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1. Introduction. The n (≥ 3)-dimensional incompressible Navier-

Stokes equations have been a challenging problem both in mathematics and

in physics for a long time. There have been tremendous efforts in trying

to solve the global strong solutions with arbitrarily large initial data in cer-

tain Sobolev spaces. Partial regularity for suitably weak solutions has been

established very well by Caffarelli, Kohn and Nirenberg in [1] and by Fang-

Hua Lin in [5]. See also Ladyzhenskaya [3], Serrin [11], Temam [13] and

Zhang [19]. Necas, Ruzicka and Sverak proved the non-existence of a self-

similar solution of the Navier-Stokes equations for 3-dimensional problem in

[6]. Long time asymptotic behaviors of L2-norm of the solutions has also

been studied extensively by Schonbek in [7]-[10], by Wiegner in [14]-[16] and

by the author in [17]-[20].

It is well known that the Cauchy problems for the 2-dimensional incom-

pressible Navier-Stokes equations

ut + u · ∇u −△u + ∇p = 0, ∇ · u = 0,(1)

with large initial data u(x, 0) = u0(x) ∈ Hm(R2), have global smooth solu-

tions in L∞(R+;Hm(R2)), where m ≥ 1 is sufficiently large, see [4]. How-

ever, if we increase the spatial dimension by only one, namely, consider the
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3-dimensional Cauchy problems, then, for large initial data in Hm(R3), no

global strong result has been proved. It seems that the second order dissipa-

tion −△u is not “strong enough” to support the “nonlinear reaction terms

u · ∇u + ∇p”. Even the presence of the “good term − ∂
∂t△u” cannot guar-

antee the global existence for n-dimensional problems, n > 3, although for

n = 3 it is good enough. Actually, some people conjecture that ‖∇u(·, t)‖2

of the solutions for n = 3 with large initial data blow up in finite time. It

seems to us that the Cauchy problems with small initial data admits global

strong solutions. We believe that when the dissipation and the nonlinearity

attain some kind of balance, the strong solution will exist globally. To guar-

antee the global existence of the strong large solutions without breaking the

physical meaning of the Navier-Stokes equations, i.e. keeping the nonlinear-

ity u · ∇u + ∇p and the incompressible conditions ∇ · u = 0, we can either

increase the order σ of the dissipation (−△)σu or decrease the dimension n

of the physical problems in R
n, thus allowing n to be a positive real number.

These suggestions make sense mathematically.

We are interested in the smallest power σ in (−△)σ such that the Cauchy

problems u(x, 0) = u0(x) for the modified Navier-Stokes equations

ut + u · ∇u + α(−△)σu + ∇p = 0, ∇ · u = 0,(2)

possesses a unique global strong solution u ∈ L∞(R+;Hm(Rn)) for arbitrar-

ily large initial data u(x, 0) = u0(x) ∈ Hm(Rn), where m ≥ 1 is sufficiently

large.

Theorem 1. Let σ = n+2
4 and u0 ∈ Hm(Rn) with ∇ · u0 = 0.

Then the Cauchy problems u(x, 0) = u0(x) for the modified Navier-Stokes

equations (2) have a unique smooth solution u ∈ L∞(R+;Hm(Rn)),∇u ∈

L2(R+;Hm(Rn)).
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2. Proof of Theorem 1. Using the incompressible condition ∇ · u =

0, for all x ∈ R
n and t ∈ R

+, we see that for continuously differentiable

functions u and p ∈ C1(Rn; R
+), there hold

∫

Rn

u(x, t) · [u(x, t) · ∇u(x, t)]dx =

∫

Rn

u(x, t) · ∇p(x, t)dx = 0.

The proof of Theorem 1 consists of four steps.

(A) First of all, if we make the scalar product of the vector u(x, t) with

the modified Navier-Stokes equations (2), we get

d

dt

∫

Rn

|u(x, t)|2dx + 2α

∫

Rn

|(−△)σ/2u(x, t)|2dx = 0.(3)

Hence we get the elementary estimates

sup
t∈R+

‖u(·, t)‖2 ≤ ‖u0‖
2, 2α

∫ ∞

0
‖(−△)σ/2u(·, t)‖2dt ≤ ‖u0‖

2.(4)

(B) Next, we multiply the modified Navier-Stokes equations by

2(−△)σu(x, t) and integrate with respect to x ∈ R
n to obtain

d

dt

∫

Rn

|(−△)σ/2u(x, t)|2dx + 2α

∫

Rn

|(−△)σu(x, t)|2dx

(5)

= −2

∫

Rn

(−△)σu(x, t) · [u(x, t) · ∇u(x, t)]dx.

The right hand side in the above equation is controlled by

2

∣

∣

∣

∣

∫

Rn

(−△)σu(x, t) · [u(x, t) · ∇u(x, t)]dx

∣

∣

∣

∣

≤
α

2

∫

Rn

|(−△)σu(x, t)|2dx +
2

α

∫

Rn

|u(x, t) · ∇u(x, t)|2dx

≤
α

2

∫

Rn

|(−△)σu(x, t)|2dx +
2

α
‖u(·, t)‖2

L∞(Rn)

∫

Rn

|∇u(x, t)|2dx

≤
α

2

∫

Rn

|(−△)σu(x, t)|2dx

+C
[

‖u(·, t)‖2−n/2σ‖(−△)σu(·, t)‖n/2σ
][

‖u(·, t)‖2−2/σ‖(−△)σ/2u(·, t)‖2/σ
]
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≤
α

2

∫

Rn

|(−△)σu(x, t)|2dx +
α

2

∫

Rn

|(−△)σu(x, t)|2dx

+C

[
∫

Rn

|u(x, t)|2dx

]n/2 [
∫

Rn

|(−△)σ/2u(x, t)|2dx

]2

≤ α

∫

Rn

|(−△)σu(x, t)|2dx + C(‖u0‖
n)

[
∫

Rn

|(−△)σ/2u(x, t)|2dx

]2

.

In the above estimates, we have implicitly used 4σ = n + 2. At last, we get

the estimate

d

dt

∫

Rn

|(−△)σ/2u(x, t)|2dx + α

∫

Rn

|(−△)σu(x, t)|2dx

≤ C(‖u0‖
n)

[
∫

Rn

|(−△)σ/2u(x, t)|2dx

]2

.

Integrating in time to obtain

∫

Rn

|(−△)σ/2u(x, t)|2dx + α

∫ t

0

∫

Rn

|(−△)σu(x, s)|2dxds

≤

∫

Rn

|(−△)σ/2u0(x)|2dx + C(‖u0‖
n)

∫ t

0

[
∫

Rn

|(−△)σ/2u(x, s)|2dx

]2

ds.

Applying the generalized Gronwall’s inequality, we have the global estimate

∫

Rn

|(−△)σ/2u(x, t)|2dx + α

∫ t

0

∫

Rn

|(−△)σu(x, s)|2dxds

≤

∫

Rn

|(−△)σ/2u0(x)|2dx exp

[

C(‖u0‖
n)

∫ ∞

0

∫

Rn

|(−△)σ/2u(x, t)|2dxdt

]

(6)

≤

∫

Rn

|(−△)σ/2u0(x)|2dx exp
[

C(‖u0‖
n+2)

]

= C(‖u0‖
n+2, ‖u0‖

2
σ).

In the above discussions, notice that n
2σ < 2 is always true if we choose

σ = n+2
4 . This is the key estimate for global strong solutions of (2) with

large initial data.

(C) Finally, we multiply the modified Navier-Stokes equations by

2(−△)2σu and integrate in x to obtain the following equation
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d

dt

∫

Rn

|(−△)σu(x, t)|2dx + 2α

∫

Rn

|(−△)3σ/2u(x, t)|2dx

(7)

= −2

∫

Rn

(−△)2σu(x, t) · [u(x, t) · ∇u(x, t)]dx.

Applying the fractional interpolation inequality given in the Appendix, we

see that the right hand side of the above energy equation is dominated by

2

∣

∣

∣

∣

∫

Rn

(−△)2σu(x, t) · [u(x, t) · ∇u(x, t)]dx

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫

Rn

(−△)3σ/2u(x, t) · (−△)σ/2[u(x, t) · ∇u(x, t)]dx

∣

∣

∣

∣

≤
α

2

∫

Rn

|(−△)3σ/2u(x, t)|2dx +
2

α

∫

Rn

|(−△)σ/2[u(x, t) · ∇u(x, t)]|2dx

≤
α

2

∫

Rn

|(−△)3σ/2u(x, t)|2dx + C‖u(·, t)‖2
L4(Rn)‖∇(−△)σ/2u(·, t)‖2

L4(Rn)

+C‖(−△)σ/2u(·, t)‖2
L4(Rn)‖∇u(·, t)‖2

L4(Rn)

≤
α

2

∫

Rn

|(−△)3σ/2u(x, t)|2dx

+C
[

‖u(·, t)‖2−n/2σ‖(−△)σ/2u(·, t)‖n/2σ
]

×
[

‖(−△)σ/2u(·, t)‖2−(n+4)/(4σ)‖(−△)3σ/2u(·, t)‖(n+4)/(4σ)
]

+C
[

‖(−△)σ/2u(·, t)‖2−n/(4σ)‖(−△)3σ/2u(·, t)‖n/(4σ)
]

×
[

‖u(·, t)‖2−(n+4)/(4σ)‖(−△)σu(·, t)‖(n+4)/(4σ)
]

=
α

2

∫

Rn

|(−△)3σ/2u(x, t)|2dx

+C‖u(·, t)‖2−n/2σ‖(−△)σ/2u(·, t)‖2+(n−4)/(4σ)‖(−△)3σ/2u(·, t)‖(n+4)/(4σ)

+C‖u(·, t)‖2−(n+4)/(4σ)‖(−△)σ/2u(·, t)‖2−n/(4σ)

×‖(−△)σu(·, t)‖(n+4)/(4σ)‖(−△)3σ/2u(·, t)‖n/(4σ)

≤ α

∫

Rn

|(−△)3σ/2u(x, t)|2dx + C‖(−△)σ/2u(·, t)‖6

+C‖(−△)σ/2u(·, t)‖4−n/2σ‖(−△)σu(·, t)‖2

≤ α

∫

Rn

|(−△)3σ/2u(x, t)|2dx + C‖(−△)σ/2u(·, t)‖2 + C‖(−△)σu(·, t)‖2,

where we have also applied the uniform estimates supt∈R+ ‖u(·, t)‖ ≤ ‖u0‖
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and sup ‖(−△)σ/2u(·, t)‖ ≤ C‖(−△)σ/2u0‖. Now equation (7) becomes

d

dt

∫

Rn

|(−△)σu(x, t)|2dx + α

∫

Rn

|(−△)3σ/2u(x, t)|2dx

≤ C

∫

Rn

|(−△)σ/2u(x, t)|2dx + C

∫

Rn

|(−△)σu(x, t)|2dx.

Integrating in time gives

∫

Rn

|(−△)σu(x, t)|2dx + α

∫ t

0

∫

Rn

|(−△)3σ/2u(x, s)|2dxds

≤

∫

Rn

|(−△)σu0(x)|2dx + C

∫ t

0

∫

Rn

|(−△)σ/2u(x, s)|2dxds

(8)

+C

∫ t

0

∫

Rn

|(−△)σu(x, s)|2dxds

≤ C

∫

Rn

|(−△)σu0(x)|2dx + C

∫

Rn

|u0(x)|2dx.

(D) The global L2 estimates for higher order derivatives of the solu-

tions and for the pressure p can be similarly obtained if u0 ∈ Hm(Rn). The

uniqueness follows from routine method. This completes the proof of Theo-

rem 1.

Remark. Let p > n ≥ 3 and q > 2 and n
p + 2

q = 1, such that

∫ ∞

0

[
∫

Rn

|u|pdx

]q/p

dt < ∞.

Under this condition, Zhang [19] established that

u ∈





⋂

p≤r<∞

L2r/(r−n)(R+;Lr(Rn))





⋂





⋂

2≤s<∞

L∞(R+;Ls(Rn))



 .

3. Appendix. We list several well-known inequalities in dynamical

systems.
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1. (Gronwall’s inequality) Let the positive continuous functions f , g

and h ∈ L1[0,+∞) satisfy the inequality

g(t) ≤ f(t) +

∫ t

0
g(s)h(s)ds,

for all t > 0. Then we have the estimate

g(t) ≤ f(0) exp

[
∫ t

0
h(s)ds

]

+

∫ t

0
f ′(s) exp

[
∫ t

s
h(r)dr

]

ds.

Next, we present some classical interpolation inequalities in Sobolev

spaces.

2. (Gagliardo-Nirenberg’s inequality) For all 1 ≤ p, q, r ≤ +∞

and for all integers n ≥ 1 and m > k ≥ 0, there are positive constants

α ∈ [k/m, 1] and C, such that for all u ∈ C∞
0 (Rn), we have the estimate

‖Dku‖Lp ≤ C‖Dmu‖α
Lr‖u‖1−α

Lq , where

n/p − k = α(n/r − m) + (1 − α)n/q,
∥

∥

∥Dku
∥

∥

∥

p

Lp
=

∑

α1+···+αn=k

∥

∥

∥

∥

∥

∂α1+···+αnu

∂xα1

1 · · · ∂xαn

n

∥

∥

∥

∥

∥

p

Lp

.

The only exception is that α 6= 1 if m − n/r = k and 1 < p < ∞.

The following interpolation inequality plays a role in the modified

Navier-Stokes equations.

3. (Fractional interpolation inequality) Let f , g ∈ W 2m,p ⋂

Lq(Rn).

Then for all p, q with

1

p
+

1

q
=

1

2
,

there holds the estimate

‖(−△)m(fg)‖L2(Rn)

≤ C‖(−△)mf‖Lp(Rn)‖g‖Lq(Rn) + C‖f‖Lq(Rn)‖(−△)mg‖Lp(Rn).
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4. (Leray-Schauder fixed point principle) Let X be a Banach space

and let Aλ : X × [0, 1] → X be a well defined mapping. Suppose that

(1) For all fixed λ : 0 ≤ λ ≤ 1, Aλ is a completely continuous operator.

(2) For all bounded subset E ⊂ X, Aλ is uniformly continuous in λ.

(3) A0X = {a}, where a ∈ X is a fixed point.

(4) There is a λ-independent constant M > 0, such that all possible solutions

of the equation Aλxλ = xλ with 0 ≤ λ ≤ 1 satisfy

‖xλ‖ ≤ M.

Then there exists a point x0 ∈ X, such that

A1x0 = x0.
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