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Abstract. In this paper, an empirical Bayes test (EBT)
for the truncation parameter is investigated under linex loss. The
EBT is proposed, the asymptotic optimality and convergence rate
are obtained. At last, an example satisfying conditions of theorems

is given.

1. Introduction. As quadratic loss function or any other symmetric
loss function may be inappropriate for some practical problem ([2], [8]).
Varian introduced the asymmetric linex loss [9], which was employed by
Zellner in the Bayes analysis of several statistical estimation and prediction
problems [10]. Kuo and Dey considered the estimation of a Poisson mean
under linex loss [6], Basu and Ebrahimi used the linex loss in lifetime testing
and reliability estimation [1]. Also, see Huang for empirical Bayes testing
procedures in a class of nonexponential families [3], Huang and Liang for the
empirical Bayes estimation of the truncation parameter with linex loss [4].
However, the EBT problem for the truncation parameter of the following

distribution family was not investigated.
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Consider the truncation parameter with p.d.f. of the following form

(1) [ (@]0) = u() A(0)I19,mo) (2)

where m > 1 is a constant, and u(z) is positive, integrable and bounded with
lower bound strictly greater than 0 on [0, mf], A(6) = [’ u(z)dz] ™!, 0 €
(0,+00). The truncation parameter § of our interest has a prior distribution
G(#) with p.d.f. g(#) over 6 € (0,+00). Suppose that, given 0, the random
variable X has the p.d.f. f(x|f) of form (1). Then the marginal density of
X is
fz) = /0 [ (]0)dG(0) = u(z) ) A(0)g(0)do A u(x)v(x).
Let s > 1 be a given natural number and f(z) be bounded and have sth

bounded derivative. The hypothesis to be tested is

(2) Hy:0<6p— Hy:0>0

where 6 is a known positive constant. Let the loss function be
(3) L(0,do) = 1(0)(6>0), L(0,d1) = 1(0)I9<gy)

where [(#) = b[e“®0—%) —¢(8y—0)—1], d; indicates accepting H;(i = 0,1), D =
{do,d1} is the decision space, L(f,d;) indicates the loss when the decision
is in favor of H;, while 6 is the true parameter value. As b does not affect
either Bayes rule or the empirical Bayes study and b is assumed to be 1. The
constant ¢ determines the shape of the loss function, when ¢ > 0, the loss
increases almost exponentially for wrongly decision of H; as |6y — 0| — oo.
When ¢ < 0, the linear-exponential increases are interchanged. That is,
over-estimation is very different from under-estimation. As the value |c| is
small enough, the loss function is close to the squared error loss. Herewith

we consider only ¢ > 0 and the case of ¢ < 0 is similar.
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The paper is organized as follows. We construct an EBT for the trunca-
tion parameters using Linex loss and investigate the asymptotic optimality
with convergence rate of the proposed EBT in Section 2. In Section 3 some
lemmas are given to complete the proofs in Section 4. At last we give an

example satisfying the conditions of the theorems.

2. Empirical Bayes test. Let r(x) = P(accept Hy | X = x) be a
randomized decision rule. Then the Bayes risk of (z) can be written as,
R.G) = [ [ {LOdo)r@) + [1 = @)L, )} (x10)dG(6)do

_ / Q(a)r(2)dz + Ce
Q

where Q = (0,+00), A = [z/m,z], Ca = [q [a L(0,d1) f(2]|0)dG(8)dx.

Q) = [ OGO - [ U0)l0d60)

AN(0,00)
9

[ 10)s10)a60o) - [ 16)1l0)dc(0)

0o x/m
= 2 [ U)o - [ 10)110dc0)
A e 0[28) (2)—on (1)) + 25 (&) — s (2)]— (cBo+ 1) [2S5 (&) — [ (2],
where
n@) = ux) /A e~ A(0)g(0)d0, va(x) = u(x) /A 0A(6)9(6)db,

Si(z) = ulz) /:60914(9)9(9)(19, So(x) = u(z) [ 6A(8)g(6)ds,

o o
Sit) = u(e) [ A@)(E)w.

Therefore the Bayes decision rule is

rg(x) =1 when Q(z) <0 and rg(zr) =0 when Q(x) > 0.

It is easy to show that rg(z) is a Bayes test with respect to G(6).
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Since G(#) is unknown and r¢(z) cannot be applied, we introduce the EB
approach. Suppose that (Xi,61),...,(X,,0,) and (X,0) are i.i.d. random
samples. X7i,..., X, (the past samples) and X (the present samples) are
observable, have the same distribution density form (1), while 6; and 6 are

not observable with the same prior distribution G(0)(i = 1,2,...,n).
Let Qn(x) = Qpn(z1,...,2n;x) be the estimator of Q(x). We define the
EBT of rg(z) by
1, if Qn(z) <0
(4) ra(r) = {

0, Otherwise

Then the over all Bayes risk of r,(z) is

(5) Ry A R(rn(x),G) = Ey, / Q(2)rn(x)dz + Ce

where F,, stands for the expectation with respect to the joint distribution of

(X1,..., Xn).

For any G(f) € F!, the EBT 7,(z) is said to be asymptotically opti-
mal (a.0) if R, — Rg as n — oco. Moreover if for a ¢ > 0, R, — Rg =
O(n~9), then the EBT r,(x) is said to be asymptotically optimal with con-
vergence rate of O(n~%), where F! is the prior distribution family of 6,

Rc = R(rg,G) = inf, R(r,G) is the Bayes risk of rg(z).

We can define the estimator of f(x) by

© Fule) = () 30 K (K )

i=1

where h = hy, (> 0), and lim,,_o h, = 0. K(-) is a kernel function, satisfying

the following conditions:

(1) K(y) =0,ify & (0,1).
(2) |K(y)| < M for all y, M is a positive number.
1 ast =0,

3) [y'E(y)dy =4 °
/ 0, ast=1,2,...,5s—1.
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Assume that the following conditions hold (for all z > 0),

(A1) ixtv(mjx) < oo, t=0,1
j=1
(82) m AmI)g(m') — 0] = o)

(A3) Zf (mlz) < o0, Zf mlz) < oo,
j=

fo(S miz) < oo, x Zf (m’z)

7=1
(A4) ﬂ:Z/ mj9d9<oo

where v(m/z) = /mn:l A(0)g(0)dd = f(m/z)[u(m?z)] L.

Noting (A2) and %v(mjx) = mjA(mjx)g(mjm) —mITLA(mI L) g(mi L),

we get A(x)g(x) = — Z %
j=1

. Therefore

/m

va(x) = u(x) /m 0A(0)g(0)do = u(x) /j — Z Hdv m’0
x z/m 53

We need the following lemma to simplify vi(x), va(x), Si(x), S2(z) and
Sg(m')

Lemma 2.1. (see [7]) Let {fn} be a sequence of measurable functions
on (Q, Fy, p), where (2, F1, 1) is a measurable space, and p is a o-finite mea-
sure. If either Y021 [o fifdp < oo or 3001 [o o d,u < 00, then Y 07| fn is

integral for p (i.e. o> noq frdp < 00), and [o > 02y fadp =>02 [ frdp,
where f; and f,; stand for the positive and negatwe parts of the f, respec-

tively. Since

0 T dU(mJG) 1-1)(1-) 1 0 ; 0 = ;
]Z::l/x/me{ o ]da - +(1—E)9€;v(m x)—; /m/mv(m 0)do.
From the condition (A1) io:/: [Hd%v(mjﬂ)rdﬁz (1—%)$§’U(mjx) .
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By Lemma 2.1, we get / ZHdv (m’8) Z/ —v (m’6)d6.
/m /m

Hence va(z) = —u(m)jzl/x/m 9
Au(@)fao()/m — (1 — 1/m)aT(@) + (@)

d9

Similarly, one has,

vi() A (@)
Si(@) A u(@)[—e"T(x) + e T (fo) — em())
Sa(x) A u(@)[=2T(x) + 00T (6o) + n2(x)]
S3(z) A wu(z)[-T(z) +T(6)]
where T(x) = Zf(mjm)[u(mjm)]_l,
j=1

e ¢}

wm::zgmwmwnmmww
Po(z) = Z/ f(m?0)[u(m?6)]~1de,

mmzzzj =0 f(m19) [u(m?6)] ' do,
j=1"%

m(@) = 3 [ FmI0)u(mie)tde.

7=1

We define the estimation of vi(x), Sj(x) as vin(x), Sjn(x) (i = 1,2, j =

1,2,3), namely,

vi(@) = e M (@) —ula) (e — e T (2) — cul@)dia (@)
van(2) = (z/m)fn(2) = u(x)(1 = 1/m)aT, (z) + w(z)pan(z)
Sin(z) = u(@)[—e “Th(x) + e DTy (x) — enin(z)]

Son(x) = u(@)[=2Tn(x) + 60T (00) + 120 (2)]
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Ssn(z) = u(@)[-Th(z) + Tn(o)]

where fo(x) is defined by (6), and Tp(z) = Y52, fu(miz)[u(miz)] L,
onls) = 3 L, & I outmio)as,
Ynlr) = Z [, B0t a0,
mn(z) = Z/H e~ f,,(m?0)[u(m’ )] 1d6,
Non(2) = Z fn (m?0)[u(m? )]~ db.

Therefore, the estimator of Q(z) can be constructed as follows,

Qu(x) = P [281,(x) — v1()] 4 ¢[22n(2) —v20()] = (0 +1) [2S3(x) — ful)].

For the EBT r,(x), we claim the following Theorem 1 and Theorem 2.

Theorem 1. Suppose the conditions (Al)~(Ab) hold and f(x) is s

times differentiable, sup,, f(z) < oo, sup, |f®)(z)| < oc.

Then as hy, = n~ /@t we have limy,_oo Ry, = Re.

Theorem 2. Suppose that the conditions of Theorem 1 hold, and there

exists a constant §(0 < § < 1) such that the following conditions are satisfied

(B1) / 2% f(x)dx < oo, / [zf(x)]'°dz < oo,
0 0
for one such o, 1/2 < <1—1/2s;
(B2) / 25 S Fmin) [ dw < o, k= 0,1;
0 ‘
7j=1

1-6
dr < 00.

xT

i f(m76)db

Jlx/m

(B3) .
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Then as hy, = n~ Y2+ we obtain R, — Rg = O(n™%) with ¢ = §s/(25+1).

3. Some Lemmas. In this paper, M denotes different positive con-

stants in different cases, even in the same expression.

Lemma 3.1. If Rg denotes the Bayes risk of ra, and R, is defined by
(5). Then

0< Ry = Ro < [ 1Q@)|P{Qu(x) - Q@)| = Q@) }da
Proof.
0<R,—Rg = En/Q(ﬂ:)rn(x)dx—/Q(m)rg(x)dx

— [ Q@)Buraa) - ra@)lda
— [ Q@IP{Qu() <0} = ro@)ds A [ Q@)A(w)ds.

As Q(x) <0, Ay(w) = P{Qu(x) <0} — 1= ~P{Qu(z) > 0}
(7) Fo = Ra = [ 1Q@)|P{Qu(x) > 0}da.

As Q&) > 0, An(x) = P{Qu(x) < 0} 0= P{Qu(x) <0}
(®) Fo = Ra = [ 1Q@)|P{Qu(x) < 0}da.

From Q(x) < 0 and Qu(x) > 0, we get P{Qu(z) > 0} < P{Qu(x)—Q(x)] >
[Q)[},
From Q(x) > 0 and @u(x) < 0, we get P{Qn(x) < 0} < P{|Qu(x)—Q(x)| >
[Q()[}-

Combining (7) and (8) we have 0 < R, — Rg < [|Q(z)|P{|Qn(z) —
Q)| = |Q()[}dz.
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Lemma 3.2. Let f,,(z) be defined by (6). Ifsup, f(z) < oo, sup,|f©®)(z)
< o0, then for 0 < X\ < 2 and h, = n~Y®+) we have |E, f,(x) — f(z)| <
Mn—s/(Zs-l—l)f(s)(x)’

Var (fn(x)) < Mn72s/(2s+1)f(x), and
Eplfu(x) — f ()] M=/ CED L ()32 4 {] £ (@)},

IN

Proof. From Lemma 3.1 in Karunamuni (1996) and C, inequality, we

can easily obtain the above inequalities.

Lemma 3.3. Let (Al)~(A5) and the conditions of Lemma 3.2 hold and
hy =0~V @D Then for any 0 < X < 2,

| Epvin(z) — vi(2)| < M~/ Var (v, (2)) < Mn~25/@s+1),
Eylvin (@) — vi(2)} < Mn~ /D) (5 =1,2),

|EnSin(@) — Sj(@)] < Mn~/@F)  Var (S;,(2)) < Mn=2/CstD),
Ey|Sjn(z) — Sj(x)> < Mp=2/Cs+D (5 = 1,2, 3).

Proof. We prove Lemma 3.3 only for vy (z), it is similar for others. Note

that (A4), (A5) and Lemma 3.2, one has

|Epvin(z) — v1 ()|
e—cx/m’Enfn(x) _ f(.%')‘ 4 (e — e—cx/m)’EnTn(m) — T(I‘)’
+c| Enthin(x) — 1 (z)]|

IN

< {|Eufule) - 1)+ z [En fu(m? a;n )= S(a)
| En fu( mJH) F(mio)|
+Z/ mEsT) de}
< M{|Enfn(:v) — f(@)] + Zf(s) (miz)n—*/2s+1)

j=1
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s/ s+ Z/ ) (m?6) dﬁ}

< Mn—s/(Qs-l—l).
For Var (v1,(z)), begin with

Var [v1,(2)] = Ep(vin(r) — Eyvin(z))?

< M{e_z%/m[En(fn(w) = Bnfn(@))’]

2

Z fa(miz) — By fu(miz)

mﬂx)

+[(e—cm o —cx/m

io: r fn(mje)_ nfn(m H)e—cﬁde

—i—czEn :
= Jam u(mif)

By Fubini Theorem, (A4) and Lemma 3.2, we conclude

2

Z In( mjx nfn(mjx)

mﬂx)

miz nnm:c nm:c E, fu(miz)]?
(Q)ZVaern )= Eufal [Zf Enfu(miz)

u(miz) u(miz)

- MZVarfn(me §Z Flmiz)n=25/@s1) < =28/ (2st1),

From (A5), Lemma 3.2, Fubini Theorem and Cauchy inequality,

i ¥ fn(mjﬂ) - Enfn(mje) =40 2

=1

Y E[ ’ fn<mf'6>—Enfn<mf'0>e_ced@}2

m/m u1/2 (m]@)ul/z (me)

e z 1 * [fn(mje)_Enfn(mja)]z —2cf
M]ZlE”[/x/m u(mm)de/x/m (i) e 240

< Mo S [0 Var fu(mI0)u(mi6)20) s
j=1 z/m

IN

—~
[a—
(=)

~—
AN
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. Z/ F(mI0)don=25/ st < ppp—28/@s+1)

By above two inequalities and Lemma 3.2, Var [v1,, ()] < Mn=25/(2s+1),

From C, inequality and Jensen inequality, we get

En‘vln(x)_vl(x)‘)\ < M[En’Envln(x) - Uln(x)’A + En’Envln(w) - ?}1(.%')‘)\]
< M{Ep| Eoin(a) = v1n(2) |2} + M Ep| Eyoin(w) —vn ()}
< M{Var (vi, (x))M? 4 n=2/@sTDY < ppp=As/(@s41),

Similarly we can get other expressions. End of proof.

Lemma 3.4. If the conditions of Theorem 1 and the condition (B1) of
Theorem 2 hold, then [y°[f(x)]'™*dz < 00, 1/2 <a<1—1/2s.

Proof. [R(f (@) dz = [ ()] "dz + [F[f@)]'dr A T + I
Obviously I; = fol [f(z)]'7%dx < M2 < o0,

By Holder inequality and conditions of Theorem 1, we have

I

[ = [ ] (40 )
[ [Tam 0] [Ta T pwas] C<n| [To T pwyaa]

where £ > 0 is a constant. Since 2s(1—a«) > 1, therefore there exists a £ > 0,
such that 1+ & < 2s(1 — «). Hence, (14 &)a/(1 — a) < 2sa.

IN

From condition (B1) of Theorem 2, we get [ °x(178)e/(0=0) f(3)dy <
JC x?es f(z)dz < oco. Thus Iy < oo and IoLf ()]} %x = I} + I < 0.

This completes the proof.
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4. Proof of Theorems.

Proof of Theorem 1. By Lemma 3.1 and Markov inequality, we get

0 < RimRo < [ 1Q@)IP{IQu(2) — Q)| 2 1QM)l}do A [ Bu(w)da
Ba(z) = 1Q@)IP{Qu(x) = Q@) 2 1Q()]}
Q)IE|Qule) ~ Q/IQ()] = EalQule) - Qo)

IN

En|@n(2) — Q(2)]
3 2
< M{Z Ep|Sin(x)—S;(x)] + Y Enloin(2)—vi(2)] + Enlfn(w)—f(w)l}-
i=1

J=1

Take A =1 in Lemma 3.2, we get F,|Qn(z) — Q(x)] < Mn—5/(2s+1)

Therefore 0 < By(z) < Mn~%/?st1)_ Using the dominated convergence

Theorem, we arrive at
lim /Bn(x)dm = [ lim By(x)dx =0.
n— oo n—00

So that lim,,_. R, — Rg = 0. End of proof.

Proof of Theorem 2. By C, inequality, Markov inequality, and Lemma

3.1 ~ Lemma 3.4, we can obtain

0 < Ru—Fo < [ 1Q@)IP{IQ.() — Q@) = Q@)

< [ 10@)*Eul@n(a) - Q(a) 'do
2 3
< M [1Q@I {3 Eulonl@) — 5@’ + 3 EalSia(a) - ;o))
i=1 j=1

HEufola) - f(@)] o

< Mnf5s/(23+1)/|Q(x)|lf6dx
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= Mn0s/(stD) / {] — ey () — cvo() + (cBy + 1) f(z) + 2e%0 S ()
+2¢So(x) — 2(cby + 1)S3(x) [} Odx

2 3
/; v ()|} O da +/]Z::1]Sj($)’1—6dm —l—/[f(m)]l_‘sdx}

Mn—6s/(28+1)

Note that

[t el f(md
—cu(x)Z/ ﬂd@

j=1 x/m u(mje)

< m{ [ If@

From Lemma 3.4 and conditions (B1) ~ (B3) of Theorem 2, we get

mJH df

1-6
dx}

mm

/]vl(ac)\lf‘sdé < oo and /[f(ac)]lf‘sdm < 0.

By the same computation we also obtain [ |va(z)['~°dz < oco.
Similar computation yields [|S;(z)|'~°dz < o0, j = 1,2, 3.
Combining above inequalities, we conclude 0 < R, — Rg < Mn—%/(2s+1),

That is R,, — Rg = O(n=%/(s*1)). End of proof.

5. An Example. Let f(z|0) = l[[g 20)(2), 9(0) = 0?1 ) (0). Then

u(z) = 1, A(f) = 3, 0 € (0,+00). Then f(z) = v(z) = e /2 — 7,
straightforward calculating can yield
(Al) th[efy—lx _ 672“3] <00, t=0,1

j=1

(A2) m/A(mIz)g(miz) — 0 (j — 00)
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(A3) Zf(s)(mj Z f(mlz) < oo, xz 7 (miz) < oo, xQZf (m’z)
j=1 j=1 j=1 J=1
< o0

(A4) xZ/ )(m?0)df < oo
x/m

we can verify that (A1) ~ (A5) and all conditions of Theorem 1, 2 hold.
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