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Abstract. In this paper we are dealing with a general class

of positive approximation processes of discrete type expressed in

series. We modify them into finite sums and investigate their ap-

proximation properties in weighted spaces of continuous functions.

Some special cases are also revealed.

1. Introduction. The approximation of functions by linear positive

operators is an important problem in many mathematical theories. The

following examples are two of the best known and intensively studied ap-

proximation processes on unbounded intervals.

The former is the n-th Favard-Mirakjan-Szász operator defined by

(Snf)(x) :=
∞
∑

k=0

sn,k(x)f

(

k

n

)

, sn,k(x) :=
(nx)k

k!
e−nx,(1)

for every f belonging to the Banach lattice E2, x ∈ [0,∞) and n ∈ N. Here

E2 = E2([0,∞)) := {f ∈ C([0,∞))| limx→∞(1 + x2)−1f(x) is finite} is

endowed with the norm ‖ · ‖∗, ‖f‖∗ := supx≥0(1 + x2)−1|f(x)|.
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The later is the n-th Baskakov operator defined by

(Vnf)(x) :=
∞
∑

k=0

vn,k(x)f

(

k

n

)

, vn,k(x) :=

(

n+k−1

k

)

xk(1−x)−n−k,(2)

for every f ∈ E2, x ∈ [0,∞) and n ∈ N.

Note that the series which appear both in (1) and (2) are absolutely

convergent for every f ∈ E2. Furthermore, we point out that every Sn and

Vn map CB([0,∞)) into itself, where CB(I) denotes the space of all real-

valued continuous and bounded functions defined on the interval I endowed

with the usual sup-norm ‖ · ‖∞, ‖f‖∞ := supx∈I |f(x)|. Also, note that E2

is isomorphic to C([0, 1]), see e.g. [2; Proposition 4.2.5].

However, we notice that the construction of the above operators requires

an estimation of infinite series which in a certain sense restricts the operators

usefulness from the computational point of view. In this respect, in order

to approximate a function f , it is interesting and useful to consider partial

sums of Snf or Vnf which only have finite terms depending upon n and

x. This approach of the above operators has already been made in the late

decades. J. Grof [4] examined the operator (Sn,Nf)(x) =
N
∑

k=0

sn,k(x)f(k/n)

establishing that if (N(n))n≥1 is a sequence of positive integers such that

limn→∞(N(n)/n) = ∞ then limn→∞(Sn,Nf)(x) = f(x) for all x ≥ 0 and

f ∈ C([0,∞)) satisfying a growth condition of the form |f(t)| ≤ Aemt (A ∈
R+, m ∈ N). Following a little different course from the one of Grof, the next

modified operators of Szász respectively Baskakov-type were investigated

(Sn,δf)(x) =

[n(x+δ)]
∑

k=0

sn,k(x)f

(

k

n

)

,

(Vn,δf)(x) =

[n(x+δ)]
∑

k=0

vn,k(x)f

(

k

n

)

, x ≥ 0.

(3)
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Here [α] indicates the largest integer not exceeding α. The first was studied

by Heinz-Gerd Lehnhoff [5] and the second has recently been approached

by Jianli Wang and Songping Zhou [6], the authors giving a necessary and

sufficient condition which guarantees the convergence of (Vn,δf)n≥1 to f . In

(3) f belongs to certain subspaces of C([0,∞)).

At this point we find appropriate to mention the important research

achievement in this field obtained by G.Z. Zhou and S.P. Zhou [7].

The present paper is dealing with a general class of linear positive op-

erators expressed in series. The sequence is constructed in the next section.

Further on, the operators are truncated fading away their “tails” and suffi-

cient conditions are provided to ensure their convergence on certain spaces

of functions. Particular cases are also punctuated.

2. Building up the operators. We set N0:= N ∪ {0}, o(·), O(·) the

Landau symbols and ej , j∈ N0, stands for the j-th monomial, ej(t) = tj.

Throughout the paper K represents a compact subinterval of R+ = [0,∞).

For each n ∈ N we consider the following.

(i) A net on R+ named ∆n = (xn,k)k≥0 is fixed with the property: for

every k ∈ N0, γk exists such that xn,k = O(n−γk) (n→ ∞).

(ii) A sequence (φn,k)k≥0 is given, where every φn,k belongs to C1(R+),

the space of all real-valued functions continuously differentiable in R+. We

assume that this sequence is a blending system with a certain connection

with ∆n, more precisely the following conditions hold:

φn,k ≥ 0, k ∈ N0,
∞
∑

k=0

φn,k = e0,
∞
∑

k=0

xn,kφn,k = e1.(4)

(iii) A positive function ψ ∈ R
N×R+, ψ(n, ·) ∈ C(R+), exists with the
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property

ψ(n, x)φ′n,k(x) = (xn,k − x)φn,k(x), k ∈ N0, x ≥ 0.(5)

By using the above three requirements we define the operators

(Lnf)(x) =
∞
∑

k=0

φn,k(x)f(xn,k), x ≥ 0, f ∈ F ,(6)

where F stands for the domain of Ln containing the set of all continuous

functions on R+ for which the series in (6) is convergent.

Remark 1. Ln, n ∈ N, are positive linear operators and consequently,

they become monotone. Obviously CB(R+) ⊂ F and every operator Ln

map continuously CB(R+) into itself. Indeed, taking into account (4) for

f ∈ CB(R+) and x ≥ 0 we have |(Lnf)(x)| ≤ ‖f‖∞. Moreover, Lne0 = e0

implies ‖Ln‖CB
:= sup‖f‖∞≤1 ‖Lnf‖∞ = 1.

Further on we are going to present a technical result.

Lemma 1. Let Ln, n ∈ N, be defined by (6) and Λn,r be the r-th central

moment of Ln. For every x ∈ R+ the following identities

Λn,0(x) = 1, Λn,1(x) = 0,(7)

Λn,r+1(x) = ψ(n, x)(Λ′
n,r(x) + rΛn,r−1(x)), r ∈ N,(8)

Λn,2(x) = ψ(n, x),(9)

hold true.

Proof. Firstly we recall Λn,r(x) := Ln((e1 − xe0)
r, x), r ∈ N0. For r = 0

and r = 1 the values result easily from relations (4). For every r ∈ N, with
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the help of (5) we can write

d

dx
Ln((e1 − xe0)

r, x) =
∞
∑

k=0

{φ′n,k(x)(xn,k − x)r − rφn,k(x)(xn,k − x)r−1}

= (ψ(n, x))−1Λn,r+1(x) − rΛn,r−1(x),

and (8) follows. Choosing here r = 1 we obtain (9) and this completes the

proof.

We are able to indicate the necessary and sufficient condition which

offers to (Ln)n≥1 the attribute of approximation process.

Theorem 1. Let Ln, n ∈ N, be defined by (6).

(i) If limn→∞ ψ(n, x) = 0 uniformly on K then for every f ∈ F one has

lim
n→∞

Lnf = f uniformly on K.

(ii) For every f ∈ CB(R+), x ≥ 0 and δ > 0 one has

|(Lnf)(x) − f(x)| ≤
(

1 + δ−1
√

ψ(n, x)

)

ω1(f, δ),(10)

where ω1(f, ·) represents the modulus of continuity of f .

Proof. The first statement results directly from the theorem of Bohman-

Korovkin and relations (7), (9) as well. Note that Lemma 1 guarantees that

e0, e1, e2, the Korovkin test functions belong to F . The second statement

holds true by virtue of the classical results regarding the rate of convergence,

see e.g. the monograph [2; Theorem 5.1.2].

Examples. We take the net ∆n with equality spaced nodes xn,k = k/n.

1◦ Selecting φn,k = sn,k defined by (1), the relations (4) are verified and

clearly xs′n,k(x) = (k−nx)sn,k(x). We make the following choice: ψ(n, x) =

x/n and (5) is fulfilled. Our operators turn into Sn−the Szász operators.
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2◦ Choosing φn,k = vn,k defined by (2) the requirements (4) hold true

and we also have x(1 + x)v′n,k(x) = (k − nx)vn,k(x). Taking ψ(n, x) =

x(1 + x)/n, (5) is verified and Ln becomes Vn - the Baskakov operator.

In both examples F may coincide with E2.

In what follows, with a slight restriction of the generality, for our purpose

we specialize the net ∆n and the function ψ. We consider that a positive

sequence (an)n≥1 and the functions ψi ∈ C(R+), i = 1, l, l fixed, exist such

that for every n ∈ N one has

xn,k =
k

an
≤ k, k∈N, with lim

n→∞
an =∞ andψ(n, x)=

l
∑

i=1

ψi(x)

ai
n

, x≥0.(11)

Under these assumptions, the requirement of Theorem 1 is fulfilled and

(Ln)n≥1 converges to the identity operator. As regards to the local and global

rate of convergence, we use (11) in relation to (10) and choosing δ = a
−1/2
n

we get

|(Lnf)(x) − f(x)| ≤






1 +

√

√

√

√

√|ψ1|(x) +
l
∑

j=2

|ψj |(x)
aj−1

n






ω1

(

f,
1√
an

)

, x ≥ 0,

and consequently, ‖Lnf −f‖C(K) ≤ (1+M(K))ω1(f, a
−1/2
n ) where M(K) =

supx∈K

(

∑l
j=1 |ψi|(x)

)1/2
.

Returning to our previous examples we notice that l = 1 and ψ1 = e1

respectively ψ1 = e1 + e2. In a concordance with [3; §1.3, page 9] ψ
1/2
1 will

be called the step-weight function related to Ln operators.

We mention that a similar representation of the second central moment

as given in (11) and (9) (with an = n) has already been used to investigate

a family of summation integral operators [1; Eq. (6)].
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3. Modified discrete operators. Starting from (6) under the addi-

tional assumptions (11) we define

(Ln,δf)(x) :=

[an(x+δ(n))]
∑

k=0

φn,k(x)f

(

k

an

)

, x ≥ 0, f ∈ F ,(12)

where δ = (δ(n))n≥1 is a sequence of positive numbers. The study of these

operators will be developed in polynomial weighted spaces connected to the

weights wm, m ∈ N0, wm(x) = (1 + x2m)−1, x ≥ 0. For every m ∈ N0, the

spaces Em := {f ∈ C(R+) : ‖f‖m := supx≥0wm(x)|f(x)| < ∞} endowed

with the norm ‖ · ‖m and the natural order are Banach lattices and they are

nested as follows: CB(R+) = E0 ⊂ Em ⊂ Em+1 ⊂ C(R+), m ∈ N.

We need the following lemma which might be of interest in its own right.

Lemma 2. Let Ln, n ∈ N, be defined by (6) and the assumptions (11)

are fulfilled. If ψi ∈ C2m−2(R+), i = 1, l, then the central moment of 2m-th

order verifies

Λn,2m(x) ≤ C(m,K)

am
n

, x ∈ K,(13)

where C(m,K) is a constant depending only on m and the compact K.

Proof. Relations (9) and (11) imply Λn,2(x) ≤ a−1
n

l
∑

i=1

|ψi|(x), thus

C(2,K) := supx∈K

(

l
∑

i=1

|ψi|(x)
)

. Further on, we can use induction on m

and the recursion relation (8) where ψ(n, ·) = Λn,2, obtaining

Λn,2m−1(x) = O(a−m
n ) (m→ ∞) and Λn,2m(x) = O(a−m

n ) (m → ∞),

m ≥ 2.

Since Λn,2m can be expressed only in terms of Λn,2 and its derivatives

up to the order (2m−2), we have Λn,2m ∈ C(R+) and the conclusion follows.
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Our aim is to prove the main result of this section.

Theorem 2. Let Ln,δ, n ∈ N, be defined by (12). If ψi ∈ C2m−2(R+),

i = 1, l, and limn→∞
√
anδ(n) = ∞ then Ln,δf converges to f , uniformly on

K, for every function f belonging to Em ∩ F .

Proof. Since minλ≥0(λ
2m + (1 − λ)2m) = 21−2m, m ∈ N, the following

elementary inequality

t2m ≤ 22m−1(x2m + (t− x)2m), t ≥ 0, x ≥ 0, m ∈ N,(14)

holds true. On the other hand, for every f ∈ Em, the positive constants

af , bf exist such that |f | ≤ af + bfe2m and, consequently, by using (14) we

get

|f(t)| ≤ gm(x) + 22m−1bf (t− x)2m, gm := af + 22m−1bfe2m.

This implies

∣

∣

∣

∣

f

(

k

an

)∣

∣

∣

∣

≤ gm(x) + 22m−1bf

(

k

an
− x

)2m

, k ∈ N0, x ≥ 0.(15)

Because x, δ(n), an are positive, if k ≥ [an(x+ δ(n))] + 1 then k/an ≥ x

and consequently

{k∈N0 : k≥ [an(x+δ(n))]+1}⊂
{

k∈N0 :

∣

∣

∣

∣

k

an
−x
∣

∣

∣

∣

>δ(n)

}

:=In,x,δ.(16)

Setting Rn := Ln −Ln,δ and taking into account both (16) and (15) we

can write

|(Rnf)(x)| ≤
∑

k∈In,x,δ

φn,k(x)|f(k/an)|
(17)

≤
∑

k∈In,x,δ

φn,k(x)gm(x)+22m−1bf
∑

k∈In,x,δ

φn,k(x)

(

k

an
−x
)2m

:= Σ1+Σ2.
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Concerning the sums Σ1 and Σ2 we have

Σ1 ≤ gm(x)δ−2m(n)
∞
∑

k=0

φn,k(x)

(

k

an
− x

)2m

= gm(x)δ−2mΛn,2m(x),

respectively Σ2 ≤ 22m−1bfΛn,2m(x). Returning to (17) and using (13) we

get

|(Rnf)(x)| ≤ (gm(x)δ−2m(n) + 22m−1bf )
C(m,K)

am
n

= o(1) (n→ ∞),

uniformly on K because limn→∞
√
anδ(n) = ∞. The proof is complete.

For the special operators given by (3), our condition limn→∞
√
anδ(n) =

∞ becomes limn→∞
√
nδ(n) = ∞ and this coincides with the results estab-

lished by Lehnhoff [5; Theorem 3] respectively J. Wang, S. Zhou [6; Theorem

1, Eq. (1)].

Particular case. We consider δ(n) = λ > 0 (constant). Denoting our

operators by Ln,λ we deduce that they map C([0, b + λ]) into C([0, b]) for

any b > 0. Since a−λ
n = o(1) (n → ∞) for a given λ > 0, the convergence

property ennunciated at Theorem 2 takes place for K = [0, b+ λ] and every

f ∈ C(R+) ∩ F .

Next, we analyze the case when δ depends on x, more precisely we put

δ := M −x, M > 0, and the corresponding operators will be briefly denoted

by L∗
n, n ∈ N,

(L∗
nf)(x) =

[Man]
∑

k=0

φn,k(x)f

(

k

an

)

, x ≥ 0, f ∈ F .(18)

We can state and prove

Theorem 3. Let L∗
n, n ∈ N, be defined by (18). The operators map
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C([0,M ]) in C([0,M ]) and have the property

lim
n→∞

(L∗
nf)(x) = f(x) for all f ∈ C([0,M ]),

uniformly on every compact KM ⊂ [0,M).

Proof. The proof is simple and runs as follows. For every function

f ∈ C([0,M ]) we introduce the function f(M) ∈ C(R+) given by

f(M)(x) =







f(x), 0 ≤ x ≤M,

f(M), x > M.

If x ∈ [0,M) then we have

(L∗
nf)(x) = (Lnf(M))(x) − f(M)rn(x), where rn(x) =

∞
∑

k=[Man]+1

φn,k(x).

Since k/an > M and 0 ≤ x < M one obtains 1 < (M −x)−2(k/an −x)2

and consequently

rn(x) ≤ (M − x)−2
∑

∣

∣

k
an

−x
∣

∣>M−x

φn,k(x)

(

k

an
− x

)2

≤ (M − x)−2
∞
∑

k=0

φn,k(x)

(

k

an
− x

)2

= (M − x)−2Λn,2(x) ≤
1

(M − x)2
C(2,KM )

an
= o(1) (n→ ∞),

uniformly on every compact subintervalKM ⊂ [0,M). Above, the last upper

bound is based on (13). The proof is finished.

We point out that choosing M = 1, in the particular case when L∗
n

turns into modified Szász operator Sn,δ, δ(x) = 1−x, Theorem 3 encounters

a result obtained in [5; Theorem 5].
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