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Abstract. In this paper, we determine the general solu-

tion of the functional equation f(x + 2y) + f(x − 2y) + 6f(x) =

4 [f(x + y) + f(x − y)] for all x, y ∈ R without assuming any reg-

ularity conditions on the unknown function f . The method used

for solving this functional equation is elementary but exploits an

important result due to M. Hosszu [2]. The solution of this func-

tional equation is also determined in certain commutative groups

using two important results due to L. Székelyhidi [4].

1. Introduction. The following identities

(x+ 2y) + (x− 2y) + 6x = 4(x+ y) + 4(x− y),(1.1)

(x+ 2y)2 + (x− 2y)2 + 6x2 = 4(x+ y)2 + 4(x− y)2,(1.2)

(x+ 2y)3 + (x− 2y)3 + 6x3 = 4(x+ y)3 + 4(x− y)3(1.3)

can be combined into f(x+2y)+f(x−2y)+6f(x) = 4 [f(x+ y) + f(x− y)]

where f(x) = xn for n = 1, 2, 3. In this paper, we determine the general
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solution of the functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4 [f(x+ y) + f(x− y)](1.4)

for all x, y ∈ R (the set of reals). We will solve this functional equation using

an elementary technique but without using any regularity condition.

A function A : R → R is said to be additive if A(x+y) = A(x)+A(y) for

all x, y ∈ R (see [1]). Let n ∈ N (the set of natural numbers). A function An :

R
n → R is called n-additive if it is additive in each of its variable. A function

An is called symmetric if An(x1, x2, . . . , xn) = An(xπ(1), xπ(2), . . . , xπ(n)) for

every permutation {π(1), π(2), . . . , π(n)} of {1, 2, . . . , n}. If An(x1, x2, . . .,

xn) is a n-additive symmetric map, then An(x) will denote the diagonal

An(x, x, . . . , x). Further the resulting function after substitution x1 = x2 =

· · · = xℓ = x and xℓ+1 = xℓ+2 = · · · = xn = y in An(x1, x2, . . . , xn) will be

denoted by Aℓ,n−ℓ(x, y).

For f : R → R, let ∆h be the difference operator defined as follows:

∆hf(x) = f(x+ h) − f(x) for h ∈ R.

Further, let ∆0
hf(x) = f(x), ∆1

hf(x) = ∆hf(x) and ∆h◦∆
n
hf(x) = ∆n+1

h f(x)

for all n ∈ N and all h ∈ R. Here ∆h ◦ ∆n
h denotes the composition of the

operators ∆h and ∆n
h. For any given n ∈ N ∪ {0}, the functional equation

∆n+1
h f(x) = 0

for all x, h ∈ R is well studied. In explicit form the last functional equation

can be written as

n+1
∑

k=0

(−1)n+1−k

(

n+ 1

k

)

f(x+ kh) = 0.
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It is known (see Kuczma [3]) that in the case where one deals with func-

tions defined in R the last functional equation is equivalent to the Fréchet

functional equation

∆h1,...,hn+1
f(x) = 0(1.5)

where ∆h1,...,hk
= ∆hk

◦ · · · ◦ ∆h1
for every k ∈ N and x, h1, . . . , hk ∈ R.

The following lemma is a special case of a more general result due to

Hosszu [2], and will be instrumental in determining the general solution of

(1.4).

Lemma 1.1. The map F from R into R satisfies the functional equation

∆x1,...,x4
F (x0) = 0(1.6)

for all x0, x1, x2, x3, x4 ∈ R if and only if F is given by

F (x) = A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ R,(1.7)

where A0(x) = A0 is an arbitrary constant and An(x) is the diagonal of a

n-additive symmetric function An : R
n → R for n = 1, 2, 3.

2. Solution of the equation (1.4) on reals. Now we determine the

general solution of the functional equation (1.4) by reducing it to the Fréchet

functional equation (1.6).

Theorem 2.1. The function f : R → R satisfies the functional equation

(1.4) for all x, y ∈ R if and only if f is of the form

f(x) = A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ R,

where An(x) is the diagonal of the n-additive map An : R
n → R for n =

1, 2, 3, and A0(x) = A0 is an arbitrary constant.
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Proof. Substitute x0 = x + 2y and y1 = x − 2y that is x = 1
2(x0 + y1)

and y = 1
4 (x0 − y1) in (1.4) to get

f(x0)+f(y1)+6f

(

1

2
x0+

1

2
y1

)

=4f

(

3

4
x0+

1

4
y1

)

+4f

(

1

4
x0+

3

4
y1

)

.(2.1)

Replacing x0 by x0 + x1 in (2.1), we obtain

f(x0 + x1) + f(y1) + 6f

(

1

2
(x0 + x1) +

1

2
y1

)

(2.2)
= 4f

(

3

4
(x0 + x1) +

1

4
y1

)

+ 4f

(

1

4
(x0 + x1) +

3

4
y1

)

.

Subtracting (2.1) from (2.2), we have

f(x0 + x1) − f(x0) + 6f

(

1

2
(x0 + x1) +

1

2
y1

)

− 6f

(

1

2
x0 +

1

2
y1

)

= 4f

(

3

4
(x0 + x1) +

1

4
y1

)

− 4f

(

3

4
x0 +

1

4
y1

)

(2.3)

+4f

(

1

4
(x0 + x1) +

3

4
y1

)

− 4f

(

1

4
x0 +

3

4
y1

)

.

Letting y2 = 3
4x0 + 1

4y1 (that is, y1 = 4y2 − 3x0) in (2.3), we see that

f(x0 + x1) − f(x0) + 6f

(

1

2
x1 − x0 + 2y2

)

− 6f (2y2 − x0)

(2.4)
= 4f

(

y2+
3

4
x1

)

−4f (y2)+4f

(

−2x0+3y2+
1

4
x1

)

−4f (−2x0+3y2) .

Now replacing x0 by x0 +x2 in (2.4) and subtracting (2.4) from the resulting

expression, we obtain

f(x0 + x1 + x2) − f(x0 + x1) − f(x0 + x2) + f(x0)

+6f

(

2y2 − (x0 + x2) +
1

2
x1

)

− 6f (2y2 − (x0 + x2))

+6f

(

2y2 − x0 +
1

2
x1

)

− 6f (2y2 − x0)(2.5)

= 4f

(

3y2 +
1

4
x1 − 2(x0 + x2)

)

− 4f (3y2 − 2(x0 + x2))
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−4f

(

3y2 − 2x0 +
1

4
x1

)

+ 4f (3y2 − 2x0) .

Now we substitute y3 = 3y2 − 2x0 in (2.5) to get

f(x0 + x1 + x2) − f(x0 + x1) − f(x0 + x2) + f(x0)

+6f

(

2

3
y3 +

1

3
x0 +

1

2
x1 − x2

)

− 6f

(

2

3
y3 +

1

3
x0 − x2

)

(2.6)
+6f

(

2

3
y3 +

1

3
x0 +

1

2
x1

)

− 6f

(

2

3
y3 +

1

3
x0

)

= 4f

(

y3 +
1

4
x1 − 2x2

)

− 4f (y3 − 2x2)) − 4f

(

y3 +
1

4
x1

)

+ 4f (y3) .

Again we replace x0 by x0 + x3 in (2.6) and then subtracting (2.6) from the

resulting expression, we have

f(x0 + x1 + x2 + x3) − f(x0 + x1 + x2) − f(x0 + x1 + x3)

−f(x0+x2+x3)+f(x0+x1)+f(x0+x2)+f(x0+x3)−f(x0)

+6f

(

2

3
y3 +

1

3
(x0 + x3) +

1

2
x1−x2

)

−6f

(

2

3
y3 +

1

3
(x0+x3)−x2

)

(2.7)
−6f

(

2

3
y3 +

1

3
(x0 + x3) +

1

2
x1

)

+ 6f

(

2

3
y3 +

1

3
(x0 + x3)

)

−6f

(

2

3
y3 +

1

3
x0 +

1

2
x1 − x2

)

+ 6f

(

2

3
y3 +

1

3
x0 − x2

)

+6f

(

2

3
y3 +

1

3
x0 +

1

2
x1

)

− 6f

(

2

3
y3 +

1

3
x0

)

= 0.

Letting y4 = 2
3y3 + 1

3x0 in the equation (2.7), we obtain

f(x0 + x1 + x2 + x3) − f(x0 + x1 + x2) − f(x0 + x1 + x3)

−f(x0 + x2 + x3) + f(x0 + x1) + f(x0 + x2) + f(x0 + x3) − f(x0)

+6f

(

y4 +
1

3
x3 +

1

2
x1 − x2

)

− 6f

(

y4 +
1

3
x3 − x2

)

(2.8)
−6f

(

y4 +
1

3
x3 +

1

2
x1

)

+ 6f

(

y4 +
1

3
x3

)

−6f

(

y4 +
1

2
x1 − x2

)

+ 6f (y4 − x2)
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+6f

(

y4 +
1

2
x1

)

− 6f (y4) = 0.

Now we replace x0 by x0 + x4 in the equation (2.8) to get

f(x0 + x1 + x2 + x3 + x4) − f(x0 + x1 + x2 + x4)

−f(x0 + x1 + x3 + x4) − f(x0 + x2 + x3 + x4)

+f(x0 + x1 + x4) + f(x0 + x2 + x4) + f(x0 + x3 + x4) − f(x0 + x4)

+6f

(

y4 +
1

3
x3 +

1

2
x1 − x2

)

− 6f

(

y4 +
1

3
x3 − x2

)

(2.9)

−6f

(

y4 +
1

3
x3 +

1

2
x1

)

+ 6f

(

y4 +
1

3
x3

)

−6f

(

y4 +
1

2
x1 − x2

)

+ 6f (y4 − x2)

+6f

(

y4 +
1

2
x1

)

− 6f (y4) = 0.

Subtracting (2.8) from (2.9), we obtain

f(x0 + x1 + x2 + x3 + x4) − f(x0 + x1 + x2 + x3)

−f(x0 + x1 + x2 + x4) − f(x0 + x1 + x3 + x4)

−f(x0 + x2 + x3 + x4) + f(x0 + x1 + x2) + f(x0 + x1 + x3)

+f(x0 + x1 + x4) + f(x0 + x2 + x3) + f(x0 + x2 + x4) + f(x0 + x3 + x4)

−f(x0 + x1) − f(x0 + x2) − f(x0 + x3) − f(x0 + x4) + f(x0) = 0

which is

∆x1,...,x4
f(x0) = 0(2.10)

for all x0, x1, x2, x3, x4 ∈ R. Hence from Lemma 1.1 we have

f(x) = A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ R,(2.11)

where An(x) is the diagonal of the n-additive map An : R
n → R for n =

1, 2, 3, and A0(x) = A0 is an arbitrary constant. Letting (2.11) into (1.4)
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and noting that

A3(x+ y) +A3(x− y) = 2A3(x) + 6A1,2(x, y),

A2(x+ y) +A2(x− y) = 2A2(x) + 2A2(y),

and A1,2(x, 2y) = 4A1,2(x, y), we conclude that f in (2.11) satisfies (1.4).

The proof of the theorem is now complete.

The following corollary follows from the above theorem.

Corollary 2.2. The continuous function f : R → R satisfies the func-

tional equation (1.4) for all x, y ∈ R if and only if f is of the form

f(x) = a3x
3 + a2x

2 + a1x+ a0, ∀x ∈ R,

where a3, a2, a1, a0 are arbitrary real constants.

3. Solution of the equation (1.4) on commutative groups. In

this section, we solve the functional equation (1.4) on commutative groups

with some additional requirements.

A group G is said to be divisible if for every element b ∈ G and every

n ∈ N, there exists an element a ∈ G such that na = b. If this element

a is unique, then G is said to be uniquely divisible. In a uniquely divisible

group, this unique element a is denoted by b
n
. The equation na = b has

a solution is equivalent to say that the multiplication by n is surjective.

Similarly, the equation na = b has a unique solution is equivalent to say

that the multiplication by n is bijective. Thus the notions of n-divisibility

and n-unique divisibility refer, respectively, to surjectivity and bijectivity of

the multiplication by n.

The proof of Theorem 2.1 can be generalized to abstract structures by

using a more general result of Hosszu [2] instead of Lemma 1.1. Since the
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proof of the following theorem is identical to the proof of Theorem 2.1 we

omit its proof.

Theorem 3.1. Let G and S be uniquely divisible abelian groups. The

function f : G → S satisfies the functional equation (1.4) for all x, y ∈ G if

and only if f is of the form

f(x) = A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ G,

where An(x) is the diagonal of the n-additive map An : G
n → S for n =

1, 2, 3, and A0(x) = A0 is an arbitrary element in S.

The unique divisibility requirement of the groups in Theorem 3.1 can

be weaken using two important results due to Székelyhidi [4]. With the

use of the two important results, the proof becomes even shorter but not

so elementary any more. The results needed for this improvements are the

followings (see [4], pp.70-72):

Theorem 3.2. Let G be a commutative semigroup with identity, S a

commutative group and n a nonnegative integer. Let the multiplication by n!

be bijective in S. The function f : G → S is a solution of Fréchet functional

equation

∆x1,...,xn+1
f(x0) = 0 ∀ x0, x1, . . . , xn+1 ∈ G(3.1)

if and only if f is a polynomial of degree at most n.

Theorem 3.3. Let G and S be commutative groups, n a nonnegative

integer, φi, ψi additive functions from G into G and φi(G) ⊆ ψi(G) (i =

1, 2, . . . , n+ 1). If the functions f, fi : G → S (i = 1, 2, . . . , n+ 1) satisfy

f(x) +
n+1
∑

i=1

fi (φi(x) + ψi(y)) = 0
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then f satisfies Fréchet functional equation (3.1).

The following corollary follows from the above two theorems.

Corollary 3.4. Let G and S be commutative groups, n a nonnegative

integer, ki a nonzero integer, i ∈ {1, 2, . . . , n+ 1}. Let the multiplication by

ki be surjective in G, i ∈ {1, 2, . . . , n+ 1}, and let the multiplication by n! be

bijective in S. If the functions f, fi : G → S, i ∈ {1, 2, . . . , n+ 1} satify

f(x) +
n+1
∑

i=1

fi (x+ kiy) = 0(3.2)

for all x, y ∈ G then f is a polynomial of degree at most n, that is f is of

the form

f(x) = A0(x) +A1(x) +A2(x) + · · · +An(x),(3.3)

where A0(x) = A0 is an arbitrary constant in S, A1 ∈ Hom(G, S), and

An(x) is the diagonal of a n-additive symmetric function An : G
n → S,

n ∈ {2, 3, . . . , n}.

Using Corollary 3.4, an improved version of Theorem 3.1 can be estab-

lished in the general setting of Theorem 3.2. and Theorem 3.3.

Theorem 3.5. Let G and S be divisible abelian groups. Let the multi-

plication by 2 be surjective in G and let the multiplication by 6 be bijective

in S. The function f : G → S satisfies the functional equation (1.4) for all

x, y ∈ G if and only if f is of the form

f(x) = A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ G,

where An(x) is the diagonal of the n-additive symmetric map An : G
n → S

for n = 1, 2, 3, and A0(x) = A0 is an arbitrary element in S.
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Proof. To prove the theorem it is enough to observe that the unique

divisibility of S by 6 allows one to write (1.4) in the form of (3.2) where

f1 = f2 = 1
6f, f3 = f4 = −2

3f, k1 = 2, k2 = −2, k3 = 1, k4 = −1. By

Corollary 3.4 we get that f is of the form (3.3). The same argument as used

in the last five lines of the proof of Theorem 2.1 shows that any function of

the form (3.3) actually satisfies (1.4).
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