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Abstract. Let B be a subalgebra of a semisiniple commutative

Banach algebra A and an ideal of A. In this paper we investigate the

© maximal ideal spaces between A and B, and study the multiplier
algebras between A and B. i

1. Imtroduction. In this note we denote by A a semisimple
commutative Banach algebra and by B an ideal in A such that B
forms a Banach subalgebra with another norm. We may assume
naturally that the embedding of the subalgebra B into A is con-
tinuous.

It is proved in [5, Theorem 4] that the space of maximal ideals
of A,(G) (for the notation, we refer to [5]) is homeomorphic to the
space of maximal ideals of L'(G). However, we can get this kind
of conclusion in the more general situation, and prove that if B is
a dense ideal in A, then the maximal ideal space IMM(B) of B is
homeomorphic to the maximal ideal space M(A) of A, provided A
is a commutative semisimple Banach algebra.

It is known that if 4 has an approximate identity, then A is
a strictly dense ideal of its. multiplier algebra M(A). In this case
the maximal ideal space of A and the maximal ideal space of M(A)
need not be homeomorphic (cf. Wang [8], p. 1137).

The multipliers of the Banach algebra A and its subalgebra B
are discussed in the final section. We show that if B is dense in
A and B has a bounded approximate identity, then so does 4. By
Lai [4, Theorem 4.1], the multiplier algebra M(B) of B is contained
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in the multiplier algebra M(A) of A. Actually, in this case the
dense ideal B would bz identically equal to A4, and so M(A) = M(B).

2.  The maximal ideal space of an ideal as a Banach algebra.

THEOREM 1. Let A be a commutative Banach algebra and B be
a demse ideal of A. Suppose that B forms a Banach algebra with
another norm. Then the maximal ideal space Wi(B) of B is homeo-
morphic to the maximal ideal space M(A) of A.

Proof. Let x~ be a nonzero character of the algebra A. It is
obvious that the restriction y~ig of x~ on B is also a nonzero
character of B, since B is dense in A. We will show that any
character y of B can be uniquely extended tc a character y~ of the
algebra A. In the following extension we need not use the spectral
norm but use the ideal property. Take a character y of B. Since
B is an ideal of A, a€A and b€B implies @b€B. It is required
to show z(ab) = 7~(@) 7~(b) with z~ as the extension of z. Hence
we define, for @€ A,

~ _ x(ab)
(1) (@) = m
for some b€B with x(b) 0. We must show that
(i) z~ is well-defined;
(ii) z~ is the extension of yz;
(iii) x> is a character on A. '
~For (i), if b, c€B such that 2(8) =05 x(c), then for any
ace A ' . ‘
z(abe) = x(bac) = x(ab) x(c) = x(b) x(ac)
or |
z(ab) _ x(ac)
x() x(e) -~ ,
Hence 2~(@) does not depend on the choice of & in the definition
of z~. That is, 7~ is well-defined. k

For (ii), if @€B, then
zlab) _ x(a) (&)
_ z(b) x(0)
shows that z~ is an extension of .

(@) = = y(a)
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For (iii), take @, b in A and ¢, d in B Wlth #(ed) =<0. Then

(abcd) _ zxlae) | (bd) _
2~ (ab) = v(cd) 2(0) 2(d) x~(a) x~(b) .

This extension is unique.. Indeed, if 7 is another extension Of
7, then for ac€A, beB,

z(ab) = 7(ab) = 7(a) 7(0) = z(a) 2(B),
and since x(b) #0, | |

z(ab)
x(8)

z(@) = = r~(a).

Hence 7 =z~ .

The cohtiriuity of the restriction mapping x~—z of the character
in ‘A to the character in B is trivial since it is equivalent to saying
that the characters are continuous in the weak- * topology, while
the continuity of the extension mapping x— z~ follows immediately
from the definition (1) of z~. Indeed, for ¢€ A, beB with z(d) =1
for any character y of B, as y,— x we have

l){w(a) — 7 (@)| = |z4(ab) — z(ab)i —0.

Therefore ED?(B) is homeomorphlc to M(4). Q.E.D.

It is to be noted that even if B is not dense in A, the character
of B is still uniquely extendable to a character of A in the same
way as above. Thus we can prove more generally the following.

: THEOREM 2. - Let B be an ideal of a commutative Banach algebra
A. Suppose that B forms a Banach algebra with some norm. Then
the maximal ideal space W (B) of B is homeomorpkic to an open subset
of the space M(A) of the maximal ideals of A.

“Proof. As in the proof of Theorem 1, we see that each nonzero
character- y of B can be extended to a character z~ of A by defining
2~ (@) = x(ab)/x(b) as in (1) for some b such that x(d)+0 for all
ac€A. As in the proof of Theorem 1 this extension is unique.

Letting ¢(x) = z~, we see that ¢ is one-to-one and is still con
tinuous for the same reason as in the proof of Theorem 1. On the
other hand ¢! with domain in ¢(M(B)) is clearly continuous, so
that ¢ is a homeomorphism. Suppose x~ ¢ ¢(IMM(B)); then x~{5=0,
since if z~|370, 2z~ becomes an extension of the character 2~|s.
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Since the topology in IR(A) is nothing but the weak-* topology
~ as functionals on A, and element & in B as a functional in A4 is
continuous ‘over the character space MM(A) of A, the null set of b
in B is closed and the intersection {x EEI’?(A), xle =0} of these
null sets is therefore closed in M(A). Hence ¢(M(B)) is open.
Q.E.D. .
This theorem is moré general than Birtel [2, Theorem 1] applying
to multiplier aIgebras.'

On the other hand, as B is a proper closed ideal of A (where
B need not be a Banach algebra), then the maximal ideal space
M(A/B) of A/B is homeomorphic to the hull 2(B) of B with
respect to the hull-kernel topologies (cf. Loomis [6, 20G]). Let
K =M(A)/r(B), the quotient of the maximal ideal space M(A)
and the hull 2(B) of B. Then the characters of A corresponding
to the maximal ideals in K do not take all of B into 0, and the
intersection of B and the elements of K are regular maximal ideals
of B, i.e. BnMgzeM(B) with Mxe K. It is immediately clear that
no two distinct elements of K (that is, two characters xi, 7. of A
such that xi, x: are not identically equal to zero on B) can have
" the same intersection with B. It follows from Theorem 2 that every
regular maximal ideal of B can be extended to a unique element in
K. Thus Mx < Mxgn B is one-to-one between K and M(B).

- COROLLARY 3. Let B be a proper closed ideal of a commutative
Banach algebra A. Then the maxzmal ideal space M(A) of A can
be written in the form

Vm(A) R(B)UK,
where h(B) is the hull of B, is a closed subset in M(A) and is
homeomorphic to the maximal ideal space M(A/B) of A/B, and K is

an open subset in M(A) in which there exzsts a mtuml homeomorphzsm
from K onto M(B).

3. Maximal ideals in Segal algebras. For the definition of a
Segal algebra, we refer to Reiter [7, p. 126, Chapter 6, §2]. We
denote by S(G) the Segal algebra where G is a locally compact
abelian group. It is a dense ideal of L!(G). Then the following
theorem is an immediate consequence of Theorem 1.
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THEOREM 4. Any Segal algebra S(G) is a semisimple commutative
Banach algebra. The space of maximal ideals can be identified with
the dual group G.

'4. Multiplier algebras between the Banach algebra and its ideal
asa subalg'e“braw. Recall that a multiplier T of a commutative Banach
algebra B is a bounded linear operator on B such that

Txy) =Tz -y=x Ty for x, y€B.

The set of all multipliers of B is denoted by M(B), which is a
commutative Banach algebra with respect to composition and the
uniform topology. For properties of M(B), we refer to Wang [8],
Birtel [2], Lai [4], etc.

If the Banach algebra B has a bounded approximate identity,
then B embedded in M(B) is a dense ideal in M(B) with respect
to the strict topology. This M(B) is completely different from the
A in Theorem 1. Indeed B is not dense in M(B) with the uniform
topology of M(B) except when B has an identity. Thus in general
the maximal ideal space M(B) of B is not homeomorphic to the
maximal ideal space M(M(B)) of M(B). The relation of M(B)
and M(M(B)) can be found in Wang [8, Theorem 3.2], which is the
special case of Corollary 3 in §2, but in the case of the multiplier
algebra M(B), we ‘know that it has an identity, and the maximal
ideal space M(M(B)) is compact and hence the closed subset 2(B),
the hull of B, is compact. Furthermore (B) is dense in M(M(B))
with respect to the hull-kernel topology whenever B is semisimple
(cf. Wang [8, Theorem 3.3]).

In this section the Banach algebra B has a bounded approximate
identity, which is essential for the discussion of multiplier algebras,
* and we note that if the algebra is semisimple or with approximate
identity, then it is without order (cf. Wang [8]). In the proof of
Barnes [1, Proposition 3.3], some further condition seems necessary
for Cohen’s Theorem to be applicable; for instance, that B is an
essential A-module or that B = AB. If this is so, the bounded ap-
prokimate identity of A need not be a bounded approximate identity
of B; for éxample, B=A?(G), A=L'(G) in Lai [3, Theorem 1 and
the remark in pp. 573-574]. We replace part of the assumption in
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the propositon by the assumption that if {e,} isa left [right] bounded
approximate identity for B, then {e.} is also a bounded approximate
' idéntity for A. We only need the approximate identity in the case
of commutatlve algebra, a fact Wthh we state as follows.

PROPOSITION 5. . Let B be a dense zdeal of A. Suppose that B
has a bounded approximate identity {e.}. Then {e.} is alsoa b,oum_ied
approximate identity of A. '

Proof. The proof is almost trivial. Since B is dense in A, for
any ¢€A and any e>0, there exists b€B such that

e —bla<e.
Since {e,} is a bounded approximate identity for B, there is an

M >0 such that lle;ls < M for all «, and for b€ B there is an
such that ’

lea b — bllp<e, for a>a.

Now by the continuity of the embedding of B into A, there is a
constant C>0 with b4 < Clblp for b€B, and

laes — alla < llae. — bey la + lbes, — blla + 110 —alla
<lla—bdlalleslla + Cllbes — bey B
» + Cllbes, — bllp + 10— ala
<(M+BC+1)e, for a¢>a.

Since ¢ is arbitrary, llee, — @lla— 0 when the limit is taken over o.
Therefore {e,} is a bounded approximate identity in A, since the
embedding of B into A is continuous. Q.E.D.

From this proposition, the multiplier algebra M(B) of B can be
extended to be the multipliers of A4, i.e.

M(B)c M(A).

See Lai [4, Theorem 4.1]. Since B and A have a bounded approxi-
mate identity, B and A are dense ideals in M(B) and M(A) réspec-
tively, with respect to the strict topology. ‘ '

- The author expresses his gratitude to the referee, who points
out that under the assumptions of Proposition 5, we would have

B=A.



1975] IDEALS IN A BANACH ALGEBRA 233
Indeed, if A is regarded as a module over B, then
A = {acAie, a— a}

by Proposition 5, and by the factorization theorem of Cohen, any
a€A can be written as bc =a for beB, c€A. Consequently,

ACB=A=B.
Therefore
M(A) = M(B).

Note that in this section, the conclusions hold for the non-
commutative case by using left or right identities in some situations.
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