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Abstract. Approximation forms for regular functions f(x)

by use of a limit expression with Law of Large Numbers and ex-

pectation in probability theory were obtained, where appropriate

error bounds for all the proposed approximation forms are pro-

vided herein. Such error bounds facilitate the applicability of the

approximation forms.

1. Introduction. As pointed out in a previous work, Bernstein poly-

nomials has been a broadly accepted tool for doing computer aided geo-

metric design (CAGD) in industries and in simulated motion pictures. To

allow more flexibility on application of Bernstein polynomials as approxima-

tion tool, more extensive approximation forms have been indicated by Kao

(2002). It is usually possible to apply an approximation form for regular

functions to obtain density estimates. However, error bounds are needed

in order to have idea about how good the estimates will be and how fast

the approximation forms converge to the actual value of the approximated

function. Recently, Ghosal (2001) investigated the convergence rates when

Bernstein polynomials were applied to do density estimation. It appears

natural that the error bounds shall depend on assumptions given to the

approximated function. Impens and Vernaeve (2001) provided asymptotics
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regarding Bernstein approximation form when the approximated function

satisfies certain Lipschitz conditions. In addition, Petrone (1999) earlier

used Bernstein polynomials to propose a Bayesian nonparametric procedure

for density estimation. Regarding convergence of Bernstein approximation

form, Farouki (1999) also investigated its convergent inversion approxima-

tions. In line with the desire to ensure the applicability of the approximation

forms given by Feller (1966) and this author as mentioned in above, we are

to obtain error bounds for such approximation forms in what follows.

2. The approximation forms. We consider f to be a continuous

function, and for purpose of simplicity in practical applications f is assumed

to be bounded. Then let there be a sequence of identically and independently

distributed (iid) random variables X1,X2, . . . ,Xn with mean µ and finite

variance. According to strong law of large numbers,

X̄ =
1

n

n
∑

i=1

Xi =
Sn

n
n→∞−→ µ almost surely.

Since f is continuous, f(X̄) converges almost surely to f(µ) as n → ∞.

Then due to the assumption that f is bounded, the dominated convergence

theorem implies

f(µ) = lim
n→∞

Ef(X̄) = lim
n→∞

Ef

(

Sn

n

)

(2.1)

According to the results of approximation forms for f(t) indicated by

Kao (2002) from use of (2.1), we have the following:

Approximation Form I

By setting Xi’s to be iid extended Bernoulli trials, i.e. P{Xi = x} = p

and P{Xi = 0} = 1 − p, p ∈ (0, 1), we have

f(t) = lim
n→∞

n
∑

k=0

(

n

k

)

(

t

x

)k (

1 − t

x

)n−k

f

(

kx

n

)

for any t ∈ R,(2.2)
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where x is arbitrary such that 0 ≤ t < x if t ≥ 0, and 0 > t > x if t < 0.

This form can be regarded as Bernstein polynomial approximation form.

Approximation Form II

By setting Xi/x for any given non-zero real number x, 1 ≤ i ≤ n, to be

iid negative binomial random variables with distribution NB(K, p), where

K is a positive integer and p ∈ (0, 1), we have

f(t) = lim
n→∞

∞
∑

k=nK

(

k − 1

nK − 1

)

(

t

x

)nK (

1 − t

x

)k−nK

f

(

kx

nK

)

(2.3)

for any t ∈ R, where x is arbitrary such that 0 ≤ t < x if t ≥ 0, and 0 > t > x

if t < 0.

This form can be regraded as negative binomial approximation form.

Approximation Form III

By setting Xi, 1 ≤ i ≤ n, to be iid Poisson random variables with

parameter t > 0, we have

f(t) = lim
n→∞

∞
∑

k=0

f

(

k

n

)

(nt)k

k!
e−nt(2.4)

Then by duality, we also have

f(t) = lim
n→∞

∞
∑

k=0

f

(

−k

n

)

(−nt)k

k!
ent for t < 0.(2.5)

Approximation Form IV

By setting Xi, 1 ≤ i ≤ n, to be iid normally distributed with mean t

and variance σ2 > 0, we have

f(t) = lim
n→∞

√
n

σ

∫

∞

−∞

f(x)φ

(√
n

σ
(x − t)

)

dx, −∞ < t < ∞(2.6)
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where φ is the probability density function of standard normal distribution.

Approximation Form V

By setting Xi, 1 ≤ i ≤ n, to be iid exponential random variable with

parameter 1
t

> 0, we have

f(t) = lim
n→∞

t−n

(n − 1)!

∫

∞

0
f

(

x

n

)

xn−1e−
x
t dx for t > 0(2.7)

Then by duality, we also have

f(t) = lim
n→∞

(−t)−n

(n − 1)!

∫

∞

0
f

(−x

n

)

xn−1e−
x
t dx for t < 0(2.8)

The approximation forms presented in above may be applicable at user’s

discretion. Each of the approximation forms may be favorable to certain

type of the discrete data values of f that are available for obtaining the

approximation of f(t).

3. Error bounds of the approximation forms. For simplicity in

what follows and the reality in practical applications we assume that the

considered function f has continuous and bounded second derivative in the

defined domain. According to the stated fact that f(Sn

n
) converges to f(t)

almost surely, where t = E(Xi) and Sn = X1 + X2 + · · ·+ Xn, we may have

f

(

Sn

n

)

= f(t) + f ′(t)

(

Sn

n
− t

)

+
1

2!
f ′′(θ)

(

Sn

n
− t

)2

with θ staying in between Sn

n
and t and θ approaching t as n → ∞.

Therefore, by taking expectation, we obtain

Ef

(

Sn

n

)

= f(t) + f ′(t)

[

E

(

Sn

n

)

− t

]

+
1

2
E

[

f ′′(θ)

(

Sn

n
− t

)2
]

(3.1)

= f(t) +
1

2
E

[

f ′′(θ)

(

Sn

n
− t

)2
]
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Assuming that the second derivative of f is uniformly bounded by C, i.e.

|f ′′(x)| ≤ C for all x, we then have

∣

∣

∣

∣

Ef

(

Sn

n

)

− f(t)

∣

∣

∣

∣

≤ C

2
E

[

(

Sn

n
− t

)2
]

=
C

2
Var

(

Sn

n

)

(3.2)

By applying (3.2) to each of the approximation forms provided in the previ-

ous section, we immediately have error bound for each of the approximation

forms.

For Approximation Form I:

Var (Xi) = x2p(1 − p) = t(x − t)

Var

(

Sn

n

)

=
1

n
x2p(1 − p) =

t(x − t)

n

Therefore, from (2.2) we have

∣

∣

∣

∣

∣

f(t) −
n
∑

k=0

(

n

k

)

(

t

x

)k (

1 − t

x

)n−k

f

(

kx

n

)

∣

∣

∣

∣

∣

≤ Ct(x − t)

2n
(3.3)

for any t, where x is arbitrary such that 0 ≤ t < x if t ≥ 0, and x < t < 0 if

t < 0.

For Approximation Form II:

Var (Xi) =
x2K(1 − p)

p2
=

x3K(x − t)

t2

and Var

(

Sn

n

)

=
x2K(1 − p)

np2
=

x3K(x − t)

nt2

Therefore, from (2.3) we have

∣

∣

∣

∣

∣

f(t) −
∞
∑

k=nK

(

k−1

nK−1

)

(

t

x

)nK(

1− t

x

)k−nK

f

(

kx

nK

)

∣

∣

∣

∣

∣

≤ Cx3K(x−t)

2nt2
(3.4)

for any t, where x is arbitrary such that 0 ≤ t < x if t ≥ 0, and x < t < 0 if
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t < 0.

For Approximation Form III:

Var (Xi) = t and Var

(

Sn

n

)

=
t

n
(t > 0)

Therefore, from (2.4) we have

∣

∣

∣

∣

∣

f(t) −
∞
∑

k=0

f

(

k

n

)

(nt)k

k!
e−nt

∣

∣

∣

∣

∣

≤ Ct

2n
for t > 0(3.5)

and from (2.5) we have

∣

∣

∣

∣

∣

f(t) −
∞
∑

k=0

f

(−k

n

)

(−nt)k

k!
ent

∣

∣

∣

∣

∣

≤ C|t|
2n

for t < 0(3.6)

For Approximation Form IV:

Var (Xi) = σ2 and Var

(

Sn

n

)

=
σ2

n

Therefore, from (2.6) we have

∣

∣

∣

∣

∣

f(t) −
√

n

σ

∫

∞

−∞

f(x)φ

(√
n

σ
(x − t)

)

dx

∣

∣

∣

∣

∣

≤ Cσ2

2n
, −∞ < t < ∞(3.7)

where φ is the probability density function of N(0, 1).

For Approximation Form V:

Var (Xi) =
1

t2
and Var

(

Sn

n

)

=
1

nt2

Therefore, from (2.7) we have

∣

∣

∣

∣

∣

f(t) − t−n

(n − 1)!

∫

∞

0
f

(

x

n

)

xn−1e−
x
t dx

∣

∣

∣

∣

∣

≤ C

2nt2
for t > 0(3.8)
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and from (2.8) we have

∣

∣

∣

∣

∣

f(t) − (−t)−n

(n − 1)!

∫

∞

0
f

(−x

n

)

xn−1e
x
t dx

∣

∣

∣

∣

∣

≤ C

2nt2
for t < 0(3.9)

It should be further noted that when n is sufficiently large, C can be

regarded to be approximately |f ′′(t)| with the bounding inequality becoming

an approximate equality. More precisely, when n is sufficiently large, we have

f(t) ≈ An(t) − 1

2
f ′′(t)Var

(

Sn

n

)

(3.10)

where An(t) is the approximation form applied and Var (Sn

n
) corresponds to

the applied approximation form. For example,

f(t) ≈
√

n

σ

∫

∞

−∞

f(x)φ

(√
n

σ
(x − t)

)

dx − σ2

2n
f ′′(t)

when n sufficiently large and if Approximation Form IV is considered.

In addition to the more precise fact of (3.10), from its derivation we may

have the following theorems.

Theorem 1. If f(t) is a linear form of t, then for any approximation

form An(t) given herein we have

f(t) = An(t), t ∈ (−∞,∞).

Proof. Since it is assumed that t = E(Xi) and Sn =
∑n

i=1 Xi, we have

E(Sn

n
) = t. When f is linear, it is immediate that Ef(Sn

n
) = f(E(Sn

n
)).

Therefore,

An(t) = Ef

(

Sn

n

)

= f

(

E

(

Sn

n

))

= f(t)

which establishes the proof.
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Theorem 2. If f is a convex function then when n is sufficiently large

An(t) − C

2
Var

(

Sn

n

)

≤ f(t) ≤ An(t)

where An(t) = Ef(Sn

n
) and C is a uniform bound of f ′′(x) as given for

Formula (3.2).

Proof. According to Formula (3.2), it suffices to prove f(t) ≤ An(t).

When n is sufficiently large, Sn

n
approaches t and has its distributional sup-

port in the neighborhood of t where f is convex. By using the well-known

Jensen’s inequality in probability theory, we have

An(t) = Ef

(

Sn

n

)

≥ f

(

E

(

Sn

n

))

= f(t)

This then proves the theorem.

In practical applications of the provided approximation forms, there are

normally some known values of f(ak) with ak beings monotone increasing

in k, 1 ≤ k ≤ N , where the f(ak)’s can be used to obtain an approximation

for any f(t). It is advisable that we apply the integral approximation forms,

including Approximation Forms IV and V, for the approximation purpose

in view of the ease they offer for use. In light of Formula (2.6) we consider

Ūn,N(t) =

√
n

σ

N
∑

k=1

f(ak)

∫ uk

lk

φ

(√
n(x − t)

σ

)

dx

where lk =
ak−1+ak

2 , uk =
ak+ak+1

2 , with a0 = a1 − a2−a1

2 and aN+1 =

aN +
aN−aN−1

2 and φ is the probability density function of standard normal

distribution, while corresponding to Formula (2.7) we consider

V̄n,N (t) =
nnt−n

(n − 1)!

N
∑

k=1

f(ak)

∫ uk

lk

yn−1e−
ny

t dy

with lk and uk similarly defined as in above and a0 taken to be 0 if a1 −
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a2−a1

2 < 0. Then Ūn,N (t) and V̄n,N (t) are the proposed approximates for

f(t) based on the known values of f(ak), 1 ≤ k ≤ N and ak ↑ in k.

Theorem 3. Regarding the approximates Ūn,N (t) and V̄n,N (t), we have

lim
n→∞

Ūn,N (aj) = f(aj) = lim
n→∞

V̄n,N (aj)

for any aj , 1 ≤ j ≤ N .

Proof. It appears sufficient to prove for Ūn,N , since proof for V̄n,N can

be established in similar way. According to the above, we set

Ūn,N (aj) =
N
∑

k=1

f(ak) ·
√

n

σ

∫ uk

lk

φ

(√
n(x − aj)

σ

)

dx

=
N
∑

k=1

f(ak)

∫ tk,j

sk,j

φ(y)dy

=
N
∑

n=1

f(ak)[Φ(tk,j) − Φ(sk,j)]

where tk,j =
√

n(uk − aj)/σ, sk,j =
√

n(lk − aj)/σ and Φ is the distribution

function of standard normal distribution. For the case k > j, 0 ≤ Φ(tk,j) −
Φ(sk,j) < 1 − Φ(sk,j) and so as n → ∞ we have

0 ≤ Φ(tk,j) − Φ(sk,j) ≤ 1 − Φ

(√
n(aj+1 − aj)

2σ

)

→ 1 − Φ(∞) = 0

For the case k < j, 0 ≤ Φ(tk,j) − Φ(sk,j) ≤ Φ(tk,j) and as n → ∞ we have

0 ≤ Φ(tk,j) − Φ(sk,j) ≤ Φ(tk,j) ≤ Φ

(√
n(aj+1 − aj)

2σ

)

→ Φ(−∞) = 0

for the case k = j, we have

tk,j =

√
n

σ

(

ak + ak+1

2
− aj

)

=

√
n

2σ
(aj+1 − aj)



10 CHUNG-SIUNG KAO [March

and sk,j =

√
n

σ

(

ak−1 + ak

2
− aj

)

=

√
n

2σ
(aj−1 − aj)

Therefore when k = j and as n → ∞ it holds that

Φ(tk,j) − Φ(sk,j) → Φ(∞) − Φ(−∞) = 1

Summarizing the above, we then see that

lim
n→∞

Ūn,N (aj) =
N
∑

k=1

lim
n→∞

f(ak)[Φ(tk,j) − Φ(sk,j)]

= f(aj) · 1 = f(aj) for any aj, 1 ≤ j ≤ N,

which furnishes the proof for Ūn,N .

The proof for V̄n,N can be similarly established as for Ūn,N except that

Φ, which is the distribution function of standard normal attached to Ūn,N ,

is replaced by the distribution function of the gamma attached to V̄n,N .

It is apparent that Theorem 3 offers the assurance of consistency that

the obtained approximates of f(t) at t = ak (1 ≤ k ≤ N) shall equal the

originally given f(ak) when we let n → ∞ in the approximation forms.

4. Asymptotics of differentiated Bernstein polynomials. As a

result of being able to represent the considered function f(x) in the vari-

ous asymptotic forms shown in Section 2, we may equate one of any such

asymptotic form to any of the other forms. Under assumption that ensure

the differentiability of f(x), we may also equate the derivatives of one forms

to the corresponding derivatives of the other forms. In the work of Impens

& Vernaeve (2001) a Theorem 1 is given as the following:

Take an integer m ≥ 1, and let m − 1
2 < r ≤ m. If f ∈ Lip(r), then

Dm
x Bn(f, x)−hn,x√

π

∫

∞

−∞

f(x + t)(−Dt)
m(e−h2

n,xt2)dt
V
⇉ 0 as n → ∞(4.1)
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where x ∈ U = [0, 1], V = [λ, 1−µ] with 0 < λ < 1−µ < 1, hn,x =
√

n
2x(1−x)

(0 < x < 1). In addition, fn

A
⇉ f means that limn→+∞ fn(x) = f(x)

uniformly for x ∈ A, Dx and Dt are the differentiation operators with respect

to x and t and Lip(r) (r > 0) indicates the class of functions satisfying the

r-Lipschitz condition therein defined.

Rather than the procedure of Impens & Vernaeve which proved the

above theorem, it is possible to prove the theorem in a straightforward man-

ner. According to Approximation Form IV in Section 2, for any σ > 0 we

have

f(x) = lim
n→∞

√
n√

2πσ

∫

∞

−∞

f(t)e−
n

2σ2
(t−x)2dt for −∞ < x < ∞

if f ∈ C◦(R). By setting ξ =
√

n
2 · 1

σ
, the above becomes

f(x) = lim
ξ→∞

ξ√
π

∫

∞

−∞

f(t)e−ξ2(t−x)2dt

= lim
ξ→∞

ξ√
π

∫

∞

−∞

f(x + t)e−ξ2t2dt

In the event that f is originally defined only for x ∈ U = [0, 1], we may

extend f by putting f(x) = f(0) for x < 0 and f(x) = f(1) for x > 1, then

f(x) = lim
ξ→∞

ξ√
π

∫

∞

−∞

f(x + t)e−ξ2t2dt

(4.2)

or = lim
ξ→∞

ξ√
π

∫

∞

−∞

f(t)e−ξ2(t−x)2dt uniformly for x ∈ U

This is the Gauss-Weierstrass integral.

On the other hand, the Bernstein polynomial approximation form

Bn(f, x) =
n
∑

k=0

(

n

k

)

xk(1 − x)n−kf

(

k

n

)
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is known to satisfy that

f(x) = lim
n→∞

Bn(f, x) uniformly for x ∈ V(4.3)

Therefore, the two representation forms for f(x) uniformly on V and the

assumed r-Lipschitz condition upon f assures that

Dm
x f(x) = lim

n→∞

Dm
n Bn(f, x)

(4.4)

and Dm
x f(x) = lim

ξ→∞

Dm
x

[

ξ√
π

∫

∞

−∞

f(t)e−ξ2(t−x)2dt

]

uniformly for x ∈ V .

Let H(t − x) = e−ξ2(t−x)2 , then from the above we have

Dm
x f(x) = lim

ξ→∞

ξ√
π

∫

∞

−∞

f(t)[Dm
x H(t − x)]dt

However, it is obvious that

Dm
x H(t − x) =

[

∂(t − x)

∂x
· ∂

∂(t − x)

]m

H(t − x)

=

[

− ∂

∂(t − x)

]m

H(t − x)

= (−Dt−x)mH(t − x)

and

Dm
t H(t − x) =

[

∂(t − x)

∂t
· ∂

∂(t − x)

]m

H(t − x)

=

[

∂

∂(t − x)

]m

H(t − x)

= (Dt−x)mH(t − x)

Therefore, we see that

Dm
x H(t − x) = (−Dt)

mH(t − x)
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Accordingly it follows that

Dm
x f(x) = lim

ξ→∞

ξ√
π

∫

∞

−∞

f(t)(−Dt)
mH(t − x)dt

= lim
ξ→∞

ξ√
π

∫

∞

−∞

f(t)(−Dt−x)mH(t − x)dt

By variable transformation in the integral using s = t − x, we then obtain

Dm
x f(x) = lim

ξ→∞

ξ√
π

∫

∞

−∞

f(x + s)(−Ds)
mH(s)ds

(4.5)
= lim

ξ→∞

ξ√
π

∫

∞

−∞

f(x + t)(−Dt)
m(e−ξ2t2)dt

Then take ξ = hn,x =
√

n
2x(1−x) , which goes to ∞ as n → ∞ in (4.5), to have

Dm
x f(x) = lim

n→∞

hn,x√
π

∫

∞

−∞

f(x + t)(−Dt)
m(e−h2

n,xt2)dt(4.6)

The proof for (4.1) is hereby immediate when the equalities (4.4) and (4.6)

are combined.

By following the arguments in above it appears feasible to obtain similar

asymptotic equivalence shown by (4.1) between any other two representation

forms for f(x) provided in Section 2.

5. Examples for the error bounds. To demonstrate the performance

of each of the proposed approximation forms, we selectively show heretofore

some examples with the error bounds.

(1) Example 1: f(t) = t2

We take Approximation Form I. Then it gives

An(t) =
n
∑

k=0

(

n

k

)

(

t

x

)k (

1 − t

x

)n−k (kx

n

)2

=
x2

n2

[

nt

x

(

1 − t

x

)

+
n2t2

x2

]
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= t2 +
1

n
t(x − t),

which shows that (3.10) is exact.

(2) Example 2: f(t) = e−t for t > 0

We take Approximation Form III. Then by the fact that f is a convex

function we obtain

[

∞
∑

k=0

e−
k
n

(nk)k

k!
e−nt

]

− t

2n
≤ e−t ≤

∞
∑

k=0

e−
k
n

(nt)k

k!
e−nt for t > 0.

(3) Example 3: f(t) = 1
1+t

for t > 0

It is obvious that f is convex on the positive real and |f ′′| ≤ 2 on same

domain. We take Approximation Form IV. Then it gives

[√
n

σ

∫

∞

0

1

1+x
φ

(√
n

σ
(x−t)

)

dx

]

−σ2

n
≤ 1

1+t
≤
√

n

σ

∫

∞

0

1

1+x
φ

(√
n

σ
(x−t)

)

dx

for any t > 0, where φ is the probability density function of standard

normal distribution.
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