2. Thus,

according to (2.14) and (2.15), φss(so) is a tangent vector of the complex

extensor.

If κ(s1) = 0 for some s1 ∈ I, then (2.14) yields φss(s1) = 0. Therefore,

it follows from these that φss is always a tangent vector of the complex

extensor. Consequently, the complex extensor is totally geodesic.

Remark 1. The result of this article has been stated in [3] in somewhat

different form without proof.

Remark 2. When Mn−1
t and Em

k are Riemannian, Theorem 1 reduces

to Proposition 2.2 of [2]. Its proof in [2] contains an obscurity; so it shall be

replaced by the one given above under the condition: t = k = 0.
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