ON A FUNCTIONAL EQUATION CHARACTERIZING POLYNOMIALS OF DEGREE THREE

BY

PRASANNA K. SAHOO

Abstract. In this paper, we determine the general solution of the functional equation $f(x+2y)+f(x-2y)+6f(x)=4\left[f(x+y)+f(x-y)\right]$ for all $x,y\in\mathbb{R}$ without assuming any regularity conditions on the unknown function f. The method used for solving this functional equation is elementary but exploits an important result due to M. Hosszu [2]. The solution of this functional equation is also determined in certain commutative groups using two important results due to L. Székelyhidi [4].

1. Introduction. The following identities

$$(1.1) (x+2y) + (x-2y) + 6x = 4(x+y) + 4(x-y),$$

$$(1.2) (x+2y)^2 + (x-2y)^2 + 6x^2 = 4(x+y)^2 + 4(x-y)^2,$$

$$(1.3) (x+2y)^3 + (x-2y)^3 + 6x^3 = 4(x+y)^3 + 4(x-y)^3$$

can be combined into f(x+2y)+f(x-2y)+6f(x)=4[f(x+y)+f(x-y)]where $f(x)=x^n$ for n=1,2,3. In this paper, we determine the general

Received by the editors January 2, 2002 and in revised form September 25, 2002. 2000 Subject Classification: Primary 39B22.

Key words and phrases: Additive function, difference operator, Fréchet functional equation, n-additive function.

solution of the functional equation

$$(1.4) f(x+2y) + f(x-2y) + 6f(x) = 4[f(x+y) + f(x-y)]$$

for all $x, y \in \mathbb{R}$ (the set of reals). We will solve this functional equation using an elementary technique but without using any regularity condition.

A function $A: \mathbb{R} \to \mathbb{R}$ is said to be additive if A(x+y) = A(x) + A(y) for all $x, y \in \mathbb{R}$ (see [1]). Let $n \in \mathbb{N}$ (the set of natural numbers). A function $A_n: \mathbb{R}^n \to \mathbb{R}$ is called n-additive if it is additive in each of its variable. A function A_n is called symmetric if $A_n(x_1, x_2, \dots, x_n) = A_n(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$ for every permutation $\{\pi(1), \pi(2), \dots, \pi(n)\}$ of $\{1, 2, \dots, n\}$. If $A_n(x_1, x_2, \dots, x_n)$ is a n-additive symmetric map, then $A^n(x)$ will denote the diagonal $A_n(x, x, \dots, x)$. Further the resulting function after substitution $x_1 = x_2 = \dots = x_\ell = x$ and $x_{\ell+1} = x_{\ell+2} = \dots = x_n = y$ in $A_n(x_1, x_2, \dots, x_n)$ will be denoted by $A^{\ell, n-\ell}(x, y)$.

For $f: \mathbb{R} \to \mathbb{R}$, let Δ_h be the difference operator defined as follows:

$$\Delta_h f(x) = f(x+h) - f(x)$$
 for $h \in \mathbb{R}$.

Further, let $\Delta_h^0 f(x) = f(x)$, $\Delta_h^1 f(x) = \Delta_h f(x)$ and $\Delta_h \circ \Delta_h^n f(x) = \Delta_h^{n+1} f(x)$ for all $n \in \mathbb{N}$ and all $h \in \mathbb{R}$. Here $\Delta_h \circ \Delta_h^n$ denotes the composition of the operators Δ_h and Δ_h^n . For any given $n \in \mathbb{N} \cup \{0\}$, the functional equation

$$\Delta_h^{n+1} f(x) = 0$$

for all $x, h \in \mathbb{R}$ is well studied. In explicit form the last functional equation can be written as

$$\sum_{k=0}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} f(x+kh) = 0.$$

It is known (see Kuczma [3]) that in the case where one deals with functions defined in \mathbb{R} the last functional equation is equivalent to the Fréchet functional equation

$$(1.5) \Delta_{h_1,\dots,h_{n+1}} f(x) = 0$$

where $\Delta_{h_1,\ldots,h_k} = \Delta_{h_k} \circ \cdots \circ \Delta_{h_1}$ for every $k \in \mathbb{N}$ and $x, h_1,\ldots,h_k \in \mathbb{R}$.

The following lemma is a special case of a more general result due to Hosszu [2], and will be instrumental in determining the general solution of (1.4).

Lemma 1.1. The map F from \mathbb{R} into \mathbb{R} satisfies the functional equation

$$(1.6) \Delta_{x_1, \dots, x_4} F(x_0) = 0$$

for all $x_0, x_1, x_2, x_3, x_4 \in \mathbb{R}$ if and only if F is given by

(1.7)
$$F(x) = A^{3}(x) + A^{2}(x) + A^{1}(x) + A^{0}(x), \quad \forall x \in \mathbb{R},$$

where $A^0(x) = A^0$ is an arbitrary constant and $A^n(x)$ is the diagonal of a n-additive symmetric function $A_n : \mathbb{R}^n \to \mathbb{R}$ for n = 1, 2, 3.

2. Solution of the equation (1.4) on reals. Now we determine the general solution of the functional equation (1.4) by reducing it to the Fréchet functional equation (1.6).

Theorem 2.1. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies the functional equation (1.4) for all $x, y \in \mathbb{R}$ if and only if f is of the form

$$f(x) = A^{3}(x) + A^{2}(x) + A^{1}(x) + A^{0}(x), \quad \forall x \in \mathbb{R},$$

where $A^n(x)$ is the diagonal of the n-additive map $A_n : \mathbb{R}^n \to \mathbb{R}$ for n = 1, 2, 3, and $A^0(x) = A^0$ is an arbitrary constant.

Proof. Substitute $x_0 = x + 2y$ and $y_1 = x - 2y$ that is $x = \frac{1}{2}(x_0 + y_1)$ and $y = \frac{1}{4}(x_0 - y_1)$ in (1.4) to get

$$(2.1) \quad f(x_0) + f(y_1) + 6f\left(\frac{1}{2}x_0 + \frac{1}{2}y_1\right) = 4f\left(\frac{3}{4}x_0 + \frac{1}{4}y_1\right) + 4f\left(\frac{1}{4}x_0 + \frac{3}{4}y_1\right).$$

Replacing x_0 by $x_0 + x_1$ in (2.1), we obtain

(2.2)
$$f(x_0 + x_1) + f(y_1) + 6f\left(\frac{1}{2}(x_0 + x_1) + \frac{1}{2}y_1\right) = 4f\left(\frac{3}{4}(x_0 + x_1) + \frac{1}{4}y_1\right) + 4f\left(\frac{1}{4}(x_0 + x_1) + \frac{3}{4}y_1\right).$$

Subtracting (2.1) from (2.2), we have

$$f(x_0 + x_1) - f(x_0) + 6f\left(\frac{1}{2}(x_0 + x_1) + \frac{1}{2}y_1\right) - 6f\left(\frac{1}{2}x_0 + \frac{1}{2}y_1\right)$$

$$(2.3) = 4f\left(\frac{3}{4}(x_0 + x_1) + \frac{1}{4}y_1\right) - 4f\left(\frac{3}{4}x_0 + \frac{1}{4}y_1\right)$$

$$+4f\left(\frac{1}{4}(x_0 + x_1) + \frac{3}{4}y_1\right) - 4f\left(\frac{1}{4}x_0 + \frac{3}{4}y_1\right).$$

Letting $y_2 = \frac{3}{4}x_0 + \frac{1}{4}y_1$ (that is, $y_1 = 4y_2 - 3x_0$) in (2.3), we see that

$$f(x_0 + x_1) - f(x_0) + 6f\left(\frac{1}{2}x_1 - x_0 + 2y_2\right) - 6f(2y_2 - x_0)$$

$$(2.4)$$

$$= 4f\left(y_2 + \frac{3}{4}x_1\right) - 4f(y_2) + 4f\left(-2x_0 + 3y_2 + \frac{1}{4}x_1\right) - 4f\left(-2x_0 + 3y_2\right).$$

Now replacing x_0 by $x_0 + x_2$ in (2.4) and subtracting (2.4) from the resulting expression, we obtain

$$f(x_0 + x_1 + x_2) - f(x_0 + x_1) - f(x_0 + x_2) + f(x_0)$$

$$+6f\left(2y_2 - (x_0 + x_2) + \frac{1}{2}x_1\right) - 6f\left(2y_2 - (x_0 + x_2)\right)$$

$$+6f\left(2y_2 - x_0 + \frac{1}{2}x_1\right) - 6f\left(2y_2 - x_0\right)$$

$$= 4f\left(3y_2 + \frac{1}{4}x_1 - 2(x_0 + x_2)\right) - 4f\left(3y_2 - 2(x_0 + x_2)\right)$$

$$-4f\left(3y_2 - 2x_0 + \frac{1}{4}x_1\right) + 4f\left(3y_2 - 2x_0\right).$$

Now we substitute $y_3 = 3y_2 - 2x_0$ in (2.5) to get

$$f(x_0 + x_1 + x_2) - f(x_0 + x_1) - f(x_0 + x_2) + f(x_0)$$

$$+6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 + \frac{1}{2}x_1 - x_2\right) - 6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 - x_2\right)$$

$$(2.6)$$

$$+6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 + \frac{1}{2}x_1\right) - 6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0\right)$$

$$= 4f\left(y_3 + \frac{1}{4}x_1 - 2x_2\right) - 4f\left(y_3 - 2x_2\right) - 4f\left(y_3 + \frac{1}{4}x_1\right) + 4f\left(y_3\right).$$

Again we replace x_0 by $x_0 + x_3$ in (2.6) and then subtracting (2.6) from the resulting expression, we have

$$f(x_0 + x_1 + x_2 + x_3) - f(x_0 + x_1 + x_2) - f(x_0 + x_1 + x_3)$$

$$-f(x_0 + x_2 + x_3) + f(x_0 + x_1) + f(x_0 + x_2) + f(x_0 + x_3) - f(x_0)$$

$$+6f\left(\frac{2}{3}y_3 + \frac{1}{3}(x_0 + x_3) + \frac{1}{2}x_1 - x_2\right) - 6f\left(\frac{2}{3}y_3 + \frac{1}{3}(x_0 + x_3) - x_2\right)$$

$$-6f\left(\frac{2}{3}y_3 + \frac{1}{3}(x_0 + x_3) + \frac{1}{2}x_1\right) + 6f\left(\frac{2}{3}y_3 + \frac{1}{3}(x_0 + x_3)\right)$$

$$-6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 + \frac{1}{2}x_1 - x_2\right) + 6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 - x_2\right)$$

$$+6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0 + \frac{1}{2}x_1\right) - 6f\left(\frac{2}{3}y_3 + \frac{1}{3}x_0\right) = 0.$$

Letting $y_4 = \frac{2}{3}y_3 + \frac{1}{3}x_0$ in the equation (2.7), we obtain

$$f(x_0 + x_1 + x_2 + x_3) - f(x_0 + x_1 + x_2) - f(x_0 + x_1 + x_3)$$

$$-f(x_0 + x_2 + x_3) + f(x_0 + x_1) + f(x_0 + x_2) + f(x_0 + x_3) - f(x_0)$$

$$+6f\left(y_4 + \frac{1}{3}x_3 + \frac{1}{2}x_1 - x_2\right) - 6f\left(y_4 + \frac{1}{3}x_3 - x_2\right)$$

$$(2.8)$$

$$-6f\left(y_4 + \frac{1}{3}x_3 + \frac{1}{2}x_1\right) + 6f\left(y_4 + \frac{1}{3}x_3\right)$$

$$-6f\left(y_4 + \frac{1}{2}x_1 - x_2\right) + 6f\left(y_4 - x_2\right)$$

$$+6f\left(y_4 + \frac{1}{2}x_1\right) - 6f\left(y_4\right) = 0.$$

Now we replace x_0 by $x_0 + x_4$ in the equation (2.8) to get

$$f(x_0 + x_1 + x_2 + x_3 + x_4) - f(x_0 + x_1 + x_2 + x_4)$$

$$-f(x_0 + x_1 + x_3 + x_4) - f(x_0 + x_2 + x_3 + x_4)$$

$$+f(x_0 + x_1 + x_4) + f(x_0 + x_2 + x_4) + f(x_0 + x_3 + x_4) - f(x_0 + x_4)$$

$$(2.9) +6f\left(y_4 + \frac{1}{3}x_3 + \frac{1}{2}x_1 - x_2\right) - 6f\left(y_4 + \frac{1}{3}x_3 - x_2\right)$$

$$-6f\left(y_4 + \frac{1}{3}x_3 + \frac{1}{2}x_1\right) + 6f\left(y_4 + \frac{1}{3}x_3\right)$$

$$-6f\left(y_4 + \frac{1}{2}x_1 - x_2\right) + 6f\left(y_4 - x_2\right)$$

$$+6f\left(y_4 + \frac{1}{2}x_1\right) - 6f\left(y_4\right) = 0.$$

Subtracting (2.8) from (2.9), we obtain

$$f(x_0 + x_1 + x_2 + x_3 + x_4) - f(x_0 + x_1 + x_2 + x_3)$$

$$-f(x_0 + x_1 + x_2 + x_4) - f(x_0 + x_1 + x_3 + x_4)$$

$$-f(x_0 + x_2 + x_3 + x_4) + f(x_0 + x_1 + x_2) + f(x_0 + x_1 + x_3)$$

$$+f(x_0 + x_1 + x_4) + f(x_0 + x_2 + x_3) + f(x_0 + x_2 + x_4) + f(x_0 + x_3 + x_4)$$

$$-f(x_0 + x_1) - f(x_0 + x_2) - f(x_0 + x_3) - f(x_0 + x_4) + f(x_0) = 0$$

which is

(2.10)
$$\Delta_{x_1,...,x_4} f(x_0) = 0$$

for all $x_0, x_1, x_2, x_3, x_4 \in \mathbb{R}$. Hence from Lemma 1.1 we have

(2.11)
$$f(x) = A^{3}(x) + A^{2}(x) + A^{1}(x) + A^{0}(x), \quad \forall x \in \mathbb{R},$$

where $A^n(x)$ is the diagonal of the *n*-additive map $A_n : \mathbb{R}^n \to \mathbb{R}$ for n = 1, 2, 3, and $A^0(x) = A^0$ is an arbitrary constant. Letting (2.11) into (1.4)

and noting that

$$A^{3}(x + y) + A^{3}(x - y) = 2 A^{3}(x) + 6 A^{1,2}(x, y),$$

$$A^{2}(x+y) + A^{2}(x-y) = 2A^{2}(x) + 2A^{2}(y),$$

and $A^{1,2}(x,2y) = 4A^{1,2}(x,y)$, we conclude that f in (2.11) satisfies (1.4). The proof of the theorem is now complete.

The following corollary follows from the above theorem.

Corollary 2.2. The continuous function $f : \mathbb{R} \to \mathbb{R}$ satisfies the functional equation (1.4) for all $x, y \in \mathbb{R}$ if and only if f is of the form

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0, \quad \forall x \in \mathbb{R},$$

where a_3, a_2, a_1, a_0 are arbitrary real constants.

3. Solution of the equation (1.4) on commutative groups. In this section, we solve the functional equation (1.4) on commutative groups with some additional requirements.

A group $\mathbb G$ is said to be *divisible* if for every element $b \in \mathbb G$ and every $n \in \mathbb N$, there exists an element $a \in \mathbb G$ such that na = b. If this element a is unique, then $\mathbb G$ is said to be *uniquely divisible*. In a uniquely divisible group, this unique element a is denoted by $\frac{b}{n}$. The equation na = b has a solution is equivalent to say that the multiplication by n is surjective. Similarly, the equation na = b has a unique solution is equivalent to say that the multiplication by n is bijective. Thus the notions of n-divisibility and n-unique divisibility refer, respectively, to surjectivity and bijectivity of the multiplication by n.

The proof of Theorem 2.1 can be generalized to abstract structures by using a more general result of Hosszu [2] instead of Lemma 1.1. Since the

proof of the following theorem is identical to the proof of Theorem 2.1 we omit its proof.

Theorem 3.1. Let \mathbb{G} and \mathbb{S} be uniquely divisible abelian groups. The function $f:\mathbb{G}\to\mathbb{S}$ satisfies the functional equation (1.4) for all $x,y\in\mathbb{G}$ if and only if f is of the form

$$f(x) = A^{3}(x) + A^{2}(x) + A^{1}(x) + A^{0}(x), \quad \forall x \in \mathbb{G},$$

where $A^n(x)$ is the diagonal of the n-additive map $A_n : \mathbb{G}^n \to \mathbb{S}$ for n = 1, 2, 3, and $A^0(x) = A^0$ is an arbitrary element in \mathbb{S} .

The unique divisibility requirement of the groups in Theorem 3.1 can be weaken using two important results due to Székelyhidi [4]. With the use of the two important results, the proof becomes even shorter but not so elementary any more. The results needed for this improvements are the followings (see [4], pp.70-72):

Theorem 3.2. Let \mathbb{G} be a commutative semigroup with identity, \mathbb{S} a commutative group and n a nonnegative integer. Let the multiplication by n! be bijective in \mathbb{S} . The function $f:\mathbb{G}\to\mathbb{S}$ is a solution of Fréchet functional equation

(3.1)
$$\Delta_{x_1,\dots,x_{n+1}} f(x_0) = 0 \qquad \forall \ x_0, x_1,\dots,x_{n+1} \in \mathbb{G}$$

if and only if f is a polynomial of degree at most n.

Theorem 3.3. Let \mathbb{G} and \mathbb{S} be commutative groups, n a nonnegative integer, ϕ_i , ψ_i additive functions from \mathbb{G} into \mathbb{G} and $\phi_i(\mathbb{G}) \subseteq \psi_i(\mathbb{G})$ (i = 1, 2, ..., n + 1). If the functions $f, f_i : \mathbb{G} \to \mathbb{S}$ (i = 1, 2, ..., n + 1) satisfy

$$f(x) + \sum_{i=1}^{n+1} f_i \left(\phi_i(x) + \psi_i(y) \right) = 0$$

then f satisfies Fréchet functional equation (3.1).

The following corollary follows from the above two theorems.

Corollary 3.4. Let \mathbb{G} and \mathbb{S} be commutative groups, n a nonnegative integer, k_i a nonzero integer, $i \in \{1, 2, ..., n+1\}$. Let the multiplication by k_i be surjective in \mathbb{G} , $i \in \{1, 2, ..., n+1\}$, and let the multiplication by n! be bijective in \mathbb{S} . If the functions $f, f_i : \mathbb{G} \to \mathbb{S}$, $i \in \{1, 2, ..., n+1\}$ satisfy

(3.2)
$$f(x) + \sum_{i=1}^{n+1} f_i(x + k_i y) = 0$$

for all $x, y \in \mathbb{G}$ then f is a polynomial of degree at most n, that is f is of the form

(3.3)
$$f(x) = A^{0}(x) + A^{1}(x) + A^{2}(x) + \dots + A^{n}(x),$$

where $A^0(x) = A^0$ is an arbitrary constant in \mathbb{S} , $A_1 \in Hom(\mathbb{G}, \mathbb{S})$, and $A^n(x)$ is the diagonal of a n-additive symmetric function $A_n : \mathbb{G}^n \to \mathbb{S}$, $n \in \{2, 3, ..., n\}$.

Using Corollary 3.4, an improved version of Theorem 3.1 can be established in the general setting of Theorem 3.2. and Theorem 3.3.

Theorem 3.5. Let \mathbb{G} and \mathbb{S} be divisible abelian groups. Let the multiplication by 2 be surjective in \mathbb{G} and let the multiplication by 6 be bijective in \mathbb{S} . The function $f:\mathbb{G}\to\mathbb{S}$ satisfies the functional equation (1.4) for all $x,y\in\mathbb{G}$ if and only if f is of the form

$$f(x) = A^{3}(x) + A^{2}(x) + A^{1}(x) + A^{0}(x), \quad \forall x \in \mathbb{G},$$

where $A^n(x)$ is the diagonal of the n-additive symmetric map $A_n : \mathbb{G}^n \to \mathbb{S}$ for n = 1, 2, 3, and $A^0(x) = A^0$ is an arbitrary element in \mathbb{S} .

Proof. To prove the theorem it is enough to observe that the unique divisibility of \mathbb{S} by 6 allows one to write (1.4) in the form of (3.2) where $f_1 = f_2 = \frac{1}{6}f$, $f_3 = f_4 = -\frac{2}{3}f$, $k_1 = 2$, $k_2 = -2$, $k_3 = 1$, $k_4 = -1$. By Corollary 3.4 we get that f is of the form (3.3). The same argument as used in the last five lines of the proof of Theorem 2.1 shows that any function of the form (3.3) actually satisfies (1.4).

Acknowledgments.

The author is grateful to referee for the thorough review of this paper and providing an outline of the proof of Theorem 3.5.

References

- 1. J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- 2. M. Hosszu, On the Fréchet's functional equation, Bul. Isnt. Politech. Iasi, 10 (1964), 27-28.
- 3. M. Kuczma, An introduction to the theory of functional equations and inequalities, Państwowe Wydawnictwo Naukowe Uniwersytet Ślaski, Warszawa-Kraków-Katowice, 1985.
- 4. L. Székelyhidi, Convolution Type Functional Equation on Topological Abelian Groups, World Scientific, Singapore, 1991.

 $\label{eq:lower_poly} \mbox{Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, U.S.A.}$

E-mail: sahoo@louisville.edu