FOURIER EXPANSIONS OF ENTIRE FUNCTIONS OF TWO COMPLEX VARIABLES

BY
D. KUMAR AND BALBIR SINGH

Abstract

Let μ be a finite positive Boral measure on a compact Jordan region $E \subset C^{2}$ and $L_{(\mu)}^{2}$, the Hilbert space of functions of two complex variables holomorphic in E with inner product is defined as surface measure integral over E. The relations connection the growth of an entire function of two complex variables $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ with its Fourier Coefficients with respect to an orthonormal sequence of polynomials in $L_{(\mu)}^{2}$, have been obtained. The necessary and sufficient conditions in terms of Fourier Coefficents have been obtained for $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ to be of finite order and finite type.

1. Introduction. Let $f\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}=0}^{\infty} a_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}$ be a function of two complex variables z_{1} and z_{2}, regular for $\left|z_{t}\right| \leq r_{t}, t=1,2$. If r_{1} and r_{2} are arbitrary large then $f\left(z_{1}, z_{2}\right)$ is an entire function of two complex variables.

Let \lceil denote the class of all entire functions of two complex variables in C^{2}. The growth of a $f\left(z_{1}, z_{2}\right) \in\lceil$ is studied in terms of its order ρ and if $0<\rho<\infty$, in terms of its type T also, where

$$
\begin{equation*}
\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \log M\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)}=\rho, \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log M\left(r_{1}, r_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}}=T \tag{1.2}
\end{equation*}
$$

\]

where $M\left(r_{1}, r_{2}\right)=\max _{\left|z_{t}\right| \leq r_{t}}\left|f\left(z_{1}, z_{2}\right)\right|, t=1,2$.
The coefficents characterizations of above growth constants are known [1]. Thus

$$
\begin{align*}
\rho & =\limsup _{m_{1}, m_{1} \rightarrow \infty} \frac{\log m_{1}^{m_{1}} m_{2}^{m_{2}}}{\log \left|a_{m_{1}, m_{2}}\right|^{-1}} \tag{1.3}\\
T & =\limsup _{m_{1}, m_{2} \rightarrow \infty}\left\{m_{1}^{m_{1}} m_{2}^{m_{2}}\left|a_{m_{1}, m_{2}}\right|^{\rho}\right\}^{1 /\left(m_{1}+m_{2}\right)} \tag{1.4}
\end{align*}
$$

Let μ be a finite positive Borel measure on a compact jordan region $E \subset C^{2}$ of transfinite diameter $d_{t}>0, t=1,2$, and $L_{(\mu)}^{2}$, the Hilbert space of functions of two complex variables holomorphic in E with inner product

$$
(f, g)=\int_{E} f\left(z_{1}, z_{2}\right) \overline{g\left(z_{1}, z_{2}\right)} d \mu, \quad f, g \in L_{(\mu)}^{2}
$$

where $\|f\|_{L_{(\mu)}^{2}}=\left[\int_{E}|f|^{2} d \mu\right]^{1 / 2}<\infty$.
We will assure that $E=\operatorname{supp}(\mu)$ is not contained in any (proper) algebraic subset of C^{2}. This is equivalent to the following property of E : If $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ is an (analytic) polynomial then

$$
\begin{equation*}
\left.P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|_{E} \equiv 0 \Rightarrow P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right) \equiv 0 \quad \text { on } \quad C^{2} \tag{1.5}
\end{equation*}
$$

Sets with this property are said unisolvent. In the case of one complex variable, E satisfies (1.5) if and only if E contains infinitely many points (see [3], p.2).

Proposition 1. Let μ be a finite positive Borel measure with $E=$ $\operatorname{supp}(\mu)$ satisfying (1.5). Let $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ be an (analytic) polynomial such
that

$$
\left\|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right\|_{L_{(\mu)}^{2}}=0 . \quad \text { Then } \quad P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right) \equiv 0 \quad \text { on } \quad C^{2} .
$$

Proof. We will show that if $\left.P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|_{E} \neq 0$, then $\left\|P_{m_{2}, m_{2}}\left(z_{1}, z_{2}\right)\right\|_{L_{(\mu)}^{2}}$ >0. Suppose $\left.P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|_{E} \neq 0$ and let $z_{0_{t}} \in E=E_{1} \times E_{2}, t=1$, 2, be such that $\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|>0$. Then for some $r_{t}>0,\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \geq$ $\left(\left|P_{m_{1}, m_{2}}\right| / 2\right)$ for all $z_{t} \in \triangle\left(z_{0_{t}}, r_{t}\right)$, where $\triangle\left(z_{0_{t}}, r_{t}\right)$ denotes the closed balls of centre $z_{0_{t}}$ and radius r_{t}. Since $z_{0_{t}} \in \operatorname{supp}(\mu)$, we have $\mu\left(\Delta\left(z_{0_{t}}, z_{t}\right)\right)>0$. Hence

$$
\begin{aligned}
\left\|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right\|_{L_{(\mu)}^{2}}^{2} & =\int_{E}\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu \\
& \geq \int_{E \cap \Delta\left(z_{0}, r_{t}\right)}\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu \\
& \geq\left(\left|P_{m_{1}, m_{2}}\left(z_{0_{1}}, z_{0_{2}}\right)\right| / 2\right)^{2} \mu\left(\triangle\left(z_{0_{t}}, r_{t}\right)\right)>0 .
\end{aligned}
$$

Hence the proof is completed.
Here we consider the monomials $\left\{z_{1}^{m_{1}} z_{2}^{m_{2}}\right\}$ to be ordered lexicographically. By Proposition 1, we may apply the Gram-schmidt orthogonalization procedure to the monomials and one obtains orthonormal polynomials denoted $p_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right) \equiv p_{m_{1}, m_{2}}\left(z_{1}, z_{2}, \mu\right)$ for each m_{1} and $m_{2} \cdot p_{m_{1}, m_{2}}\left(z_{1}, z_{2}, \mu\right)$ denotes the orthonomal polynomial which is a linear combination of $z_{1}^{m_{1}} z_{2}^{m_{2}}$ and monomials of lower lexicographic order. Thus $A_{m_{1}, m_{2}}(E) \equiv$ $\left\{P_{m_{1}-1, m_{2}-1}\left(z_{1}, z_{2}\right)\right\}_{m_{1}, m_{2}=1}^{\infty}, P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ being a polynomial of degree $\leq m_{1}+m_{2}$, is a complete orthonormal sequence in $L_{(\mu)}^{2}$.

The Fourier expansion of $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ is

$$
f\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}=0}^{\infty} b_{m_{1}, m_{2}} p_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right),
$$

where

$$
\begin{equation*}
b_{m_{1} m_{2}}=\int_{E} f\left(z_{1}, z_{2}\right) \overline{p_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)} d \mu . \tag{1.6}
\end{equation*}
$$

A question arises that "Do the relations (1.3) and (1.4) continue to hold if $a_{m_{1}, m_{2}}$ is replaced by Fourier coefficient $b_{m_{1}, m_{2}}$ of $f\left(z_{1}, z_{2}\right) \in\left\lceil\subset L_{(\mu)}^{2}\right.$ with respect to $L_{(\mu)}^{2}$. In this paper we attempt to solve this question.
2. Auxiliary results. In this section we prove some lemmas which are required in proving the main theorems.

Let $E_{r_{t}}$ be the largest equipotential curve of $E=E_{1} \times E_{2}$ such that $E_{r_{t}}=\left\{z_{t} \in C^{2}: d_{t} \exp V_{\mu}\left(z_{t}\right)=r_{t}\right\}, r_{t} / d_{t}>1, t=1,2$ and $V_{\mu}\left(z_{t}\right)$ is the minimal Carrier Green function of the measure μ and $C^{2} \backslash \hat{E}$ is simply connected [2], \hat{E} denote the convex hull of E. Let $D_{r_{t}}$ be the domain interiar to $E_{r_{t}}$.

Lemma 2.1. If a polynomial $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ of degree $m_{1}+m_{2}$ satisfies the inequality $\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \leq L$ for $z_{t} \in E$, then we have

$$
\begin{equation*}
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \leq L R_{1}^{m_{1}} R_{2}^{m_{2}} \quad \text { for } \quad z_{t} \in E_{R_{t}}, \quad R_{t}>1, t=1,2 . \tag{2.10}
\end{equation*}
$$

Lemma 2.2. If $f\left(z_{1}, z_{2}\right)$ is analytic on E and we have

$$
\int_{E}\left|P_{m_{1}, m_{2}}\right|^{2} d \mu \leq L
$$

if E^{\prime} is an arbitrary closed jordan region interior to E, then we have

$$
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \leq L L^{\prime} \quad \text { for } \quad z_{t} \in E^{\prime}
$$

where L^{\prime} depends on E^{\prime} but not on $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ nor on L.

These lemmas can be proved in the same way as in single complex variable (see [4]).

Lemma 2.3. If $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ forms a complete orthonormal sequence in $L_{(\mu)}^{2}$ then for any $\varepsilon>0$.

$$
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|<M_{0}\left(\frac{r_{1}}{d_{1}}\right)^{m_{1}}\left(\frac{r_{2}}{d_{2}}\right)^{m_{2}}(1+\varepsilon)^{m_{1}+m_{2}}, \quad z_{t} \in E_{r_{t}}
$$

where M_{0} depends on ε but not on m_{1}, m_{2}.

Proof. Since we may assume

$$
\int_{E}\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu \leq 1 \quad \text { for all } \quad m_{1}, m_{2}
$$

By Lemma 2.2, we have for any $E^{\prime} \subset E$,

$$
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \leq M_{0} \quad \text { for } \quad z_{1} \in E^{\prime}
$$

where M_{0} depends on E^{\prime}. So for any $\varepsilon>0$, applying Lemma 2.1, we get

$$
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|<M_{0}(1+\varepsilon)^{m_{1}+m_{2}} \quad \text { for } \quad z_{t} \in E_{1+\varepsilon}^{\prime}
$$

Now let $E_{1+\varepsilon}^{\prime} \subset E$, so that

$$
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|<M_{0}(1+\varepsilon)^{m_{1}+m_{2}} \quad \text { holds on } E \text { also. }
$$

Again applying Lemma 2.1, proof is completed.

Lemma 2.4. Let $f\left(z_{1}, z_{2}\right)$ be analytic in the domain $D_{R_{t}}$ and have a singularity on $E_{R_{t}}$, then

$$
\begin{equation*}
\limsup _{m_{1}, m_{2} \rightarrow \infty}\left|b_{m_{1}, m_{2}}\right|^{1 /\left(m_{1}+m_{2}\right)} \leq \frac{1}{R_{t}}, \quad R_{t}>1, t=1,2 \tag{2.11}
\end{equation*}
$$

Proof. Since $\left\|f\left(z_{1}, z_{2}\right)\right\|_{L_{(\mu)}^{2}} \leq 1$, we have

$$
\left|b_{m_{1}, m_{2}}\right|<\int_{E}\left|\overline{P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)}\right| d \mu
$$

using Cauchy-Schwarz inequality, we get

$$
\left|b_{m_{1}, m_{2}}\right| \leq(\mu(E))^{1 / 2}
$$

or

$$
\begin{equation*}
\limsup _{m_{1}, m_{2}}\left|b_{m_{1}, m_{2}}\right|^{1 /\left(m_{1}+m_{2}\right)} \leq \frac{1}{R_{t}}, \quad R_{t}>1 \tag{2.12}
\end{equation*}
$$

However, strict inequality in (2.11) is equivalent to the analyticity of $f\left(z_{1}, z_{2}\right)$ in $D_{R_{t}^{\prime}}$ for some R_{t}^{\prime} with $R_{t}<R_{t}^{\prime}$. Thus if $f\left(z_{1}, z_{2}\right)$ has a singularity on $E_{R_{t}}$ then equality holds in (2.12).

Lemma 2.5. Let $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ and $b_{m_{1}, m_{2}}$ satisfies (2.11). Then $f\left(z_{1}, z_{2}\right)$ can be continued analytically to the domain $D_{R_{t}}, t=1,2$.

Proof. To see that the series $\sum_{m_{1} m_{2}=0}^{\infty} b_{m_{1}, m_{2}} p_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ converges uniformly on compact subsets of $D_{R_{t}}$, choosing a number $R_{t}^{*}, 1<R_{t}^{*}<R_{t}$. Let $\varepsilon>0$ and $\varepsilon<\frac{R_{t}-R_{t}^{*}}{R_{t}^{*}}$, so that $R_{t}^{*}(1+\varepsilon)<R_{t}$. Let $R_{t}^{* *}$ be such that $R_{t}^{*}(1+\varepsilon)<R_{t}^{* *}<R_{t}$. (2.11) gives that there exists $m_{1_{0}}=m_{1_{0}}\left(R_{t}^{* *}\right)$, $m_{2_{0}}=m_{2_{0}}\left(R_{2}^{* *}\right)$ such that

$$
\begin{equation*}
\left|b_{m_{1}, m_{2}}\right|<\frac{1}{\left(R_{1}^{* *}\right)^{m_{1}}\left(R_{2}^{* *}\right)^{m_{2}}} \quad \text { for } \quad m_{1} \geq m_{1_{0}}, m_{2} \geq m_{2_{0}} \tag{2.13}
\end{equation*}
$$

Applying Lemma 2.3, it gives

$$
\begin{equation*}
\left|P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|<M\left(\frac{R_{1}^{*}}{d_{1}}\right)^{m_{1}}\left(\frac{R_{2}^{*}}{d_{2}}\right)^{m_{2}}(1+\varepsilon)^{m_{1}+m_{2}} \text { for } z_{t} \in E_{R_{t}^{*}}, t=1,2 . \tag{2.14}
\end{equation*}
$$

Combining (2.13) and (2.14) implies that
$\left|b_{m_{1}, m_{2}} P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|<M\left(\frac{R_{1}^{*}}{d_{1} R_{1}^{* *}}\right)^{m_{1}}\left(\frac{R_{2}^{*}}{d_{2} R_{2}^{* *}}\right)(1+\varepsilon)^{m_{1}+m_{2}} \quad$ for $\quad z_{t} \in E_{R_{1}^{*}}$.
Using above inequalities and Weirstrass M-test we conclude that $\sum_{m_{1}, m_{2}=0}^{\infty}$ $b_{m_{1}, m_{2}} P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ coverges uniformely on $E_{R_{t}^{*}}$. Since $R_{t}^{*}<R_{t}$ it implies that the series converges uniformly on compact subsets of $D_{R_{t}}$. But

$$
\int_{E}\left\{f\left(z_{1}, z_{2}\right)-\sum_{m_{1}, m_{2}=0}^{\infty} b_{m_{1}, m_{2}} P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right\} \overline{P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)} d \mu=0 .
$$

Since $P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)$ forms a complete orthonormal sequence in $L_{(\mu)}^{2}$, so

$$
f\left(z_{z}, z_{2}\right)=\sum_{m_{1} m_{2}=0}^{\infty} b_{m_{1}, m_{2}} P_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right) \quad \text { on } \quad E \subset C^{2} .
$$

Hence $f\left(z_{1}, z_{2}\right)$ can be continued analytically on $D_{R_{t}}$.
Corollary. $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ is an entire function of two complex variables if and only if

$$
\lim _{m_{1}, m_{2} \rightarrow \infty}\left|b_{m_{1}, m_{2}}\right|^{1 /\left(m_{1}+m_{2}\right)}=0 .
$$

Lemma 2.6. Let $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$. For any $\varepsilon>0$, there exists two integers $N_{1}\left(\varepsilon, E_{1}\right)$ and $N_{2}\left(\varepsilon, E_{2}\right)$ such that

$$
\left|b_{m_{1}+1, m_{2}+1}\right|<K \bar{M}\left(r_{1}, r_{2}\right)\left(\frac{d_{1} e^{\varepsilon}}{r_{1}}\right)^{m_{1}}\left(\frac{d_{2} e^{\varepsilon}}{r_{2}}\right)^{m_{2}},
$$

for all $R_{1}>r_{1} \geq r_{1_{0}}=r_{1_{0}}(\varepsilon), R_{2}>r_{2} \geq r_{2_{0}}(\varepsilon)$ and $m_{1}>N_{1}, m_{2}>N_{2}$. Where $\bar{M}\left(r_{1}, r_{2}\right)=\max _{z_{t} \in E_{r_{t}}}\left|f\left(z_{1}, z_{2}\right)\right|, K$ is independent of m_{1}, m_{2} and r_{1}, r_{2}.

Proof. We construct a sequence $\left\{Q_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right\}_{m_{1}, m_{2}=0}^{\infty}$ of polynomials
by induction. Such that

$$
\left|f\left(z_{1}, z_{2}\right)-Q_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right| \leq A \bar{M}\left(r_{1}, r_{2}\right)\left(\frac{d_{1} e^{\varepsilon}}{r_{1}}\right)^{m_{1}}\left(\frac{d_{2} e^{\varepsilon}}{r_{2}}\right)^{m_{2}}
$$

for $z_{t} \in E_{r_{t}}, m_{1}>N_{1_{0}}=N_{1_{0}}\left(\varepsilon, E_{1}\right), m_{2}>N_{2_{0}}=N_{2_{0}}\left(\varepsilon, E_{2}\right)$ and for every $r_{1}, r_{2}, R_{1}>r_{1}>R_{1_{0}}=R_{1_{0}}\left(\varepsilon, E_{1}\right), R_{2}>r_{2}>R_{2_{0}}=R_{2_{0}}\left(\varepsilon, E_{2}\right)$. Thus

$$
\begin{align*}
& \left(\int_{E}\left|f\left(z_{1}, z_{2}\right)-Q_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu\right)^{1 / 2} \\
\leq & K \bar{M}\left(r_{1}, r_{2}\right)\left(\frac{d_{1} e^{\varepsilon}}{r_{1}}\right)^{m_{1}}\left(\frac{d_{2} e^{\varepsilon}}{r_{2}}\right)^{m_{2}} \tag{2.15}
\end{align*}
$$

Now by (1.6), we have

$$
\begin{aligned}
b_{m_{1}+1, m_{2}+1} & =\int_{E} f\left(z_{1}, z_{2}\right) \overline{P_{m_{1}+1, m_{2}+1}\left(z_{1}, z_{2}\right) d \mu} \\
& =\int_{E}\left\{f\left(z_{1}, z_{2}\right)-\sum_{j_{1}, j_{2}}^{m_{1}, m_{2}} b_{j_{1}: j_{2}} P_{j_{1}: j_{2}}\left(z_{1}, z_{2}\right)\right\} \overline{P_{m_{1}+1, m_{2}+1}\left(z_{1}, z_{2}\right) d \mu}
\end{aligned}
$$

By Schwarz'a inequality, we have

$$
\begin{aligned}
\left|b_{m_{1}+1, m_{2}+1}\right|^{2} & \leq\left(\int_{E}\left|f\left(z_{1}, z_{2}\right)-\sum_{j_{1}, j_{2}=0}^{m_{1}, m_{2}} b_{j_{1}, j_{2}} P_{j_{1}, j_{2}}\right|^{2} d \mu\right)\left(\int_{E}\left|P_{m_{1}+1, m_{2}+1}\right|^{2} d \mu\right) \\
& =\int_{E}\left|f\left(z_{1}, z_{2}\right)-\sum_{j_{1}, j_{2}=0}^{m_{1}, m_{2}} b_{j_{1}, j_{2}} P_{j_{1}, j_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu \\
& \leq \int_{E}\left|f\left(z_{1}, z_{2}\right)-Q_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)\right|^{2} d \mu
\end{aligned}
$$

since Fourier sums give the best $L_{(\mu)}^{2}$ approximation. So (2.15) gives $\left|b_{m_{1}+1, m_{2}+1}\right|^{2} \leq K^{2}\left[\bar{M}\left(r_{1}, r_{2}\right)\left(\frac{d_{1} e^{\varepsilon}}{r_{1}}\right)^{m_{1}}\left(\frac{d_{2} e^{\varepsilon}}{r_{2}}\right)^{m_{2}}\right]^{2}$, which gives required result.

Lemma 2.7. Let $f\left(z_{1}, z_{2}\right) \in\lceil$ is of order $\rho(0<\rho<\infty)$ and type T.

Then

$$
\begin{align*}
\rho & =\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \log \bar{M}\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)} \tag{2.16}\\
T & =\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \bar{M}\left(r_{1}, r_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}} \tag{2.17}
\end{align*}
$$

Proof. Let $\left(z_{1_{0}} z_{2_{0}}\right)$ be a fixed point of the set E, and $r_{1}>1, r_{2}>1$. For every point $z_{t} \in E_{r_{t}}$ there exists a $z_{t}^{*}=z_{t}^{*}\left(z_{t}\right) \in E, t=1,2$ such that

$$
\left|z_{t}-z_{t}^{*}\right|=\operatorname{dist}\left(z_{t}, E\right)
$$

By the triangle inequality and by

$$
\operatorname{dist}\left(z_{t}, E\right) \leq d_{t}(E) \exp V_{\mu}\left(z_{t}\right) \leq \operatorname{dist}\left(z_{t}, E\right)+|E| \quad \text { for } \quad z_{t} \in C^{2} \backslash E .
$$

We have

$$
\left|z_{t}-z_{t_{0}}\right| \leq\left|z_{t}-z_{t}^{*}\right|+\left|z_{t}^{*}-z_{t_{0}}\right| \leq r_{t}+|E| \quad \text { for } \quad z_{t} \in E_{r_{t}}, r_{t}>1
$$

and

$$
r_{t}-|E| \leq\left|z_{t}-z_{t}^{*}\right|, \quad|E| \geq\left|z_{t}^{*}-z_{t_{0}}\right|
$$

We see that

$$
r_{t}-2|E|-\left|z_{t_{0}}\right| \leq\left|z_{t}\right| \leq r_{t}+|E|+\left|z_{t_{0}}\right| \quad \text { for } \quad z \in E_{r_{t}}, r_{t}>1
$$

Let $R_{t}>1$ be such that

$$
r_{t}-2|E|-\left|z_{t_{0}}\right| \geq \frac{r_{1}}{2} \quad \text { and } \quad r_{t}+|E|+\left|z_{t_{0}}\right| \leq 2 r_{t} \quad \text { for } \quad r_{t}>R_{t}
$$

Hence for $r_{t}>R_{t}$ we have

$$
\frac{\log \log M\left(\frac{r_{1}}{2}, \frac{r_{2}}{2}\right)}{\log \left(r_{1} r_{2}\right)} \leq \frac{\log \log \bar{M}\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)}<\frac{\log \log M\left(2 r_{1}, 2 r_{2}\right)}{\log \left(r_{1} r_{2}\right)}
$$

and if $0<\rho<\infty$,

$$
\frac{\log M\left(r_{1}-a_{1}, r_{2}-a_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}} \leq \frac{\log \bar{M}\left(r_{1}, r_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}} \leq \frac{\log M\left(r_{1}+b_{1}, r_{2}+b_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}}
$$

where
$a_{1}=2\left|E_{1}\right|+\left|z_{z_{0}}\right|, a_{2}=2\left|E_{2}\right|+\left|E_{2_{0}}\right|, b_{1}=\left|E_{1}\right|+\left|z_{1_{0}}\right|, b_{2}=\left|E_{2}\right|+\left|z_{2_{0}}\right|, E=E_{1} \times E_{2}$.

Passing to limit superior the proof is completed.

3. Main results.

Theorem 3.1. The entire function $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ is of finite order ρ, if and only if

$$
\begin{equation*}
\partial=\limsup _{m_{1}, m_{2} \rightarrow \infty} \frac{\log \left(m_{1}^{m_{1}} m_{2}^{m_{2}}\right)}{\log \left|b_{m_{1}, m_{2}}\right|^{-1}}<\infty ; \tag{3.10}
\end{equation*}
$$

and then $\partial=\rho$.

Proof. Let $\partial<\infty$. Then for any $\varepsilon>0$ there exists $m_{1_{0}}=m_{1_{0}}(\varepsilon)$, $m_{2_{0}}=m_{2_{0}}(\varepsilon)$ such that

$$
\frac{\log m_{1}^{m_{1}} m_{2}^{m_{2}}}{\log \left|b_{m_{1}, m_{2}}\right|^{-1}} \leq \partial+\varepsilon \quad \text { for } \quad m_{1}>m_{1_{0}}, m_{2}>m_{2_{0}}
$$

or

$$
\left|b_{m_{1}, m_{2}}\right| \leq m_{1}^{-m_{1} /(\partial+\varepsilon)} m_{2}^{-m_{2} /(\partial+\varepsilon)}
$$

which implies that

$$
\begin{equation*}
\lim _{m_{1}, m_{2} \rightarrow \infty}\left|b_{m_{1}, m_{2}}\right|^{1 /\left(m_{1}+m_{2}\right)}=0 . \tag{3.11}
\end{equation*}
$$

By corollary to Lemma 2.5, $f\left(z_{1}, z_{2}\right) \in\lceil$. Let its order by ρ. Since the Fourier expansions of $f\left(z_{1}, z_{2}\right)$ in $L_{(\mu)}^{2}$ is

$$
f\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}=0}^{\infty} b_{m_{1}, m_{2}} p_{m_{1}, m_{2}}\left(z_{1}, z_{2}\right)
$$

and

$$
\left\|f\left(z_{1}, z_{2}\right)\right\|_{L_{(\mu)}^{2}} \leq 1, \quad\left|b_{m_{1}, m_{2}}\right| \leq(\mu(E))^{1 / 2}
$$

Thus
$\left|f\left(z_{1}, z_{2}\right)\right| \leq(\mu(E))^{1 / 2}\left(m_{1}+1\right)\left(m_{2}+1\right) M_{0}\left(\frac{r_{1}}{d_{1}}\right)^{m_{1}}\left(\frac{r_{2}}{d_{2}}\right)^{m_{2}}(1+\varepsilon)^{m_{1}+m_{2}}$ for $z_{t} \in E_{r_{t}}$.
So

$$
\begin{align*}
\bar{M}\left(r_{1}, r_{2}\right) & \leq M_{0}^{\prime} g\left(\left(\frac{r_{1}(1+\varepsilon)}{d_{1}}\right),\left(\frac{r_{2}(1+\varepsilon)}{d_{2}}\right)\right) \\
& =M_{0}^{\prime} M\left(\frac{r_{1}(1+\varepsilon)}{d_{1}}, \frac{r_{2}(1+\varepsilon)}{d_{2}}\right) \tag{3.12}
\end{align*}
$$

where

$$
\begin{equation*}
g\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}=0}^{\infty} b_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{1}^{m_{2}} \quad \text { for } \quad z_{t} \in E_{r_{t}} \tag{3.13}
\end{equation*}
$$

and

$$
M\left(r_{1}, r_{2}\right)=\max _{\left|z_{t}\right|=r_{t}}\left|g\left(z_{1}, z_{2}\right)\right| .
$$

Hence by (3.11), $g\left(z_{1}, z_{2}\right) \in\lceil$ and (1.3) implies that it is of order ρ and (3.12) gives
$\frac{\log \log \bar{M}\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)} \leq \frac{\log \log M\left(\frac{r_{1}(1+\varepsilon)}{d_{1}}, \frac{r_{2}(1+\varepsilon)}{d_{2}}\right)}{\log \left(r_{1} r_{2}\right)}+o(1), \quad$ for large r_{1} and r_{2}.
So we get

$$
\begin{equation*}
\rho \leq \partial \tag{3.14}
\end{equation*}
$$

which show that $f\left(z_{1}, z_{2}\right)$ is of finite order ρ. Now let $f\left(z_{1}, z_{2}\right) \in\lceil$ of order $\rho<\infty$. By (2.16) for any $\varepsilon>0$ there exists $r_{1_{0}}=r_{1_{0}}(\varepsilon), r_{2_{0}}=r_{2_{0}}(\varepsilon)$ such that

$$
\bar{M}\left(r_{1}, r_{2}\right)<\exp \left(r_{1}^{(\rho+\varepsilon)} r_{2}^{(\rho+\varepsilon)}\right) \quad \text { for } \quad r_{1}>r_{1_{0}}(\varepsilon), r_{2}>r_{2_{0}}(\varepsilon)
$$

using Lemma 2.6, we have
$\left|b_{m_{1}, m_{2}}\right| \leq K \frac{\exp \left(r_{1}^{(\rho+\varepsilon)} r_{2}^{(\rho+\varepsilon)}\right)}{r_{1}^{m_{1}-1} r_{2}^{m_{2}-1}} d_{1}^{m_{1}-1} d_{2}^{m_{2}-1} e^{\left(m_{1}+m_{2}-2\right) \varepsilon}$ for large K and r_{1}, r_{2}.
Choosing a sequence $r_{m_{1}} \rightarrow \infty, r_{m_{2}} \rightarrow \infty$ as $m_{1}, m_{2} \rightarrow \infty$ defined as

$$
r_{m_{1}}=\left(\frac{m_{1}-1}{\rho+\varepsilon}\right)^{1 /(\rho+\varepsilon)}, \quad r_{m_{2}}=\left(\frac{m_{2}-1}{\rho+\varepsilon}\right)^{1 /(\rho+\varepsilon)}
$$

in above expression, we get
$\left|b_{m_{1}, m_{2}}\right| \leq K \exp \left\{\frac{\left(m_{1}-1\right)\left(m_{2}-1\right)}{(\rho+\varepsilon)^{2}}\right\} \frac{d_{1}^{m_{1}-1} d_{2}^{m_{2}-1} e^{\left(m_{1}+m_{2}-2\right) \varepsilon}}{\left(\frac{m_{1}-1}{\rho+\varepsilon}\right)^{\left(m_{1}-1\right) /(\rho+\varepsilon)}\left(\frac{m_{2}-1}{\rho+\varepsilon}\right)^{\left(m_{2}-1\right) /(\rho+\varepsilon)}}$
or
$\frac{\log \left|b_{m_{1}, m_{2}}\right|^{-1}}{\log m_{1}^{m_{1}} m_{2}^{m_{2}}} \geq \frac{\frac{m_{1}-1}{\rho+\varepsilon} \log \left(\frac{m_{1}-1}{\rho+\varepsilon}\right)+\frac{\left(m_{2}-1\right)}{\rho+\varepsilon} \log \left(\frac{m_{2}-1}{\rho+\varepsilon}\right)}{\log m_{1}^{m_{1}} m_{2}^{m_{2}}}+o(1)$ as $m_{1} \rightarrow \infty, m_{2} \rightarrow \infty$
or

$$
\liminf _{m_{1}, m_{2} \rightarrow \infty} \frac{\log \left|b_{m_{1} m_{2}}\right|^{-1}}{\log m_{1}^{m_{1}} m_{2}^{m_{2}}} \geq \frac{1}{\rho+\varepsilon}
$$

or

$$
\limsup _{m_{1}, m_{2} \rightarrow \infty} \frac{\log m_{1}^{m_{1}} m_{2}^{m_{2}}}{\log \left|b_{m_{1} m_{2}}\right|^{-1}} \leq \rho+\varepsilon
$$

which gives

$$
\partial \leq \rho+\varepsilon
$$

Since ε is arbitrary, so we get

$$
\begin{equation*}
\partial \leq \rho . \tag{3.15}
\end{equation*}
$$

Which prove that (3.10) holds. Taking (3.14) and (3.15) together in to account, we get $\partial=\rho$. Hence the proof is completed.

Theorem 3.2. Let $f\left(z_{1}, z_{2}\right) \in L_{(\mu)}^{2}$ and for $0<\rho<\infty$, then $f\left(z_{1}, z_{2}\right)$ can be extended to an entire function of order $\rho(0<\rho<\infty)$ and type $T(0<T<\infty)$ if and only if

$$
\begin{equation*}
d^{\rho} e \rho T=\limsup _{m_{1}, m_{2} \rightarrow \infty}\left\{m_{1}^{m_{1}} m_{2}^{m_{2}}\left|b_{m_{1}, m_{2}}\right|^{\rho}\right\}^{1 /\left(m_{1}+m_{2}\right)} . \tag{3.16}
\end{equation*}
$$

Proof. Let (3.16) be holds, then we have to show that $f\left(z_{1}, z_{2}\right)$ can be extended to an entire function of order ρ and type T.

By (3.16) it can be easily seen that

$$
\rho=\limsup _{m_{1}, m_{1} \rightarrow \infty} \frac{\log m_{1}^{m_{1}} m_{2}^{m_{2}}}{\log \left|b_{m_{1}, m_{2}}\right|^{-1}} .
$$

Using Theorem 3.1, we see that $f\left(z_{1}, z_{2}\right)$ is an entire function of finite order $\rho \neq 0$. Suppose $f\left(z_{1}, z_{2}\right)$ has type T, then using Lemma 2.7,

$$
T=\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \bar{M}\left(r_{1}, r_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}} .
$$

Let $T<\infty$. For any $\varepsilon>0$, there exists $r_{1}^{0}=r_{1}^{0}(\varepsilon), r_{2}^{0}=r_{2}^{0}(\varepsilon)$ such that $\log \bar{M}\left(r_{1}, r_{2}\right)<(T+\varepsilon)\left(r_{1}^{\rho}+r_{2}^{\rho}\right)$ for $r_{1}>r_{1}^{0}, r_{2}>r_{2}^{0}$.

By Lemma 2.6, we obtain

$$
\begin{align*}
\log \left|b_{m_{1}, m_{2}}\right| \leq & (T+\varepsilon)\left(r_{1}^{\rho}+r_{2}^{\rho}\right)+\left(m_{1}+m_{2}-2\right) \varepsilon-\left(m_{1}-1\right) \log \left(r_{1} / d_{1}\right) \\
& -\left(m_{2}-1\right) \log \left(r_{2} / d_{2}\right)+\log K \tag{3.17}\\
& \text { for } r_{1}>r_{1}^{0}, r_{2}>r_{2}^{0} \text { and } m_{1}>m_{1}^{0}(\varepsilon), m_{2}>m_{2}^{0}(\varepsilon) .
\end{align*}
$$

Choosing $r_{m_{1}}=\left(\frac{m_{1}}{\rho(T+\varepsilon)}\right)^{1 / \rho}, r_{m_{2}}=\left(\frac{m_{2}}{\rho(T+\varepsilon)}\right)^{1 / \rho}$, then for $r_{1}=r_{m_{1}}, r_{2}=$ $r_{m_{2}}$, we get

$$
\begin{aligned}
\log \left|b_{m_{1}, m_{2}}\right| \leq & \left(\frac{m_{1}+m_{2}}{\rho}\right)+\left(m_{1}+m_{2}-2\right) \varepsilon-\left(\frac{m_{1}-1}{\rho}\right) \log \left(\frac{m_{1}}{d_{1}^{\rho} \rho(T+\varepsilon)}\right) \\
& -\frac{m_{2}-1}{\rho} \log \left(\frac{m_{2}}{d_{2}^{\rho} \rho(T+\varepsilon)}\right)+\log K
\end{aligned}
$$

which gives

$$
\limsup _{m_{1}, m_{2} \rightarrow \infty}\left\{m_{1}^{m_{1}} m_{2}^{m_{2}}\left|b_{m_{1}, m_{2}}\right|^{\rho}\right\}^{1 /\left(m_{1},+m_{2}\right)} \leq e \rho(T+\varepsilon) d_{1}^{\rho} d_{2}^{\rho} e^{\rho \varepsilon}
$$

since this is true for every $\varepsilon>0$, we have

$$
\begin{equation*}
e \rho T d^{\rho} \geq \limsup _{m_{1}, m_{2} \rightarrow \infty}\left\{m_{1}^{m_{1}} m_{2}^{m_{2}}\left|b_{m_{1}, m_{2}}\right|^{\rho}\right\}^{1 / m_{1}+m_{2}} \tag{3.18}
\end{equation*}
$$

By (3.12), we obtain

$$
\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \bar{M}\left(r_{1}, r_{2}\right)}{r_{1}^{\rho}+r_{2}^{\rho}} \leq\left(\frac{1+\varepsilon}{d_{1}}\right)^{\rho}\left(\frac{1+\varepsilon}{d_{2}}\right)^{\rho} \quad \text { type of } g\left(z_{1}, z_{2}\right)
$$

Using Lemma 2.7 and (1.4), leads to

$$
\begin{equation*}
T e \rho d^{\rho} \leq \limsup _{m_{1}, m_{2} \rightarrow \infty}\left\{m_{1}^{m_{1}} m_{2}^{m_{2}}\left|b_{m_{1}, m_{2}}\right|^{\rho}\right\}^{1 /\left(m_{1}+m_{2}\right)} \tag{3.19}
\end{equation*}
$$

Combinding (3.18) and (3.19) we get the required result.
The converse part is left to the reader.

References

1. S. K. Bose and D. Sharma, Integral functions of two complex variables, Compositio. Math., 15(1963), 210-226.
2. D. Kumar, The growth of entire functions in $C^{N}, N \geq 2$, Mathematical Sciences Research Hot-Line, (U.S.A.), 5(8)(2001), 1-14.
3. H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, 1992.
4. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloq. Publication. Vol.20, Amer. Math. Soc. Providence, R. I., 1965.

Department of Mathematics, D.S.M. Degree College, Kanth-244501 (Moradabad) U.P., India.

Department of Mathematics, G.H.G. Khalsa College, Gurusar Sudhar Distt. Ludhiana (Punjab) India.

[^0]: Received by the editors March 15, 2002 and in revised form September 5, 2002.
 AMS 1991 Subject Classification: 30E10.
 Key words and phrases: Hilbert space, Borel measure, transfinite diameter, orthonormal sequence, Fourier Coefficients.

