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Abstract. Consider independent and identically dis-

tributed random variables {X, Xnj , 1 ≤ j ≤ m,n ≥ 1} with den-

sity f(x) = px−p−1I(x ≥ 1), where p > 0. We select the kth order

statistic from each row 1 ≤ k ≤ m. Then we test to see whether

or not Laws of Large Numbers with nonzero limits exist.

1. Introduction. In this paper we observe weighted sums of order

statistics taken from small samples. We look at m observations from the

Pareto distribution, i.e., f(x) = px−p−1I(x ≥ 1). Then we select the kth

order statistic, 1 ≤ k ≤ m. We denote these order statistics as Xj(k), which

will have the density

fj(k)(x) =
p ·m!

(m− k)!(k − 1)!
(1− x−p)k−1x−p(m−k+1)I(x ≥ 1).

Our goal is to determine whether or not there exist positive constants aj

and bn such the
∑n

j=1 ajXj(k)/bn converges to a nonzero constant. These are

called Exact Laws of Large Numbers since they create a fair game situation

where the anXn(k) represent the amount a player wins on the nth play of
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some game and bn − bn−1 represents the corresponding fair entrance fee for

the participant.

As usual, we define lg x = log(max{e, x}) and lg2x = lg(lg x). We use

the constant C to denote a generic real number that is not necessarily the

same in each appearance.

2. The nonexistence of exact weak laws when p(m−k+1)<1.

Under mild conditions we show that even Weak Laws with nonzero limits

cannot exist.

Theorem 1. If p(m − k + 1) < 1 and max1≤j≤n aj = o(bn), then an

Exact Weak Law cannot hold.

Proof. We claim that the only finite limit of
∑n

j=1 ajXj(k)/bn is zero.

Assume that a Weak Law does hold. Then since there are only a finite

number of terms in each row

max
1≤j≤n

med

{

ajXj(k)

bn

}

=
med{Xj(k)} max

1≤j≤n
aj

bn
→ 0.

Thus, by the Degenerate Convergence Theorem, which can be found on page

356 of [1], we can claim that

n
∑

j=1

a
p(m−k+1)
j

b
p(m−k+1)
n

→ 0.

We take care of the case k = 1 first. From the Weak Law we have

0←
n
∑

j=1

P{Xj(k) > bn/aj} =
n
∑

j=1

pm

∫ ∞

bn/aj

x−pm−1dx =
n
∑

j=1

apm
j

bpm
n

.
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On the other hand if k ≥ 2, then

0 ←
n
∑

j=1

P{Xj(k) > bn/aj}

=
n
∑

j=1

p ·m!

(m− k)!(k − 1)!

∫ ∞

bn/aj

(1− x−p)k−1x−p(m−k+1)−1dx

=
p ·m!

(m− k)!(k − 1)!

n
∑

j=1

∫ ∞

bn/aj

k−1
∑

i=0

(

k − 1

i

)

(−1)ix−p(m−k+i+1)−1dx

=
p ·m!

(m− k)!(k − 1)!

n
∑

j=1

k−1
∑

i=0

(

k − 1

i

)

(−1)i
∫ ∞

bn/aj

x−p(m−k+i+1)−1dx

=
p ·m!

(m− k)!(k − 1)!

n
∑

j=1

k−1
∑

i=0

(k−1
i

)

(−1)i(bn/aj)
−p(m−k+i+1)

p(m− k + i + 1)

=
p ·m!

(m− k)!(k − 1)!

∑n
j=1 a

p(m−k+1)
j

b
p(m−k+1)
n

k−1
∑

i=0

(k−1
i

)

(−1)iapi
j

p(m− k + i + 1)bpi
n

=
p ·m!

(m− k)!(k − 1)!

∑n
j=1 a

p(m−k+1)
j

b
p(m−k+1)
n

[

1

p(m− k + 1)

+
k−1
∑

i=1

(k−1
i

)

(−1)iapi
j

p(m− k + i + 1)bpi
n

]

=
p ·m!

(m− k)!(k − 1)!

∑n
j=1 a

p(m−k+1)
j

b
p(m−k+1)
n

[

1

p(m− k + 1)
+ o(1)

]

implying that
∑n

j=1 a
p(m−k+1)
j = o(b

p(m−k+1)
n ) since max1≤j≤n aj = o(bn).

Next, we investigate the truncated mean. We have

0 <
n
∑

j=1

aj

bn
EXj(k)I(Xj(k) < bn/aj)

=
n
∑

j=1

p ·m!aj

(k − 1)!(m− k)!bn

∫ bn/aj

1
(1− x−p)k−1x−p(m−k+1)dx

<
C

bn

n
∑

j=1

aj

∫ bn/aj

1
x−p(m−k+1)dx

<
C

bn

n
∑

j=1

aj(bn/aj)
−p(m−k+1)+1
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=
C
∑n

j=1 a
p(m−k+1)
j

b
p(m−k+1)
n

→ 0.

Thus the only Weak Law we can have is one with a zero limit.

3. Unusual strong laws when p(m − k + 1) = 1. In this situation

we can get an Exact Strong Law, but only if we select our coefficients and

norming sequences properly.

Theorem 2. If p(m− k + 1) = 1, then for all β > 0 we have

lim
n→∞

∑n
j=1

(lg j)β−2

j Xj(k)

(lg n)β
=

p ·m!

β(k − 1)!(m − k)!
almost surely.

Proof. Let an = (lg n)β−2/n, bn = (lg n)β and cn = bn/an = n(lg n)2.

We use the partition

1

bn

n
∑

j=1

ajXj(k) =
1

bn

n
∑

j=1

aj[Xj(k)I(1≤Xj(k)≤cj)−EXj(k)I(1≤Xj(k)≤cj)]

+
1

bn

n
∑

j=1

ajXj(k)I(Xj(k) > cj)

+
1

bn

n
∑

j=1

ajEXj(k)I(1 ≤ Xj(k) ≤ cj).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem, see page 113 of [1], and Kronecker’s lemma since

∞
∑

n=1

1

c2
n

EX2
n(k)I(1≤Xn(k)≤cn)<C

∞
∑

n=1

1

c2
n

∫ cn

1
dx<C

∞
∑

n=1

1

cn
=C

∞
∑

n=1

1

n(lg n)2
<∞.

The second term vanishes, with probability one, by the Borel-Cantelli
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lemma since

∞
∑

n=1

P{Xn(k) > cn} < C
∞
∑

n=1

∫ ∞

cn

x−2dx = C
∞
∑

n=1

1

cn
<∞.

The real work is in obtaining the limit of the third term. Since cj →∞

EXj(k)I(1 ≤ Xj(k) ≤ cj)

=
p ·m!

(k − 1)!(m − k)!

∫ cj

1
(1− x−p)k−1x−1dx

=
p ·m!

(k − 1)!(m − k)!

k−1
∑

i=0

(

k − 1

i

)

(−1)i
∫ cj

1
x−pi−1dx

=
p ·m!

(k − 1)!(m − k)!

[
∫ cj

1
x−1dx +

k−1
∑

i=1

(

k − 1

i

)

(−1)i
∫ cj

1
x−pi−1dx

]

=
p ·m!

(k − 1)!(m − k)!

[

lg cj +
k−1
∑

i=1

(k−1
i

)

(−1)i+1

picpi
j

+
k−1
∑

i=1

(k−1
i

)

(−1)i

pi

]

∼
p ·m!

(k − 1)!(m − k)!
lg cj

∼
p ·m!

(k − 1)!(m − k)!
lg j.

Therefore

∑n
j=1 ajEXj(k)I(1 ≤ Xj(k) ≤ cj)

bn

∼
p ·m!

(k − 1)!(m − k)!
·

∑n
j=1

(lg j)β−1

j

(lg n)β
→

p ·m!

β(k − 1)!(m − k)!

which completes the proof.

4. Typical strong laws when p(m − k + 1) > 1. In this situation

we can obtain all kinds of Strong Laws since the first moment does exist. In

order to obtain Exact Strong Laws we can define an and bn as any pair of

positive sequences as long as bn ↑ ∞,
∑n

j=1 aj/bn → L, where L 6= 0, and

the condition involving cn = bn/an in each theroem is satisfied. If L = 0,
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then the limit theorems still holds, however the limit is zero, which is not

that interesting.

This section is broken down into three cases, each has different condi-

tions as to whether the Strong Law exists. The calculation of EXj(k) follows

in the ensuing lemma.

Lemma. If p(m− k + 1) > 1, then

EXj(k) =
m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)
.

Proof. Let Yj(k) = X−p
j(k). From the density of Xj(k) We see that the

density of Yj(k) is m!
(m−k)!(k−1)!y

m−k(1 − y)k−1I(0 < y < 1), which is the

distribution of a β(m− k + 1, k) random variable. Therefore

EXj(k) = EY
−1/p
j(k) =

m!

(k − 1)!(m − k)!

∫ 1

0
y−1/pym−k(1− y)k−1dy

=
m!

(k − 1)!(m − k)!

∫ 1

0
ym−k−1/p(1− y)k−1dy

=
m!

(k − 1)!(m − k)!
·
Γ(m− k + 1− 1/p)Γ(k)

Γ(m + 1− 1/p)

=
m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)

which completes the proof of the lemma.

In all three ensuing theorems we use the partition

1

bn

n
∑

j=1

ajXj(k) =
1

bn

n
∑

j=1

aj [Xj(k)I(1≤Xj(k)≤cj)−EXj(k)I(1≤Xj(k)≤cj)]

+
1

bn

n
∑

j=1

ajXj(k)I(Xj(k) > cj)

+
1

bn

n
∑

j=1

ajEXj(k)I(1 ≤ Xj(k) ≤ cj)
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where the selection of an, bn and cn = bn/an must satisfy the assumption of

each theorem. These three hypotheses are slightly different and are depen-

dent on how large a first moment the random variable Xj(k) possesses. The

difference in the these theorems is the condition involving the sequence cn.

Theorem 3. If 1 < p(m− k + 1) < 2 and
∑∞

n=1 c
−p(m−k+1)
n <∞, then

lim
n→∞

∑n
j=1 ajXj(k)

bn
=

L ·m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)
almost surely.

Proof. The first term in our partition goes to zero, with probability one,

since

∞
∑

n=1

1

c2
n

EX2
n(k)I(1≤Xn(k)≤cn) < C

∞
∑

n=1

1

c2
n

∫ cn

1
x−p(m−k+1)+1dx

< C
∞
∑

n=1

1

c2
n

c−p(m−k+1)+2
n =C

∞
∑

n=1

c−p(m−k+1)
n <∞.

As for the second term

∞
∑

n=1

P{Xn(k) > cn} < C
∞
∑

n=1

∫ ∞

cn

x−p(m−k+1)−1dx < C
∞
∑

n=1

c−p(m−k+1)
n <∞.

Then, from our lemma and
∑n

j=1 aj ∼ Lbn we have

∑n
j=1 ajEXj(k)I(1 ≤ Xj(k) ≤ cj)

bn
→

L ·m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)

which completes this proof.

Theorem 4. If p(m− k + 1) = 2 and
∑∞

n=1 lg(cn)/c2
n <∞, then

lim
n→∞

∑n
j=1 ajXj(k)

bn
=

L ·m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)
almost surely.
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Proof. The first term goes to zero, almost surely, since

∞
∑

n=1

1

c2
n

EX2
n(k)I(1 ≤ Xn(k) ≤ cn) < C

∞
∑

n=1

1

c2
n

∫ cn

1
x−1dx = C

∞
∑

n=1

lg cn

c2
n

<∞.

Likewise, the second term disappears, with probability one, since

∞
∑

n=1

P{Xn(k) > cn} < C
∞
∑

n=1

∫ ∞

cn

x−3dx < C
∞
∑

n=1

1

c2
n

< C
∞
∑

n=1

lg cn

c2
n

<∞.

As in the last proof, the calculation for the truncated mean is exactly

the same, which leads us to the same limit.

Theorem 5. If p(m− k + 1) > 2 and
∑∞

n=1 c−2
n <∞, then

lim
n→∞

∑n
j=1 ajXj(k)

bn
=

L ·m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)
almost surely.

Proof. The first term goes to zero, with probability one, since

∞
∑

n=1

1

c2
n

EX2
n(k)I(1 ≤ Xn(k) ≤ cn)

< C
∞
∑

n=1

1

c2
n

∫ cn

1
x−p(m−k+1)+1dx<C

∞
∑

n=1

1

c2
n

<∞.

As for the second term

∞
∑

n=1

P{Xn(k) > cn}

< C
∞
∑

n=1

∫ ∞

cn

x−p(m−k+1)−1dx < C
∞
∑

n=1

c−p(m−k+1)
n < C

∞
∑

n=1

1

c2
n

<∞.

Then as in the last two theorems

∑n
j=1 ajEXj(k)I(1 ≤ Xj(k) ≤ cj)

bn
→

L ·m!Γ(m− k + 1− 1/p)

(m− k)!Γ(m + 1− 1/p)
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which completes this proof.

Clearly, in all of these three theorems the situation of an = 1 and bn =

n = cn is easily satisfied. Whenever p(m− k + 1) > 1 we have tremendous

freedom in selecting our constants. That is certainly not true when p(m −

k + 1) = 1.

5. More unusual results when p(m − k + 1) = 1. We saw in

Section 3 that unusual results occur when p(m − k + 1) = 1. In order to

establish an Exact Strong Law when p(m − k + 1) = 1 one is forced to set

an to be some slowly varying function divided by n, while bn must also be

slowly varying. If one wants to try more conventional constants such as

an = 1 and bn = n we will have to set our sights a bit lower and settle for

Exact Weak Laws. The Weak Law can be found in Theorem 6. Then we use

that Weak Law to obtain the almost sure behavior of our normalized partial

sums. That result is known as a Generalized Law of the Iterated Logarithm.

Theorem 6. If p(m− k + 1) = 1 and α > −1, then

∑n
j=1 jαXj(k)

nα+1lg n
P
→

p ·m!

(α + 1)(k − 1)!(m− k)!
.

Proof. This proof is a consequence of the Degenerate Convergence The-

orem. As usual, set aj = jα and bn = nα+1lg n. Thus

n
∑

j=1

P{Xj(k) >
bn

aj
}<C

n
∑

j=1

∫ ∞

bn/aj

x−2dx<
C

bn

n
∑

j=1

aj =
C

nα+1lg n

n
∑

j=1

jα <
C

lg n
→0

and

n
∑

j=1

Var

(

aj

bn
Xj(k)I(1≤Xj(k)≤bn/aj)

)

<C
n
∑

j=1

a2
j

b2
n

∫ bn/aj

1
dx<

C

bn

n
∑

j=1

aj→0.
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As for our truncated expectation, using Theorem 1 from [2], page 281,

we have

n
∑

j=1

aj

bn
EXj(k)I(1 ≤ Xj(k) ≤ bn/aj)

=
n
∑

j=1

p ·m!aj

(k − 1)!(m − k)!bn

∫ bn/aj

1
(1− x−p)k−1x−1dx

=
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

aj

∫ bn/aj

1
(1− x−p)k−1x−1dx

=
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

aj

k−1
∑

i=0

(

k − 1

i

)

(−1)i
∫ bn/aj

1
x−pi−1dx

=
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

aj

[

lg(
bn

aj
)+

k−1
∑

i=1

(k−1
i

)

(−1)i+1api
j

pibpi
n

+
k−1
∑

i=1

(k−1
i

)

(−1)i

pi

]

∼
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

aj lg(bn/aj)

=
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

jαlg(nα+1lg n/jα)

=
p ·m!

(k − 1)!(m− k)!

[

(α + 1)
∑n

j=1 jα

nα+1
+

lg2n
∑n

j=1 jα

nα+1lg n
−

α
∑n

j=1 jαlg j

nα+1lg n

]

→
p ·m!

(k − 1)!(m− k)!

[

1 + 0−
α

α + 1

]

=
p ·m!

(α + 1)(k − 1)!(m − k)!

which completes this proof.

Using our Exact Weak Law we conclude this paper with a Generalized

Law of the Iterated Logarithm.

Theorem 7. If p(m− k + 1) = 1 and α > −1, then

lim inf
n→∞

∑n
j=1 jαXj(k)

nα+1lg n
=

p ·m!

(α + 1)(k − 1)!(m − k)!
almost surely
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and

lim sup
n→∞

∑n
j=1 jαXj(k)

nα+1lg n
=∞ almost surely.

Proof. From Theorem 6 we have

lim inf
n→∞

∑n
j=1 jαXj(k)

nα+1lg n
≤

p ·m!

(α + 1)(k − 1)!(m − k)!
almost surely.

Once again set aj = jα, bn = nα+1lg n and cn = bn/an = nlg n. In order to

obtain the opposite inequality we use the following partition

1

bn

n
∑

j=1

ajXj(k) ≥
1

bn

n
∑

j=1

ajXj(k)I(1 ≤ Xj(k) ≤ j)

=
1

bn

n
∑

j=1

aj [Xj(k)I(1≤Xj(k)≤j)−EXj(k)I(1≤Xj(k)≤j)]

+
1

bn

n
∑

j=1

ajEXj(k)I(1 ≤ Xj(k) ≤ j).

Note that this partition differs from the others used in this paper.

The first term goes to zero, almost surely, since bn ↑ and

∞
∑

n=1

c−2
n EX2

n(k)I(1 ≤ Xn(k) ≤ n) < C
∞
∑

n=1

c−2
n

∫ n

1
dx < C

∞
∑

n=1

1

n(lg n)2
<∞.

As for the second term we need to expand the terms for a final time.

Using Theorem 1 from [2], page 281, we have

1

bn

n
∑

j=1

ajEXj(k)I(1 ≤ Xj(k) ≤ j)

=
p ·m!

(k − 1)!(m− k)!bn

n
∑

j=1

aj

∫ j

1
(1− x−p)k−1x−1dx

=
p ·m!

(k − 1)!(m− k)!nα+1lg n

n
∑

j=1

jα
k−1
∑

i=0

(

k − 1

i

)

(−1)i
∫ j

1
x−pi−1dx
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=
p ·m!

(k−1)!(m−k)!nα+1lg n

n
∑

j=1

jα
[

lg j+
k−1
∑

i=1

(k−1
i

)

(−1)i+1

pijpi
+

k−1
∑

i=1

(k−1
i

)

(−1)i

pi

]

∼
p ·m!

(k − 1)!(m− k)!nα+1lg n

n
∑

j=1

jαlg j

∼
p ·m!

(k − 1)!(m− k)!nα+1lg n
·
nα+1lg n

α + 1

=
p ·m!

(α + 1)(k − 1)!(m− k)!

which completes the lower limit. As for the upper limit, set M > 0, then

∞
∑

n=1

P{Xn(k) > Mcn}

=
∞
∑

n=1

∫ ∞

Mcn

p ·m!

(m− k)!(k − 1)!
(1− x−p)k−1x−2dx

=
p ·m!

(m− k)!(k − 1)!

∞
∑

n=1

k−1
∑

i=0

(

k − 1

i

)

(−1)i
∫ ∞

Mcn

x−pi−2dx

=
p ·m!

(m− k)!(k − 1)!

∞
∑

n=1

k−1
∑

i=0

(k−1
i

)

(−1)i

(pi + 1)(Mcn)pi+1

=
p ·m!

M(m− k)!(k − 1)!

∞
∑

n=1

1

nlg n

k−1
∑

i=0

(k−1
i

)

(−1)i

(pi + 1)(Mnlg n)pi

=
p ·m!

M(m− k)!(k − 1)!

∞
∑

n=1

1

nlg n

[

1 +
k−1
∑

i=1

(k−1
i

)

(−1)i

(pi + 1)(Mnlg n)pi

]

= ∞

since
∣

∣

∣

∣

k−1
∑

i=1

(k−1
i

)

(−1)i

(pi + 1)(Mnlg n)pi

∣

∣

∣

∣

<
k−1
∑

i=1

(k−1
i

)

(Mnlg n)pi
→ 0

as n→∞. This implies that

lim sup
n→∞

anXn(k)

bn
=∞ almost surely
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which in turn allows us to conclude that

lim sup
n→∞

∑n
j=1 ajXj(k)

bn
=∞ almost surely

which completes this proof.
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