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Abstract. We prove that the general approximate limit

process of Saks [7] for an arbitrary function of one real variable is

completely equivalent to a path limit process [2], but the proximal

limit process of Sarkhel and De [8] is not. We also show by example

that, while the approximate Dini derivates of a monotonic function

are in fact its Dini derivates [6], even an absolutely continuous

monotonic function can have a finite proximal derivative at a point

without having an ordinary derivative there. Further, we obtain

a Cauchy criterion for the existence of a finite proximal limit, and

prove a monotonicity theorem using the notion of proximal limit

alone.

1. Introduction and preliminaries. Generalizing the notion of ap-

proximate limit of a function [7, p.218], Sarkhel and De [8, §4] introduced

the notion of proximal limit which has important applications in differen-

tiation and integration theories [1, 8, 9]. The definition of proximal limit

is based on the notion of a sparse set at a point [8, §3], which generalizes

the notion of dispersion point of a set. Filipczak [3] studied an interesting

abstract category analogue of sparse sets. The purpose of the present paper

is embodied in the abstract, which also suggests that the title of the paper

might as well be proximal limit versus approximate limit.

By a set E we shall mean a subset of the real line R, |E| will denote
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its outer Lebesgue measure and d+(E, c), d+(E, c) [d−(E, c), d−(E, c)] will

denote its upper and lower right [left] densities at a point c ∈ R. Thus

d+(E, c) = lim sup
x→c+

|E ∩ [c, x]|

x − c
, d+(E, c) = lim inf

x→c+

|E ∩ [c, x]|

x − c
.

Definition 1.1[8]. The set E is said to be sparse at c on the right,

written E ∈ S(c+), if for each ε > 0 there exists h > 0 so that every interval

(a, b) ⊆ (c, c + h), with a − c < h(b − c), contains at least one point x such

that |E ∩ [c, x]| < ε(x − c).

The main theorem concerning sparseness is the following.

Theorem 1.2 [8, Theorem 3.1]. The following conditions are equiv-

alent.

(i) The set E is sparse at c on the right.

(ii) For each A ⊂ R, d+(A, c) < 1 implies d+(E ∪ A, c) < 1.

(iii) For each A ⊂ R, d+(A, c) < 1 and d+(A, c) = 0 together implies

d+(E ∪ A, c) < 1 and d+(E ∪ A, c) = 0.

(iv) For each A ⊂ R, d+(A, c) = 0 implies d+(E ∪ A, c) = 0.

A simple consequence of this theorem is [8, Corollary 3.1.1]:

Theorem 1.3. If E ∈ S(c+), then d+(E, c) < 1 and d+(E, c) = 0 and

every subset of E belongs to S(c+). If E, F ∈ S(c+), then E ∪ F ∈ S(c+).

If d+(E, c) = 0, then E ∈ S(c+).

There are similar definition, notation and results on the left of c. In the

sequel we shall need the following two lemmas.

Lemma 1.4. Given a measurable set M ⊆ R and a point c ∈ R,

there is a closed set F ⊆ M ∪ {c} with c ∈ F so that d+(M\F, c) = 0,

d+(F, c) = d+(M, c) and d+(F, c) = d+(M, c).
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Proof. Choose a strictly decreasing sequence cn → c. Since the set M

is measurable, there are closed sets Fn ⊆ M ∩ (cn+1, cn] with

|M ∩ (cn+1, cn]\Fn| <
1

n
(cn+1 − cn+2), n = 1, 2, . . . .

Clearly the set F = {c} ∪ ∪∞

n=1Fn is closed, F ⊆ M ∪ {c} and c ∈ F .

Now, for all n and all x ∈ (cn+1, cn] we have

|(M\F ) ∩ [c, x]| ≤
∞
∑

i=n

|M ∩ (ci+1, ci]\Fi|

<
∞
∑

i=n

1

i
(ci+1 − ci+2)

<
1

n
(x − c).

Hence plainly d+(M\F, c) = 0. The rest follows from the relation

|M ∩ [c, x]|

x − c
=

|F ∩ [c, x]|

x − c
+

|(M\F ) ∩ [c, x]|

x − c
.

Lemma 1.5. (Sarkhel and De [8, lemma 2.3]). Let A ⊆ [a, b] be

such that a ∈ A, d−(A, y) < 1 for all y ∈ B = [a, b]\A and d+(B,x) < 1 for

all x ∈ A. Then B = φ.

This lemma proved useful in [8] and subsequently Filipczak [4] found

further applications. This has a counterpart.

Lemma 1.6. Let A ⊆ [a, b] be such that b ∈ A, d+(A, y) < 1 for all

y ∈ B = [a, b]\A, and d−(B,x) < 1 for all x ∈ A. Then B = φ.

Proof. This can be proved directly as Lemma 1.5. But we can deduce

it from Lemma 1.5 by reflections in the origin as follows. We have (−A) ⊆

[−b,−a], −b ∈ (−A), d−(−A, y) = d+(A,−y) < 1 for all y ∈ (−B) =
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[−b,−a]\(−A) and d+(−B,x) = d−(B,−x) < 1 for all x ∈ (−A). Hence by

Lemma 1.5, −B = φ and so B = φ.

In what follows we consider an arbitrary function f : R → R.

2. Proximal limit versus approximate limit. In the literature

there are three different definitions of approximate limit which are in fact

equivalent, but we are unable to trace back any ready reference of a neat

and complete proof of this. In this section we make a more detailed study

of this and show that the proximal analogue of this is not true. We also

show that the proximal process is effective even for derivatives of monotonic

functions, while the approximate process is not.

Definition 2.1 [7, p.220]. The right upper [lower] approximate limit

of f at the point c, denoted by A+f(c)[A+f(c)], is the infimum [supremum]

of the extended real numbers r for which d+(E, c) = 0, where

E = {x : f(x) > r} [E = {x : f(x) < r}].

If A+f(c) = A+f(c), then this common value is called the right approximate

limit of f at c and is denoted by fap(c+). There are similar definitions and

notations on the left of c.

Definition 2.2 [8, p.33]. The right upper [lower] proximal limt of f

at the point c, denoted by P+f(c)[P+f(c)], is the infimum [supremum] of

the extended real numbers r for which E ∈ S(c+), where

E = {x : f(x) > r} [E = {x : f(x) < r}].

If P+f(c) = P+f(c), then this common value is called the right proximal

limit of f at c and is denoted by fpr(c+). There are similar definitions and

notations on the left of c.
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Note. We always have A+f(c) ≤ P+f(c) ≤ P+f(c) ≤ A+f(c).

Theorem 2.3. There is a closed set F with d+(F, c) = 1 so that

A+f(c) = lim inf
x→c+

x∈F

f(x) ≤ lim sup
x→c+

x∈F

f(x) = A+f(c).

Proof. If A+f(c) < +∞, choose a strictly decreasing sequence rn →

A+f(c); but if A+f(c) = +∞ then let rn = +∞ for all n. If A+f(c) > −∞,

choose a strictly increasing sequence sn → A+f(c); but if A+f(c) = −∞ then

let sn = −∞ for all n. Then for all n we have d+(En, c) = d+(Fn, c) = 0,

where

En = {x : f(x) > rn}, Fn = {x : f(x) < sn}.

Then there is a strictly decreasing sequence cn → c so that

|(En ∪ Fn) ∩ [c, x]| <
1

n
(x − c) for all x ∈ (c, cn]

and cn − c < 2(cn − cn+1), n = 1, 2, . . . . Put

E = ∪∞

n=1((En ∪ Fn) ∩ (cn+1, cn]).

Then for all n and all x ∈ (cn+1, cn] we have

|E ∩ [c, x]| ≤
∞
∑

i=n+1

|(Ei ∪ Fi) ∩ [c, ci]| + |(En ∪ Fn) ∩ [c, x]|

<
∞
∑

i=n+1

1

i
(ci − c) +

1

n
(x − c)

<
1

n

∞
∑

i=n+1

2(ci − ci+1) +
1

n
(x − c)

<
3

n
(x − c).

Hence it follows at once that d+(E, c) = 0.

Now, taking a measurable cover H of E we have d+(H, c) = d+(E, c) = 0
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[8, pp.27-28]. Then the set M = R\H is measurable and d+(M, c) = 1 [8,

p.27]. Also, since H ⊇ E so that M ⊆ R\E, clearly sn ≤ f(x) ≤ rn for all

x ∈ M ∩ (c, cn), n = 1, 2, . . . . Since lim rn = A+f(c) and lim sn = A+f(c),

it follows that

A+f(c) ≤ lim inf
x→c+

x∈M

f(x) ≤ lim sup
x→c+

x∈M

f(x) ≤ A+f(c).

By Lemma 1.4, there is a closed set F ⊆ M ∪ {c} such that d+(F, c) =

d+(M, c) = 1. Since F\{c} ⊆ M , it follows from above that

A+f(c) ≤ lim inf
x→c+

x∈F

f(x) and lim sup
x→c+

x∈F

f(x) ≤ A+f(c).

Since d+(R\F, c) = 0, obviously both these inequalities must be equalities

and this completes the proof.

The following immediate corollary shows the equivalence of three famil-

iar definitions of unique approximate limit.

Corollary 2.4. The following conditions are equivalent.

(i) fap(c
+) exists and has the value α ∈ [−∞,+∞].

(ii) limx→c+

x∈F

f(x) = α for some closed set F with d+(F, c) = 1.

(iii) limx→c+

x∈E

f(x) = α for some measurable set E with d+(E, c) = 1.

Example 2.5. We now show the great generality of the proximal limit

process by showing that the proximal analogue of neither Theorem 2.3. nor

even of its Corollary 2.4 is true. By [8, Example 3.1], for each positive integer

n there is an open set Gn ⊂ (0,+∞) with d+(Gn, 0) > 1 − 1/n such that

Gn ∈ S(0+). Define

g(x) =
1

n
if x ∈ Gn\

⋃

1≤i<n

Gi, n = 1, 2, . . . ,

= 0 if x ∈ R\
∞
⋃

n=1

Gn.
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Note that g ≥ 0 and g(0) = 0. Given ε > 0, put

A = {x : |g(x) − g(0)| > ε} = {x : g(x) > ε}.

Clearly A ⊆
⋃m

i=1 Gi where m is an integer exceeding 1/ε. So, by Theorem

1.3, A ∈ S(0+). Hence gpr(0+) = 0. The existence of a function like g

follows also from [3, Theorem 15(a), p.164].

We show, however, that there is no E ∈ S(0+) so that g(x) → 0 as x →

0+ over R\E. Suppose such E exists, then by Theorem 1.3 d+(E, 0) < 1

and we shall derive a contradiction from this. Choose a positive integer k

so that d+(E, 0) < 1 − 2/k. Since g(x) → 0 as x → 0+ over R\E, there

is h > 0 so that g(x) < 1/k for all x ∈ (0, h)\E. Then Gk ∩ (0, h) ⊆ E,

by definition of g, and so d+(Gk, 0) ≤ d+(E, 0), yielding 1 − 1/k < 1 − 2/k,

which is the desired contradiction.

However, here is a partial proximal analogue of Theorem 2.3.

Theorem 2.6. There is a closed set F with d+(F, c) = 1 so that

P+f(c) ≤ lim inf
x→c+

x∈F

f(x) ≤ lim sup
x→c+

x∈F

f(x) ≤ P+f(c).

Consequently, if fpr(c
+) exists then limx→c+

x∈F

f(x) = fpr(c
+).

Proof. If P+f(c) < +∞, choose a strictly decreasing sequence rn →

P+f(c); but if P+f(c) = +∞ then let rn = +∞ for all n. If P+f(c) > −∞,

choose a strictly increasing sequence sn → P+f(c); but if P+f(c) = −∞

then let sn = −∞ for all n. Then En, Fn ∈ S(c+), where

En = {x : f(x) > rn}, Fn = {x : f(x) < sn}.

So, by Theorem 1.3, En∪Fn ∈ S(c+) and, hence, further d+(En∪Fn, c) = 0.
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Then there is a strictly decreasing sequence cn → c so that

|(En ∪ Fn) ∩ [c, cn]|

cn − c
<

1

n
and

cn − c

cn − cn+1
< 2, n = 1, 2 . . . .

Put E =
⋃

∞

n=1((En ∪ Fn) ∩ (cn+1, cn]). Then for all n we have

|E ∩ [c, cn]| ≤
∞
∑

i=n

|(Ei ∪ Fi) ∩ [c, ci]|

<
∞
∑

i=n

1

i
(ci − c)

<
1

n

∞
∑

i=n

2(ci − ci+1)

=
2

n
(cn − c).

Hence it follows at once that d+(E, c) = 0.

Now, taking a measurable cover H of E, we have d+(H, c) = d+(E, c) =

0. Then the set M = R\H is measurable and d+(M, c) = 1[8, p.27]. Also,

since H ⊇ E so that M ⊆ R\E, clearly sn ≤ f(x) ≤ rn for all x ∈ M∩(c, cn),

n = 1, 2, . . .. Since lim rn = P+f(c) and lim sn = P+f(c), it follows that

P+f(c) ≤ lim inf
x→c+

x∈M

f(x) ≤ lim sup
x→c+

x∈M

f(x) ≤ P+f(c).

By Lemma 1.4, there is a closed set F ⊆ M ∪ {c} scuh that d+(F, c) =

d+(M, c) = 1. Since F\{c} ⊆ M , it follows from above that

P+f(c) ≤ lim inf
x→c+

x∈F

f(x) ≤ lim sup
x→c+

x∈F

f(x) ≤ P+f(c),

which proves the theorem together with its consequence.

Khintchine [5, p.242] showed that if a monotonic function has a finite

approximate derivative at a point, then it has actually an ordinary derivative

at that point. Subsequently, Mǐsik [6] discovered that the approximate Dini
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derivates and the Dini derivates of a monotonic function are in fact identical

in corresponding pairs. For further elaborations on this point, see [2, p.106]

and [10, §65].

In sharp contrast to this, we show that even an absolutely continuous

monotonic function can have a finite proximal derivative at a point without

having an ordinary derivative there.

Given a function F , let f(x) = (F (x)−F (c))/(x− c) for x 6= c. If

fpr(c
+) and fpr(c

−) exist and are equal, then this common value is called

the proximal derivative, PDF(c), of F at c.

Example 2.7. By [8, Example 3.1.], there is a set A ⊂ (0,+∞) such

that A ∈ S(0+) but d+(A, 0) > 0. Consider the measure function F (x) =

|A ∩ (−∞, x]|. We will show that PDF(0) = 0. Given η > 0, put

E =

{

x : x > 0 and

∣

∣

∣

∣

F (x) − F (0)

x − 0

∣

∣

∣

∣

=
|A ∩ [0, x]|

x
> η

}

.

If 0 is not a limit point of E on the right, then plainly E ∈ S(0+). Suppose

now 0 is a limit point of E on the right. For any x > 0, let x′ = supE∩ [0, x].

Then 0 < x′ ≤ x, and, hence, by definitions of E and x′,

|A ∩ [0, x]| ≥ |A ∩ [0, x′]| ≥ ηx′ ≥ η|E ∩ [0, x′]| = η|E ∩ [0, x]|.

Now, since A ∈ S(0+), given ε > 0 there is h > 0 so that each interval

(a, b) ⊆ (0, h), with a < hb, contains at least one point x such that |A ∩

[0, x]| < ηεx, which by above gives that |E ∩ [0, x]| < εx. This shows that

E ∈ S(0+).

Hence, noting that F (x) = 0 for x ≤ 0, we have PDF(0) = 0. Thus,

clearly though F is absolutely continuous and nondecreasing, we find that it

has proximal derivative 0 at the origin and yet the ordinary derivative does

not exist there, as D+F (0) = d+(A, 0) > 0 = d+(A, 0) = D+F (0).
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3. Cauchy criterion and monotonicity criterion

Theorem 3.1. The right proximal limit fpr(c+) exists finitely if and only

if, for each ε > 0, there is a point b > c so that the set {x : |f(x)−f(b)| > ε}

is sparse at c on the right.

Note. The result is also true for limits with respect to local systems of

Thomson [10].

Proof. Assuming the stated condition, both the sets

{x : f(x) < f(b) − ε} and {x : f(x) > f(b) + ε}

are sparse at c on the right. Therefore,

−∞ < f(b) − ε ≤ P+f(c) ≤ P+f(c) ≤ f(b) + ε < +∞.

Thus 0 ≤ P+f(c)−P+f(c) ≤ 2ε. Since ε > 0 was arbitrary, we get P+f(c) =

P+f(c) 6= ±∞. Hence fpr(c
+) exists finitely.

Conversely, assume that fpr(c
+) exists and is a finite number α. Then

for each ε > 0 both the sets

{x : f(x) > α + ε/2} and {x : f(x) < α − ε/2}

are sparse at c on the right. So by Theorem 1.3 the set

{x : |f(x) − α| > ε/2}

is sparse at c on the right. Certainly then there exists a point b > c satisfying

|f(b) − α| ≤ ε/2. Since |f(x) − f(b)| > ε implies

|f(x) − α| ≥ |f(x) − f(b)| − |f(b) − α| > ε − ε/2 = ε/2,
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it follows that the set {x : |f(x)− f(b)| > ε} is sparse at c on the right, and

this completes the proof.

The monotonicity theorem below greatly extends Theorem 4.3 of [8].

Here we need to use the full strength of Theorem 1.2.

Theorem 3.2. Suppose P−f(x) ≤ f(x) ≤ P+f(x) for all x, and,

furthere, f(D) has void interior when

D = {x : d−(Aε,x, x) = d+(Bε,x, x) = 1 for all ε > 0},

where Aε,x = f−1([f(x), f(x) + ε]), Bε,x = f−1([f(x) − ε, f(x)]).

Then the function f is nondecreasing.

Proof. Suppose, for a contradiction, that f(b) < f(a) for some a < b.

Then, since f(D) has void interior, we can find r 6∈ f(D) so that f(b) < r <

f(a). Put B = [a, b]\A, where A denotes the set of points x of [a, b] such

that either f(x) > r or, else, f(x) = r and d+(Bε,x, x) < 1 for some ε > 0.

We will verify the hypotheses of Lemma 1.5.

Consider any y ∈ B. If f(y) = r, then the condition r 6∈ f(D) gives

that y 6∈ D, and the condition y 6∈ A gives that d+(Bε,y, y) = 1 for all ε > 0,

which jointly implies that for some ε > 0, ε = η say, d−(Aη,y, y) < 1. But,

since f(y) = r so

A ⊆ E ∪ Aη,y where E = {t : f(t) > f(y) + η}.

Since P−f(y) ≤ f(y), so E ∈ S(y−). Hence by the left hand analogue of

Theorem 1.2 d−(A, y) ≤ d−(E ∪ Aη,y, y) < 1.

If f(y) < r, then P−f(y) ≤ f(y) < r and so A ∈ S(y−) because f(x) ≥ r

for all x ∈ A. So again d−(A, y) < 1, by the left hand analogue of Theorem

1.3.
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Consider next any x ∈ A. If f(x) = r, then d+(Bε,x, x) < 1 for some

ε > 0. But, since f(x) = r so

B ⊆ F ∪ Bε,x where F = {t : f(t) < f(x) − ε}.

Since P+f(x) ≥ f(x), so F ∈ S(x+). Hence by Theorem 1.2 d+(B,x) ≤

d+(F ∪ Bε,x, x) < 1.

If f(x) > r, then P+f(x) ≥ f(x) > r and so B ∈ S(x+) because f(y) ≤ r

for all y ∈ B. So again d+(B,x) < 1 by Theorem 1.3.

Since a ∈ A and b ∈ B, we thus arrive at a contradiction to Lemma 1.5,

which in fact proves the theorem.

The author wishes to thank the referee for his suggestions.
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