ON A STRONGLY STARLIKENESS CRITERIA

BY

MAMORU NUNOKAWA (布川護), SHIGEYOSHI OWA (尾和重義), HITOSHI SAITOH (齋藤齊) AND NORIHIRO TAKAHASHI (高橋典宏)

Abstract. H. Silverman [Internat. J. Math. Math. Sci. 22(1999), 75-79] investigated and obtained some results for the properties of functions defined in terms of the quotient of the analytic representations of convex and starlike functions. In this paper, we obtain a sufficient conditation of functions for strongly starlikeness of order β .

1. Introduction. Let S denote the class of functions f(z) normalized by f(0) = f'(0) - 1 = 0 that are analytic and univalent in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f(z) \in S$ is said to be starlike of order α if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha$$

for some $\alpha(0 \leq \alpha < 1)$, and for all $z \in \mathbb{U}$. The class of starlike functions of order α is denoted by $\mathcal{S}^*(\alpha)$. Further, a function $f(z) \in \mathcal{S}$ is said to be convex of order α if and only if

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

for some $\alpha(0 \leq \alpha < 1)$, and for all $z \in \mathbb{U}$. Also we denote by $\mathcal{C}(\alpha)$ the

Received by the editors June 5, 2002.

AMS 2000 Subject Classification: 30C45.

Key words and phrases: Univalent, starlike, convex, strongly starlike of order β .

subclass of S consisting of all convex functions of order α in \mathbb{U} .

On the other hand, a function f(z) in S is said to be strongly starlike of order β if it satisfies

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2}\beta$$

for some $\beta(0 < \beta \le 1)$, and for all $z \in \mathbb{U}$. We say that $f(z) \in \mathcal{SS}^*(\beta)$ if f(z) is strongly starlike of order β in \mathbb{U}

Silverman [2] investigated the properties of functions defined in terms of the quotient of the analytic representations of convex and starlike functions. Let \mathcal{G}_b be the subclass of \mathcal{S} consisting of functions $f(z) \in \mathcal{S}$ which satisfy

$$\left| \left\{ \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \right\} - 1 \right| < b \quad (z \in \mathbb{U})$$

for some real b.

196

For this class \mathcal{G}_b , Silverman obtained the following rsult.

Theorem A([2]). If $0 < b \le 1$, then

$$\mathcal{G}_b \subset \mathcal{S}^*(\frac{2}{1+\sqrt{1+8b}}).$$

The result is sharp for all b.

In this paper, we consider the strongly starlikeness for functions f(z) belonging to \mathcal{G}_b .

2. Strongly Starlikeness. To discuss the strongly starlikeness of functions f(z) in \mathcal{G}_b , we have to recall here the following result by Nunokawa [1].

Lemma. Let p(z) be analytic in \mathbb{U} with p(0) = 1 and $p(z) \neq 0 (z \in \mathbb{U})$.

Suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$|\arg(p(z))| < \frac{\pi}{2}\beta \quad (|z| < |z_0|)$$

and

$$|\arg(p(z_0))| = \frac{\pi}{2}\beta,$$

where $\beta > 0$. Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = iK\beta,$$

where

$$K \ge \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 when $\arg(p(z_0)) = \frac{\pi}{2} \beta$

and

$$K \leq -\frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg(p(z_0)) = -\frac{\pi}{2}\beta$,

where $p(z_0)^{\frac{1}{\beta}} = \pm ia$ and a > 0.

Our main result is contained in

Theorem 1. If f(z) belongs to the class $\mathcal{G}_{b(\beta)}$ with

$$b(\beta) = \frac{\beta}{\sqrt{(1-\beta)^{1-\beta}(1+\beta)^{1+\beta}}} \quad (0 < \beta \le 1),$$

then $f(z) \in \mathcal{SS}^*(\beta)$.

Proof. Let us define the function p(z) by

$$p(z) = \frac{zf'(z)}{f(z)}.$$

Then it follows that

$$\frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} - 1 = \frac{zp'(z)}{p(z)^2}.$$

If there exists a point $z_0 \in \mathbb{U}$ such that

$$|\arg(p(z))| < \frac{\pi}{2}\beta$$
 for $|z| < |z_0|$

and

$$|\arg(p(z_0))| = \frac{\pi}{2}\beta,$$

then, applying Lemma, we have that

$$\left| \frac{z_0 p'(z_0)}{p(z_0)^2} \right| = \left| iK\beta \frac{1}{(\pm ia)^{\beta}} \right| = \beta |K| a^{-\beta}$$

$$\geq \frac{\beta}{2} \left(a^{1-\beta} + \frac{1}{a^{1+\beta}} \right).$$

Define the function g(a) by

$$g(a) = a^{1-\beta} + \frac{1}{a^{1+\beta}}$$
 $(a > 0; 0 < \beta \le 1).$

Since

$$g'(a) = \frac{1}{a^{2+\beta}}((1-\beta)a^2 - (1+\beta)),$$

g(a) takes its minimum value at $a = \sqrt{\frac{1+\beta}{1-\beta}}$. This implies that

$$\left| \frac{z_0 p'(z_0)}{p(z_0)^2} \right| \ge \frac{\beta}{2} g\left(\sqrt{\frac{1+\beta}{1-\beta}}\right)$$

$$= \frac{\beta}{2} \left\{ \left(\frac{1+\beta}{1-\beta}\right)^{\frac{1-\beta}{2}} + \left(\frac{1-\beta}{1+\beta}\right)^{\frac{1+\beta}{2}} \right\}$$

$$= \frac{\beta}{\sqrt{(1-\beta)^{1-\beta}(1+\beta)^{1+\beta}}},$$

which contradicts our condition $f(z) \in \mathcal{G}_{b(\beta)}$ of the theorem. Thus we complete the proof of the theorem.

Considering the case of $\beta = 1$ in the proof of Theorem 1, we have

Corollary 1. If $f(z) \in \mathcal{G}_b$ with $b = \frac{1}{2}$, then $f(z) \in \mathcal{SS}^*$ (1), or f(z) is strongly starlike in \mathbb{U} .

Taking $\beta = \frac{1}{2}$ in Theorem 1, we have

Corollary 2. If $f(z) \in \mathcal{G}_b$ with $b = \frac{1}{\sqrt{3\sqrt{3}}} = 0.438691...$, then $f(z) \in \mathcal{SS}^*(\frac{1}{2})$.

References

- 1. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad., **69**(1993), 234-237.
- 2. H. Silverman, *Convex and starlike criteria*, Internat. J. Math. Math. Sci., **22**(1999), 75-79.

Department of Mathematics, University of Gunma, Aramaki, Maebashi, Gunma 371-8510, Japan.

Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, 577-8052, Japan.

Dempatment of Mathematics, Ganma College of Technology, Toriba, Maebashi, Gunma 371-8530, Japan.

Department of Mathematics, University of Gunma, Aramaki, Maebashi, Gunma 371-8510, Japan